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Abstract. Computing transitive closures of integer relations is the key to finding
precise invariants of integer programs. In this paper, we describ#iciera al-
gorithm for computing the transitive closures of difference boundsgamal and
finite monoid affine relations. On the theoretical side, this frameworkigesva
common solution to the acceleration problem, for all these three classes of
lations. In practice, according to our experiments, the new methodrpesfop

to four orders of magnitude better than the previous ones, making inaiging
approach for the verification of integer programs.

1 Introduction

The verification of safety properties of infinite-state sys$ (such as device drivers,
communication protocols, control software, etc.) recaittee computation of the set of
reachable states, starting with an initial state from amgfp®ssibly infinite) set. There
are currently two ways of doing this: (i) compute a finite eg@ntation of an over-
approximation of the set of reachable states, by applyingdaning operator at each
step, or (ii) attempt to compute precisely the transitivesale of the transition rela-
tion; the set of reachable states is the image of the settidlistates via the transitive
closure. The first approach is guaranteed to terminatehbulistraction usually intro-
duces imprecision that may blur the verification result. @& é¢ther hand, the second
approach, although precise, is not guaranteed to termintite problem of verifying
safety properties being, in general, undecidable.

In practice, one usually tries to combine the two approaemesbenefit from the
advantages of both. To this end, it is important to know forchtclasses of transition
relations it is possible to compute the transitive closueeisely and fast — the relations
falling outside these classes being dealt with using sigitabstractions. To the best of
our knowledge, the three main classes of integer relationa/fiich transitive closures
can be computed precisely in finite time are: (1) differencartas constraints [9, 8],
(2) octagons [12, 6], and (3) finite monoid affine transfoiiora [5, 10]. For these three
classes, the transitive closures can be moreover definagsbirger arithmetic.

The contributions of this paper are two-fold. On the theoatiside, we show that
the three classes of relations mentioned above are ultiyriageiodic, i.e. each relation
R can be mapped into an integer mathik; such that the sequené@/r: }3° , is peri-
odic. The proof that a sequence of matrices is ultimatelioger relies on a result from
tropical semiring theory [13]. This provides shorter potif the fact that the transitive
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closures for these classes can be effectivelly computeditlaat they are Presburger
definable.

On the practical side, the algorithm introduced in this pajpenputes the transitive
closure of difference bounds and octagonal relations uptio érders of magnitude
faster than the original methods from [8, 6], and also scalesh better in the number
of variables. The experimental comparison with the FAST [dor difference bounds
relations shows that large relations {0 variables), causing FAST to run out of mem-
ory, can now be handled by our implementation in less tharc8rsks, on average. We
currently do not have a full implementation of the finite mimhaffine transformation
class, which is needed in order to compare our method witk tie FAST [4], LASH
[14], or TReX [2], for this class of relations.

Related Work Early attempts to apply Model Checking techniques to théigation
of infinite-state systems consider the problem of accefegatansition relations by
successive under-approximations, without any guararteermination. For systems
with integer variables, the acceleration of affine relatibas been considered primarily
in the works of Annichini et. al [1], Boigelot [5], and Finkehd Leroux [10]. Finite
monoid affine relations have been first studied by Boigelptffo shows that the finite
monoid property is decidable, and that the transitive al@s$siPresburger definable in
this case. On what concerns non-deterministic transitiations, difference bounds
constraints appear in the context of timed automata veiificaThe transitive closure
of a difference bounds constraint is shown to be Presburgfanable first by Comon
and Jurski [9]. Their proof was subsequently simplified artbreded to parametric
difference bounds constraints in [8]. We also showed thtagmmal relations can be
accelerated precisely, and that the transitive closurésis Rresburger definable [6].
The proofs of ultimate periodicity from this paper are basadsome of our previous
results [8, 6]. For difference bounds constraints, the fifiroon [8] was simplified using
a result from tropical semiring theory [13].

RoadmapThe paper is organized as follows: Section 2 gives the diefimdf ultimately
periodic relations, Section 3 describes the algorithm @nputing transitive closures
of ultimately periodic relations, in general, Section 4 aéses three instances of the
algorithm, Section 5 presents the experimental resultsSaction 6 concludes. Missing
proofs are deferred to [7] due to reasons of space.

2 Preliminaries

We denote byZ, N andN, the sets of integers, positive (including zero) and strictl
positive integers, respectivelly. The first order additiveory of integers is known as
Presburger Arithmetic. Theopical semiringis defined asl' = (Z.,, min, +, 0o, 0)
[13], whereZ., = Z U {oc}, with the extended arithmetic operationst co = oo,
min(z,00) = x, for all x € Z, wheremin(z, y) denotes the minimum between the
valuesz andy. For two square matriced, B € S™*™, we define(A + B);; =
Aij + Bij and(A X B)U = min’knzl(aik + bkj>, foralll1 < 1,7 <m.Letl € Tomexm

be the identity matrix, i.el;; = 0 andl;; = oo, forall1 <i,j < m, i # j.

Definition 1. [13] An infinite sequencgsy } 2, € T is calledultimately periodidf:

dK de > 03X, A1, ..., A1 €T. S(k41)cti = i+ Skedi



forall k > K andi = 0,1,...,¢c— 1. The smallest and \y, A1, ..., A._1 for which
the above holds are called tiperiodandratesof {s; }3° ,, respectivelly.

