
ISS Project 2009 / 10
Tomáš Mikolov, Jǐŕı Kopecký and Honza Černocký, DCGM FIT BUT

Goal and submission

The aim of the project is to make use of some fundamental functions for digital image processing. As the input
use the individually assigned image xlogin00.bmp, where “xlogin00” is your login. The project can be solved in
Matlab, C or any other programming or scripting language.

Project submission will be done by means of the information system WIS as a single zip-file names as
xlogin00.zip, where “xlogin00” is your login. The archive should contain:

• text file reseni.txt, that containes numerical results. The file should not contain any header, only rows
with results (no empty rows nor comments).

• files *.bmp, containing the output images. The output images have to be in the same format as the input
image – uncompressed BMP 512x512 with 8-bit color depth (will be automatically checked).

• directory src/, containing the sourse code of the solution. The project is comprehended as an individual

work, thus the sourse code will be compared among students.

Please pay attention to the format of the submitted work. In case the results
cannot be processed automatically but should be processed by hand, penalty
will be applied (-2 points).

Task

Image unblur [1 point]

Load the input image (xlogin00.bmp) and apply unbluring by using a linear filter:

H =





−0.5 −0.5 −0.5
−0.5 5.0 −0.5
−0.5 −0.5 −0.5





The result must be an output file step1.bmp

Rotating of an image [2 points]

Perform a vertical flip of the unblured image from the previous step.

The result must be an output file step2.bmp.

Median filter [1 point]

On the input image, apply a median filter with a window size of 5 pixels (matrix 5x5). Median filter is comonly
used for noise reduction in images. It sorts the values fitting the window and outputs the median value of the
sorted sequence (number 13. in our case). If using Matlab, you can use a built-in function medfilt2.

The result must be an output file step3.bmp

1



Image blur [2 points]

Here, use the following filter:

H =













1 1 1 1 1
1 3 3 3 1
1 3 9 3 1
1 3 3 3 1
1 1 1 1 1













/49

The result must be an output file step4.bmp

Error in the image [1 point]

In the previous steps the image was gradually modified several times. Compute the average error per pixel
comparing to the original image (xlogin00.bmp vs. step4.bmp). Compare only images with the same

rotation. Note: prior to error computing you must convert image format unit8 to the standard Matlab format
double.

The result must be submited as a row
chyba=xx.yyy

in the file reseni.txt. xx.yyy is the computed error.

Histogram correction [2 points]

Vizualize the histogram of the input image. As you can see, there are not all values used – expand the diagram so
it contained the values from the range 0-255. Hint: find the minimum to maximum values in the original image
and consequently map linearly this interval into the interval of the range 0-255. Generate an image with the
mapped values. Here again you have to convert image format unit8 to the standard Matlab format double, the
resulting image convert back to unit8. Note: the task is to treach the histogram, not equalize it (!) thus function
histeq cannot be used.

The result must be an output file step5.bmp

Mean value and standard deviation [2 points]

Compute the mean value and standard deviation of the image before and after histogram streching. Again dont
forget to convert the image format to double.

The results must be submited as a rows
mean_no_hist=xx.yyy

std_no_hist=xx.yyy

mean_hist=xx.yyy

std_hist=xx.yyy

in the file reseni.txt. xx.yyy are the computed values. please use decimal dots, not commas !

Image quantization [2 points]

Perform quantization of the image obtained after histogram stretching. Consider quantization on 2 bits – the
resulting image should contain 4 colors. Again dont forget to convert the image format to double. If using the
quantization function from the lab “Sampling, quantization”, correct an error in the 5. example – use rounding,
not flooring:
round(((2^N)-1)*(double(I5)-a)/(b-a))*(b-a)/((2^N)-1) + a;

The result must be an output file step6.bmp

2