Example 1.The sequencey, = {3k+1 |k =21,1> 2} U{5k+3 |k =214+1,1> 2}
is ultimately periodic, with/' = 4, periodc = 2 and rates\, = 6, A\; = 10. a

A sequence of matricgsAy } 72, € T™*™ is said to be ultimately periodic if, for all
1 < 4,7 < m, the sequencé(Ay);; }72, is ultimately periodic. A matrix4d € T™*™
is called ultimately periodic if the sequenéel®}2° | is ultimately periodic, where
A% =TandA* = A x A*=1 foranyk > 0. Itis known that, every matrix is ultimately
periodic in the tropical semiring [13].

We have the following characterization of ultimately peimsequences of matri-
ces:

Lemma 1. A sequence of matriced, }72, € T™*™ is ultimately periodic if and
only if:

dK de > 03dAg, Ay,..., A1 € Tm>m A(kJrl)CJri =/A; + A}gc+i

forall k > Kandi=0,1,...,¢— 1.

If A e T™ ™ isasquare matrix and € T, we define the matrixn-A);; = n-A;;,
forall1 <i,j < m.If kis a parameter (typically interpreted oV, thenT[k] denotes
the set of all terms wherke may occur, built from the constants and operator$.dfor
instance, ifA, B € T™*™, thenk - A + B € T[k]™*™ denotes the matrix of terms

2.1 Ultimately Periodic Relations

Letx = {1, z2,...,2n} be asetof variablesy > 0, and letx’ = {z/,z},..., 2\ }.
A relation is an arithmetic formul®(x, x’) with free variablex U x’. We say that two
relationsR and R’ are equivalent, denoteR < R’ if under all valuations ok and
x’, R is true if and only ifR’ is true. A relation is calledonsistentf and only if there
exist valuations ok andx’ under which it holds. We denote a consistent relafidloy
writing R < false, and an inconsistent relation by writikge> false.

The composition of two relations is defined&@s R’ = Jy . R(x,y) A R'(y,x').
Let Z be the identity relation\ ., ' = z. We defineR’ = Z andR" = R"~! o R,
for anyn > 0. With these notationsk?* = \/;- R* denotes theransitive closureof
R. Arelation R is calledw-consistenif R" is consistent for alk > 0. For the rest of
this section, leR be a class of relatiods

Definition 2. ArelationR(x, x’) € R is calledultimately periodidf and only if either:

1. there existg, > 0 such thatR™ is inconsistent, or
2. foralli > 0, R is consistent, and there exists two functions:
- o : R — T'"™ mapping eacttonsistentelation in R into am x m matrix
of T, for somem > 0, and each inconsistent relation into.
— p : T™*™ — R mapping eachn x m matrix of T into a relation inR, such
thatp(o(R)) < R, for each consistent relatioR € R

8 A class of relations is usually defined by syntactic conditions.



such that the infinite sequence of matrigeg?*)}°, € T™*™ is ultimately pe-
riodic.

Notice that the first condition of the definition implies thdt?’) = L, for all i > ij. If
each relatiom? € R is ultimately periodic, thefR is called ultimately periodic as well.
The following lemma gives an alternative characterizatibr-consistent ultimately
periodic relations.

Lemma 2. An w-consistent relation? is ultimately periodic if and only if there exist
K>0,b>0,¢>0andAy, Ay, ..., A._1 € T™>™ such that the following hold:

1. o(RMHDett) = A; + o(RmetY), forall n > K.
2. Rt o p(n - A; + o(RYY)), foralln > 0.

foralli =0,1,...,¢c— 1, whereos andp are the functions from Def. 2.

Proof. By Lemma 1, ifR is w-consistent, then it is ultimately periodic if and only if
3K 3¢ > 0340, Ay, ..., Aoy € TNV [ g(REFDeH) — 4, 4 o(RFH?)
forallk > K andi = 0,1,...,¢c— 1. By induction onk > K, one shows first that
Rketi <:>p(Aik—K + o(REHY), Yk > K
Letb = Ke. By replacingk — K with k, we obtain
RFHH o p(AF 4 o (R, VE > 0

O

For practical reasons related to the representatidtipfve are interested in finding
the symbolic expressioR”*, wherek is a parameter (becaust = 3k . R¥). Notice
that the second point of lemma 2 can be used to compute thessipnR* symbol-
ically (as a formula ovek, x’ and k), assuming that we are given a function, call it
7w o Tk]™*™ — R(k), whereR (k) is the class of all parametric relations owerx’
andk. Intuitivelly, 7 is the parametric counterpart of thdunction from Def. 2, map-
ping a matrix of terms ovet into a parametric relatioR(x, x’, k). Concrete definitions
of = will be given in Section 4.

3 Computing Transitive Closures of Ultimately Periodic Rehtions

In this section we give a generic algorithm that computesrresitive closure of a given
ultimately periodic relation. The algorithm needs to beéansiated for a specific class
‘R of ultimately periodic relations by providing the mappingsp (Def. 2) andr (the
parametric counterpart @f) as discussed in the previous. Next, in Section 4, we show
how this algorithm can be used for accelerating three ctasteelations: difference
bounds, octagons, and finite monoid affine transformations.

Fig. 1 shows the generic framework for computing transitiesures. The input to
the algorithm is a relatio®?, and the mappings : R — T™*™,p : T™*™ — R,
andr : T[k]™*™ — R(k). The algorithm is guaranteed to terminat&ifs ultimately
periodic, as it will be explained in the following.



The main idea of the algorithm is to discover the préfiand periodec of the se-
quence{o(RY)}¢2, — cf. the second point of lemma 2. & is ultimately periodic, such
values are guaranteed to exist. The dove-tailing enuno@rati lines 1 and 2 is guaran-
teed to yield the smallest valugfor which the sequence is shown to be periédic

Second, the algorithm attempts to compute the first rate et#dguence (line 6),
by comparing the matrices( k"), o(R°*?) ando (R**?). If the differenced between
o(Ret?) ando(RP) equals the difference betweeiR>*?) ands (R°+?), thenA is a
valid candidate for the first rate of the progression (seariar). Notice that the con-
sistency check on line 4 is needed to ensure that we appdyconsistent relations —
otherwise, the relation is nat-consistent, and the algorithm returns directly the transi
tive closure, i.e. the finite disjunctioyl:“} "' R, 0 < k < 2 (line 4).

Once a candidatd for the initial rate was found, the te§}; on line 7 is used to
check thatR is ultimately periodic and,-consistent. Notice that the characterization
of ultimately periodic relations from lemma 2 cannot be &gphere, since&kR” is not
known in general, for arbitrary. > 0. The condition used here is local, i.e. it needs
only the relationR?, for a typically small constarit > 0. The next lemma establishes
the correctness of the criterion used@y:

Lemma 3. Anw-consistent relatiorR is ultimately periodic if and only if
Jb3e> 0340, A1, ..., Aey € T™ ™ p(n-Aj+0(R*T))oR® & p((n+1)-A;+o(RVTY))

foralln > 0andi = 0,1,...,c — 1, whereo and p are the functions from Def. 2.
Moreover,Ag, Ay, ..., A._; satisfy the equivalences of Lemma 2.

Proof. “="If Risw-consistentand ultimately periodic, by Lemma 2, theretéxis 0,
c>0andAg, Ay, ..., A._1 € T™*™ such that

ch-i—b—i—i <:>p(Aik+U(Rb+i))
forall k > 0andi =0,1,...,c— 1. We have:

R(kJrl)chbJri o ch+b+i o R¢
p(AF + o (R) & p(A" + o (RV7)) o R?

“«<" We prove the equivalent condition of Lemma 2 by inductionkor 0. The base
casek = 0 is immediate. The induction step is as follows:

R(k+1)c+b+z’ o RFctb+i o Re

& p(AF + o(RP)) o Re, by the induction hypothesis
& (AR + (R

O
The universal quer®; on line 7 is in general handled by procedures that are spe-

cific to the class of relation® we work with. Notice furthermore thad, can be han-
dled symbolically by checking the validity of the first ordermula: Vk . w(k - A +
o(Rb)) o R¢ & n((k+1) - A+ o(RP)), wherer is the parametric counterpart pf
Next, in Section 4, we detail two ways in which this test carpbgormed efficiently
(for difference bounds and octagonal relations), withegbrting to external proof en-
gines, such as SMT or Presburger solvers.

* The nested loop from Fig. 1 will always yield a pélr, ¢) such thab > c. To ensure thati is
also minimal, and thus cover up the case ¢, once the smallest periadhas been detected
at prefixb = ¢, we need to also try all prefixés=c—1,c—2,...,0.



1. foreachh:=0,1,2,...do

2 foreachc:=1,2,...,bdo

3 foreachk :=0,1,2 do

4. if RF**? & false themreturnR* = \/¥1°~ " R

5. endfor

6 if existsA € T™ ™ : g(R*™") = A + ¢(R?) ando(R**™*) = A + o(R°™) then

7 ifforalln > 0:p(n- A+ a(R?)) o R° < p((n+1)- A+ o(RP)) < false(Q,) then
8. returnR* = /"0 R' vV 3k > 0.Vt n(k- A+ o(R")) o R

9. elseif existsn > 0: p(n - A+ o(R?)) o R < false(Q-) then

10. letng = min{n | p(n - A+ o(R?)) o R® < false}

11. ifforalln € [0,n0 — 1] p(n - A+ o (R") 0 R® & p((n +1) - A+ o(R")) then
12. returnR* = \/’_} R* v /" P Ve p(n- A+ o(R")) o R

13. endif

14. endif

15. endfor

16. endfor

Fig. 1: Transitive Closure Algorithm

If the universal query on line 7 holds, the ratecan be used now to express the
transitive closure (line 8) as a finite disjunction over thefix (\/f;é RY) followed by
a formula defining an arbitrary number of iterationt; (. Vj;é 7(k - A+ o(Rb))o
R?). Note that the formula on line 8 defines indeed the trarsitiosure ofR, as a
consequence of lemma 2. Moreover, this is a formula of Prgebarithmetic, provided
that the classes of relatio® andR (k) are Presburger definable.

Otherwise, ifQ; does not hold, there are two possibilities: either(i¥ actually not
the first rate of the sequenge (R")}:°, for givenb > 0 andc > 0, or (ii) the relation
is notw-consistent. In the first case, we need to reiterate withreamgirefix-period pair,
which will give us another candidaté

In the second cas&?™ becomes inconsistent, for some > 0 — in this case the
computation of its transitive closure is possible, in piphe, by taking the disjunction
of all powers ofR up tom. However, in practice this may take a long timeyifis large.
In order to speed up the computation, we check whether:

— p(n-A+0o(RP))o R¢is inconsistent (line 9); the existential quady (and namely
finding the smallest value for which it holds) is dealt withiSection 4, specifically
for the classes of difference bounds and octagonal rekation

— R is periodic with first rated between0 andny — 1 (line 11), wheren, is the
smallestn satisfying the first point (line 10).

If both conditions above hold, then = (ny + 1)c + b is the smallest value for which
R™ becomes inconsistent, and moreoveiis periodic with rated betweer) andm.

If this is the case, we compute the transitive closure udirgeriodA and return (line
12). The following theorem can be proved along the lines efdiscussion above:

Theorem 1. If R is an ultimately periodic relation, the algorithm in Fig. Yentually
terminates and returns the transitive closurefof

4 Some Ultimately Periodic Classes of Arithmetic Relations

This section is dedicated to the application of the travesitlosure computation al-
gorithm from the previous section (Fig. 1) to three clasdearithmetic relations, for

which the transitive closure is Presburger-definableedsifice bounds relations [8],
octagonal relations [6], and finite monoid affine transfaiiores [5].



In order to apply the transitive closure computation meflwtk needs to address
two issues. First, the class of relations considered neduisproved ultimately periodic
(or else, our algorithm is not guaranteed to terminate). ffoefs rely mostly on the
fact that any matrix4 is ultimately periodic il [13] (see Section 2 for the definition
of ultimately periodic matrices).

Second, the querigg; andQ- (Fig. 1) need to be answered efficiently, by avoiding
excessive calls to external decision procedures. In thedirthese queries can be ex-
pressed in Presburger arithmetic, for the classes of diffex constraints, octagons and
affine transformations, yet in practice we would like to @vas much as possible us-
ing Presburger solvers, due to reasons of high complexatytte classes of difference
bounds and octagons, we give direct decision methods fatlingrthese queries. The
class of affine transformations without guards can also lé déth by simply check-
ing equivalence between Diophantine systems, whereaseterag case still needs to
be handled by a Presburger solver.

4.1 Difference Constraints
Letx = {z1,z2,...,xn} be a set of variables ranging ovér

Definition 3. A formula¢(x) is a difference bounds constraiiftit is equivalent to a
finite conjunction of atomic propositions of the foxg-2; < a;5, 1 <i4,5 < N,i # 7,
wherea;; € Z.

For examplex = y + 5 is a difference bounds constraint, as it is equivalent to
r—y <5 AN y—x < -5 LetRy denote the class of difference bound relations.
Difference bounds constraints are alternatively reprieseas matrices or, equivalently,
weighted graphs.

Given a difference bounds constraifita difference bounds matrigDBM) repre-
sentinge is a matrix M, € TV*N such that(My),; = aiy, if z; — 25 < a5 is

an atomic proposition i, andoco, otherwise. Dually, ifA/ € TNVN*N is a DBM, the
corresponding difference bounds constrainlig = A\, .. vi — 2; < M;;.

A DBM M is said to be consistent if and only if its corresponding t@st
@ IS consistent. Arelementary pathn a DBM M is a sequence of indicels <
i1,12,. .., < N, wherei; ;1 are pairwise distinct, such that; ; ., < oo, for
alll <j < k. An elementary path is called atementary cycl& moreoveri; = i.

An elementary cycle is said to lstrictly negativef Zk ! M;;i, ., <0.ADBM M

is inconsistent if and only if it has a strictly negative etmtary cycle — a proof can be
found in [12]. The next definition gives a canonical form fonsistent DBMs.

Definition 4. A consistent DBMV € TV *¥ is said to beclosedif and only if AM;; = 0
andM;; < M, + My, forall 1 <4,j,k < N.

Given a consistent DBMV/, we denote byM* the (unique) closed DBM such
that oy < @ar+. It is well-known that, if M is consistent, thed/* is unique, and
can be computed from/ in time O(N?), by the classical Floyd-Warshall algorithm.
Moreover, if M is a consistent DBM, we have, for dll< i,j < N:

Mj; = min {Z M., i =g ...i,—1 = j is an elementary path iM} (1)



The closed form of DBMs is needed for the elimination of exigtally quantified vari-
ables — if¢ is a difference bounds constraint, thén . ¢ is also a difference bounds
constraint [12]. Consequently, we have that the class &rdifice bounds relations is
closed under relational compositiaRi (x, x")o R (x,x') = Jy . R1(x,y)AR2(y, x').

Difference Bounds Relations are Ultimately Periodic Given a consistent difference
bounds relation?(x,x’) € Ra, let o(R) = Mp € T?VN*2N pe the characteristic
DBM of R, and for anyM € T2N*2N 'let p(M) = Ay € Ra, be the difference
bounds relation corresponding i Clearly,p(c(R)) < R, as required by Def. 2.

With these definitions, the algorithm in Fig. 1 will returrettransitive closure of
a difference bounds relatioR, provided that the sequende(R?)}°, is ultimately
periodic. If R is notw-consistent then, by Def. 2, it is ultimately periodic. Wensmler
henceforth thaR is w-consistent, i.ec(R') = Mg, for alli > 0.

For a difference bounds relatid®, we define the directed gragh, whose set of
vertices is the set Ux’, and in which there is an edge framto z; labeledw;; if and
only if the atomic proposition; — z; < «;; occurs inR. Clearly, My, is the incidence
matrix ofGg.

Next, we define the concatenation @f with itself as the disjoint union of two
copies ofGp, in which thex’ vertices of the second copy overlap with thevertices
of the first copy. TherR™ corresponds to the graglj;, obtained by concatenating the
graph of R to itself m > 0 times. SinceRy;, is closed under relational composition,
thenR™ € R4, and moreover we have:

Nicijen Ti— 5 < min{z{ — 29} Az} — 2 <min{z]* = 2} A

z; — o <minfa) — 2"} A 2} — 2; < minfa]* — 29}

wheremin{z} — z{} is the minimal weight of all paths between the extremal esi

2 andz? in G}, for p,q € {0, m}. In other words, we have the equalities from Fig. 2
(@), foralll <i,57 < N.

(Mgm)i; = min{z) — 2} H.lin{ai - xgn} = (Mg)lﬂf(xi)’Fﬂf(Ij)
(Mpm)isng+n = min{z" — 2"} mlln{“’io =2’} = (MRE) 1y (20),Fen(a))
(Mgm)ij+n = min{z) — 2]’ min{z; — xfmo} = (MR)1,1 @) Foge))
(Mgm)ixn,; = min{z]" — x?} min{z{" — 25} = (M}Zg)lob<zi>aFob<Tj)
(a) (b)
Fig.2

As proved in [8], the paths betweefi andz?, for arbitraryl <4, j < N andp,q €
{0, m}, can be seen as words (over a finite alphabet of subgra@i$)afecognized by
a finite weighted automaton of size upad. For space reasons, the definition of this
automaton is detailed in [7].

Let M g be the incidence matrix of this automaton. By the constomotif M g, for
each variable: € x, there are eight indices, denoted &s;(z), Loy (), Lo (2), Ip(z),
For(2), Fop(z), Fop (), Fep(x) € {1,...,5}, such that all relations from Fig. 2 (b)

5 paths between” andy™ (™ andy°) are called odd forward (backward) in [8], whereas
paths betweenr® andy® (z™ andy™) are called even forward (backward). Hence the indices
of, ob, ef andeb.



hold, for all 1 < ¢,j < N. Intuitivelly, all paths fromz{ to 2} are recognized by
the automaton withl. ;(z;) and F.;(x;) as the initial and final states, respectivelly.
The same holds for the other pairs of indices, from Fig. 2 If{ds easy to see (as an
immediate consequence of the interpretation of the matoxyrct inT) that, for any
m > 0, the matrixM’y gives the minimal weight among all paths, of lengthbetween
z¥ andz!, foranyl < 4,5 < N andp, ¢ € {0, m}. But the sequencéM'F}2°_, is
uItimate[i/ periodic, since every matrix is ultimately pmtic in T [13]. By equating
the relations from Fig. 2 (a) with the ones from Fig. 2 (b), vitadn that the sequence
{o(R™)}oo_y = {Mpm}°_, is ultimately periodic as well.

In conclusion, the algorithm from Fig. 1 will terminate orffdience bounds re-
lations. Moreover, the result is a formula in Presburgaharetic. This also simplifies
the proof that transitive closures of difference boundati@hs are Presburger definable,
from [8], since the minimal paths of length within the weighted automaton recog-
nizing the paths of/}} correspond in fact to elements of theth power of M (the
incidence matrix of the automaton)Th

Checking w-Consistency and Inconsistency of Difference Bounds Relahs For
a difference bounds relatioR(x,x’) € R4 and a matrixA € T?V*2VN we give
methods to decide the queri€s and Q- (lines 7 and 9 in Fig. 1) efficiently. To this
end, we consider the class of parametric difference bowldtans. From now on, let
k ¢ x be a variable interpreted ovBr, .

Definition 5. A formula ¢(x, k) is a parametric difference bounds constraiinit is
equivalent to a finite conjunction of atomic propositionshef formz; — z; < a;; - k +
bi;, forsomel <i,j < N, i # j, wherea;;, b;; € Z.

The class of parametric difference bounds relations withipaterk is denoted as
Rap(k). A parametric difference bounds constrajiik:) can be represented by a matrix
M(b[k}] of linear terms, Wheréqu[k})ij = Q;j - k+ bU if x; — ri < ag; - k+ btJ
occurs ing, andoo otherwise. Dually, a matrid/ [k] of linear terms corresponds to the
formulad (k) = /\M[,C]iﬁ,EOC x; —x; < MIk];;. With these considerations, we define

m(M[k]) = Ap (k). Clearly, we haver(k - A+ o(RP)) € Rap(k), for R € Rap, b > 0
andA € T2V x2N,

Parametric DBMs do not have a closed form, since in gendmimtinimum of two
linear terms ink (for all valuations ofk) cannot be expressed again as a linear term.
According to (1), one can define the closed form of a param&BM as a matrix of
terms of the formmin{a;-k+b;}7, for someu;, b; € Z andm > 0. Then the quer®;
can be written as a conjunction of formulae of the fafrin> 0 . min{a;-k+b;}", =
ao - k + by. The following lemma gives a way to decide the validity oflsficrmulae:

Lemma 4. Givent, ag, ay,...,am, bo,b1,...,bm € Z, the following are equivalent:

1. VE> 1. min{ai-k—kbi}{il:amk—i—bo
2. \/;"z/l(ai:ao/\bi:bo) A /\;"’Zl(aoSaj/\ao-€+b0§aj~€+bj)

In analogy to the non-parametric case, the inconsistenaypaframetric difference
bounds constraint(k) amounts to the existence of a strictly negative elementariec
in My [k], for some valuatiork € N. We are also interested in finding the smallest
value for which such a cycle exists. The following lemma gitleis value.



Lemma 5. Let ¢(x, k) be a parametric difference bounds constraint ahf (k] be
its associated matrix. For some;, b;; € Z, let{a;; - k + b;;}72, i = 1,...,2N
be the set of terms denoting weights of elementary cyclegydbroughi. Theng is
inconsistent for somé € N andk > ¢ if and only if there existd < ¢ < 2N and
1 < j < m; such that either (in;; < 0 or (ii) a;; > 0 A ai; - £+ b;; < 0 holds.
Moreover, the smallest value for whigtbecomes inconsistentxisin?ﬁ’l{ming’ﬁ1 Yij

Where%j = Inax(ﬁ, I_— Z”J + 1), if aj; < 0, Yij = 0, if Qij >0 A Qij -+ bij < 0,

and-~;; = oo, otherwise.

4.2 Octagons
Letx = {z1, z2,...,xx } be a set of variables ranging ovér

Definition 6. A formula¢(x) is an octagonal constrairif it is equivalent to a finite
conjunction of terms of the formtz; + z; < a;;, 22; < b;, or —2z; < ¢;, where
aij,bi,ci € Zandl < 1,] < N, i#j.

The class of octagonal relations is denotediyy. in the following. We represent
octagons as difference bounds constraints over the setiablesy = {y1,v2,...,y2n},
with the convention thags, ; stands forr; andy.; for —x;, respectively. For example,
the octagonal constraint + 2o = 3isrepresented ag —y4 < 3Ays —y3 < —3.TO
handle they variables in the following, we defire= i — 1, if i is even, and = i + 1 if
i is odd. Obviously, we have= i, for all i € Z, i > 0. We denote by the difference
bounds formulap[y /x1,y2/ — @1, -+, Y2n—1/Tn, Y2/ — @] OVEry. The following
equivalence relateg and¢ :

N

o(x) & (Fy2, Y45+, Yan - O A /\ Y2i1 + Y2 = 0)[z1/y1,. s Tn/y2n—1]  (2)

=1

An octagonal constrainp is equivalently represented by the DBM- € T?V*2N,
corresponding t@. We say that a DBMV € T*V*2N is coherentiff AL;; = M;, for
all1 <4,j <2N. This property is needed since any atomic propositipr z; < a,
in ¢ can be represented as bath_; — y2;—1 < aandys; —y2; < a,1 < 4,5 < N.
Dually, a coherent DBMV € T2V *2N corresponds to the octagonal constraiy:

/\ (i —xj < Moi—10j-1 Nzi+ a5 < Moj_195 N —x; — 5 < Moiai—1) (3)
1<i,j<N

A coherent DBMM is said to beoctagonal-consistent and only if £2,, is consistent.

Definition 7. An octagonal-consistent coherent DBM < T?V*2¥ s said to be
tightly closedif and only if the following hold:

1. My =0,V1<i<2N 3. My; < My, + My, V1 <i,j,k < 2N

2. M iseven V1 <i < 2N 4 My < | Mo |4 |2, V1 <i,j<2N

2

The following theorem from [3] provides an effective way ekting consistency
and computing the tight closure of a coherent DBM. Moreokehows that the tight
closure of a given DBM is unique and can also be computed ia tiV?).
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Theorem 2. [3] Let M € T2V *2N pe a coherent DBM. Thell is octagonal-consistent
if and only if M is consistent and%z | + [ 212 | > 0, forall 1 < i,j < 2N, i # j.
Moreover, the tight closure of/ is the DBM M* e T2N*2N defined asM};, =

min { M7, | 45 |+ [ 23|} forall 1 < i,j < 2N, whereM* € T2V <3N is the

closure ofM.

The tight closure of an octagonal constraint is needed fistential quantifier elim-
ination, and ultimately, for proving that the class of octagl relations is closed under
composition [6].

Octagonal Relations are Ultimately Periodic Given a consistent octagonal relation
R(x,x') leto(R) = M. Dually, for any coherent DBMV € T*V*4N et p(M) =
2. Clearly,p(c(R)) < R, as required by Def. 2.

In order to prove that the clag8,.; of octagonal relations is ultimately periodic,
we need to prove that the sequeked¢R™)}>_, is ultimately periodic, for an arbitrary
relation R € R,.;. It is sufficient to consider only the case whekes w-consistent,
hences(R™) = My, for all m > 0. We rely in the following on the main result of
[6], which establishes a relation betwegfi (the octagonal DBM corresponding to
the m-th iteration of R) and M4~ (the DBM corresponding to the:-th iteration of

R € Ry), form > 0:

(Mg)i; = min {(Mﬁm)ij, VM@”)”J + VMF;)“J } forall 1 <i,j < 4N (%)
This relation is in fact a generalization of the tight clasexpression from theorem 2,
fromm = 1to anym > 0.

In Section 4.1 it was shown that difference bounds relatamasiltimately periodic.
In particular, this means that the sequefdé;~ }o°_, corresponding to the iteration
of the difference bounds relatiaR, is ultimately periodic. To prove that the sequence
{Mz=1}oo_, is also ultimately periodic, it is sufficient to show thatetminimum and
the sum of two ultimately periodic sequences are ultimgpeljodic, and also that the
integer half of an ultimately periodic sequence is alsandtely periodic.

Lemma 6. Let {s,, }°°_, and {t,, }>°_, be two ultimately periodic sequences. Then
the sequence$min (s, tm)}55—g, {Sm + tm}oe—p and {[2z]}>_ are ultimately
periodic as well.

Together with the above relatior)( lemma 6 proves th&k ., is ultimately periodic.

Checking w-Consistency and Inconsistency of Octagonal Relationg his section
describes an efficient method of deciding the quegleand Q- (lines 7 and 9 in Fig. 1)
for the class of octagonal relations. In order to deal wigtsthqueries symbolically,we
need to consider first the clags,.. (k) of octagonal relations with parameterin the
rest of this section, let ¢ x be a variable ranging oveét, .

Definition 8. Then a formula(x, z) is aparametric octagonal constraifit is equiv-

alent to afinite conjunction of terms of the fof; +-o; < a;;-k+0b;5, 225 < ¢;-k+d;,
or —2x; < ¢ - k+ d};, wherea;;, b;;, ¢;,d;, ¢, d; € Zandl <i,j < N, i # j.
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A parametric octagon (x, k) is represented by a matrid k] T[k]*" <> of linear

terms overk, and viceversa, a matrix/[k] € T[k]?V*2¥ corresponds to a parametric
octagon{2y, (k). We definer(M[k]) = £2)(k). As in the case of difference bounds
constraints, one notices thatk - A + o(R")) € Roct(k), for R € R, b > 0 and
Ae T4NX4N.

The composition of parametric octagonal relations (from @) requires the com-
putation of the tight closure in the presence of paramefsrsording to theorem 2,
the parametric tight closure can be expressed as a matrieofeats of the form
min{t;(k)}™,, wheret;(k) are either: (i) linear terms, i.e;(k) = a; - k + b;, or
(i) sums of halved linear terms, i.g(k) = | 2:ktbe | 4 | cokidi |

The main idea is to split a halved linear term of the forf#t2 |, k > 0 into two

linear termsu - k + [ 2| anda - k + | %5, corresponding to the casesiof> 0 being
even or odd, respectivelly. This is justified by the follogriequivalence:

(|25 ) |k >0} ={a-k+ 2] [k>0} U {a-k+[%52] |k >0}

Hence, an expression of the formin{¢; (k) } 7, yields two expressionsin{¢¢ (k) },,
for evenk, andmin{¢¢(k)}",, for odd k, wheret¢ and¢?, 1 < ¢ < m, are effec-
tively computable linear terms. With these consideratighs(for octagonal relations)
is equivalent to a conjunction of equalities of the fovflh > 0 . min{t?(k)}", =
to(k), e € {e,0}. Now we can apply lemma 4 to the right-hand sides of the equiva
lences above, to give efficient equivalent conditions faiidieg Q; .

The queryQs is, according to theorem 2, equivalent to finding either ($tréctly
negative cycle in a parametric octagonal DBWIk], or (ii) a pair of indicesl < i,;5 <
AN, i # j such that 2 “j + LM[k —5"4 | < 0. Considering that the set of terms corre-

sponding to the two cases aboveis= {a; k+b; ), U {[@htd | 4| eobtls 3P

we split each term € 7" into two matching linear terms, and obtam, equivalently:

= {0 k+ BV U {ag k4 BOYIAP

Now we can apply lemma 5, and compute the minimal value focwhiterm € Tt ,
becomes negative, i.2g = min/""” min(2v¢, 2v? — 1), wherey? = max(1, L—%J +
1),ifaf <0,1ifaf >0 A af + 87 <0, andoo, otherwise, fore € {e, 0}.

4.3 Finite Monoid Affine Transformations

The class of affine transformations is one of the most germdaakes of determinis-
tic transition relations involving integer variables xdf= (zq,...,zy) is a vector of
variables ranging ove#, anaffine transformatioiis a relation of the form:

T=x=A0x+b A ¢(x) (4)

whereA € ZV*N b € Z¥, ¢ is a Presburger formula, amd stands for the standard
matrix multiplication inZ.
The affine transformation is said to have firdte monoid property5, 10] if the

monoid (M 4, ®), whereM 4 = {A®" | i > 0} is finite. In this case, we also say that

A is finite monoid. Hered®” = Ty andA®" = A ® A®"! fori > 0. Intuitivelly,
the finite monoid property is equivalent to the fact tHalhas finitely many powers (for
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the standard integer multiplication) that repeat perialtijc It is easy to see that is
finite monoid if and only if there exists > 0 andl > 0 such thatd®” = A®""" je.
My = {A®° . 4®P . AePtITh

If A is finite monoid, it can be shown thdt" can be defined in Presburger arith-
metic [5, 10]. We achieve the same result below, by showiag) fihite monoid affine

transformations are ultimately periodic relations. As arogluct, the transitive closure
of such relations can also be computed by the algorithm inZEig

An affine tranformatiorf” (4) can be equivalently written in the homogeneous form:

T=x',=A4,9%x, A ¢h(xh) whereA;, = ( 0 A 0 11) )
wherex;, = (z1,...xn,xn+1) With zy 11 € x being a fresh variable angl, (x;,) =
¢(x) A xny1 = 1. In general, the:-th iteration of an affine transformation can be
expressed as:

TF = x'y = A% @ xp, AVO< < k. op(A4° @) (5)

Notice that, ifxg)) denotes the initial values of;,, the values of;, at the/-th itera-
tion arexﬁf) = Ah®[' ® xf). Moreover, we need to ensure that all guards up to (and

including) the(k — 1)-th step are satisfied, i.éh(Ah‘X’e ®xp), forall0 < ¢ < k.

For the rest of the section we fit andb, as in (4). The encoding of a consistent
affine transformatior?” is defined awr (T') = A; € TW+OUx(N+1) pyally, for some
M € T[E](N+Dx(N+1) 'we define:

’/'F(M):HJL‘N_H,I’?V_,A .X/h:M®Xh A V0§€</€¢h(M[f/k}®Xh)

whereM [¢/k] denotes the matriX/ in which each occurrence é&fis replaced by. In
contrast with the previous cases (Section 4.1 and Sect®)nahly M is not sufficient
here to recover the relatian( M) — ¢ needs to be remembered as Rell

With these definitions, we havg T%) = A%k, for all £ > 0 —as an immediate con-
sequence of (5). The next lemma proves that the class of firoteid affine relations
is ultimately periodic.

Lemma 7. Given a finite monoid matri¥l € ZV*Y and a vectob € Z", the se-
®k 0o . . - -
quence{ A}’ }72 , is ultimately periodic.

The queriex; andQ- (lines 7 and 9 in Fig. 1) in the case of finite monoid affine
transformations, are expressible in Presburger aritlomiEtiese problems could be sim-
plified in the case of affine transformatiomsthout guardsi.e T = x' = Ax + b.
The transformation is, in this case;consistent. Consequentl®, reduces to an equiv-
alence between two homogeneous systefps= A1), ® x, andx’, = Ay, ®xy,. This
is true if and only ifA;, = As,,. The queryQ, becomes trivially false in this case.

8 This incurs a slight modification of the algorithm presented in Fig. 1.
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5 Experimental Results

We have implemented the transitive closure algorithm fragn E within the FLATA
toolset [11], a framework we develop for the analysis of aeusystems. We compared
the performance of this algorithm with our older transitil@sure computation methods
for difference bounds [8] and octagonal relations [6]. Werently lack experimental
data for finite monoid relations (namely, a comparison wiiisting tools such as FAST
[4], LASH [14] or TReX [2] on this class), as our implementatiof finite monoid affine
transformation class is still underway.

Table 1 shows the results of the comparison between the algierithms described
in [8, 6] (denoted a®ld) and the algorithm in Fig. 1 for difference bounds relations
d,...¢ and octagonal relations . The tests have been performed on baimpact
(minimum number of constraints) aednonical(i.e. closed, for difference bounds and
tightly closed, for octagons) relations. Tegeedupcolumn gives the ratio between the
old andnew execution times. The experiments were performed on a 2.23G&thine
with 2.9GB of memory.

; compact canonical
Relation new} old [gpeeduql old  [speedup
Bole-—7 = DA@=y) 018 0.7 | 3.80 | 38.77] 215.39
dz—a =A@ =7) 0.18 18.18 | 101.0 | 38.77 | 215.39
dlz—=-1DAxz=y)AN(x—2"<5)A(z=2") [1.2] 265 | 22.1 [33431.227859.3
ds |z —a’ = DAz =y)A(x—2<5)A(2=2) |06] 32.7 | 54.5 |335055558417
diflz—2"=-DAxz=y)A(z—2<B5)A(z=2) 0.5[ 702.3 | 1404.6]48913.897827.6
dsla=c)AN(b=d)NDb=b)A(c=C 1.8 5556.6| 3087.0] > 10° | oo
(a—V <-1NA(a— <-2)A(b—d <-2)
ANb—c < -1 A(c—b <-2)A(c—d <-1)

dﬁ/\(dfc’§72 ANd—e <—-1Ane—d <-1) 5.6
Ne—d <=2)A(a' —b<4)A(a —c<3) '
ANV —c<ANY —d<3)AN(d—d<4) N (—e<3)
Nd' —a<3ANd —e<4)A(e/—a<4)N(e—b<3)

>106| oo |>10°]| oo

o1 [x+a"=1) 027 091 | 433 [ 091 [ 433

o |z+y < —DA(—y—a < —2) 0.29 085 | 293 | 0.84 | 29

o3|z <aNA(z+y < -1 A(—y—2" <-2) 0.32 0.93 | 291 | 094 | 2.94

os|z+y<B)A(—z+2" <-2A(—y+y <-3) 0.21] 3.67 | 17.48 [ 13.52| 64.38

o5z +y< DA (—z<0)A(—y <0) 1.2]20050.916709.1 > 10° | oo
(z2>0)A(y=0)A (@ Z0) Ay >0)

os Nz +y< DA +y <DA(z—1<2") 25/>10%| oo |>100]| oo

Az’ <z+DAY-1<y)A(Y <y+1)

Table 1. Comparison with older algorithms on differencermsiand octagons. Times
are in milliseconds.

As shown in Table 1, the maximum observed speedup is alhgddbr difference
bounds {4 in canonical form) and of the order of four for octagons. Ha telations
ds (canonical form)ds andog the computation using older methods took longer than
105 msec. It is also worth noticing that the highest executioretivith the new method
was of 2.5 msec.

Table 2 compares FLATA with FAST [4] on counter systems witie gelf loop la-
beled with a randomly generated deterministic differermeniol relation. We generated
50 such relations for each si2é = 10, 15, 20, 25, 50, 100. Notice that FAST usually
runs out of memory for more than 25 variables, whereas FLAdA ltandle 100 vari-
ables in reasonable time (less than 8 seconds on average).
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var FLATA FAST var FLATA FAST
ongav.|Lpr|laong av. | L |Eaz | BB ongav.| Lr|aong av. |t |y | BB

10[[50 (15 0[49]06]0[ 01 1I0[[50 (1.5 0[[22]69]23] 1 | 4
15 50 |1.6/ O || 31 {10.517| O | 2 151 50 |1.5 O 1 (20.6 4 | 3 |42
20| 50 |16/ 0| 4 [34| 9| 8 |29 20| 50|16 0| O | - | 1] 0|49
25| 50|16/ 0| 2 (42| 2]|10]|36 25| 43|17, 7| 0| -|0]| 0|50
50 || 50 |1.6 0 - 10| 0[50 501| 50 (2.3 O 0 -1 0] 0|50
100 49 (777 1|l O | - | O| O |50 100(| 42 |55 8| 0 | - | 0| O |50
(a) — matrix density 3% (b) — matrix density 10%

Table 2: Comparison with FAST (MONA plugin) on determingstiifference bounds.
Times are in secondgi — timeout 30 sz — BDD too large,F,; — out of memory

6 Conclusion

We presented a new, scalable algorithm for computing thesitige closure of ul-
timately periodic relations. We show that this algorithmajsplicable to difference
bounds, octagonal and finite monoid affine relations, akadkt classes are shown to be
ultimately periodic. Experimental results show great iay@ment in the time needed
to compute transitive closures of difference bounds anadguctal relations.
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