
Fast Acceleration of Ultimately Periodic Relations⋆

Marius Bozga1, Radu Iosif1, and Filip Koněcný1,2
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Abstract. Computing transitive closures of integer relations is the key to finding
precise invariants of integer programs. In this paper, we describe an efficient al-
gorithm for computing the transitive closures of difference bounds, octagonal and
finite monoid affine relations. On the theoretical side, this framework provides a
common solution to the acceleration problem, for all these three classes ofre-
lations. In practice, according to our experiments, the new method performs up
to four orders of magnitude better than the previous ones, making it a promising
approach for the verification of integer programs.

1 Introduction

The verification of safety properties of infinite-state systems (such as device drivers,
communication protocols, control software, etc.) requires the computation of the set of
reachable states, starting with an initial state from a given (possibly infinite) set. There
are currently two ways of doing this: (i) compute a finite representation of an over-
approximation of the set of reachable states, by applying a widening operator at each
step, or (ii) attempt to compute precisely the transitive closure of the transition rela-
tion; the set of reachable states is the image of the set of initial states via the transitive
closure. The first approach is guaranteed to terminate, but the abstraction usually intro-
duces imprecision that may blur the verification result. On the other hand, the second
approach, although precise, is not guaranteed to terminate– the problem of verifying
safety properties being, in general, undecidable.

In practice, one usually tries to combine the two approachesand benefit from the
advantages of both. To this end, it is important to know for which classes of transition
relations it is possible to compute the transitive closure precisely and fast – the relations
falling outside these classes being dealt with using suitable abstractions. To the best of
our knowledge, the three main classes of integer relations for which transitive closures
can be computed precisely in finite time are: (1) difference bounds constraints [9, 8],
(2) octagons [12, 6], and (3) finite monoid affine transformations [5, 10]. For these three
classes, the transitive closures can be moreover defined in Presburger arithmetic.

The contributions of this paper are two-fold. On the theoretical side, we show that
the three classes of relations mentioned above are ultimately periodic, i.e. each relation
R can be mapped into an integer matrixMR such that the sequence{MRk}∞k=0 is peri-
odic. The proof that a sequence of matrices is ultimately periodic relies on a result from
tropical semiring theory [13]. This provides shorter proofs to the fact that the transitive

⋆ This work was supported by the French national project ANR-09-SEGI-016 VERIDYC, by
the Czech Science Foundation (projects P103/10/0306 and 102/09/H042), the Czech Ministry
of Education (projects COST OC10009 and MSM 0021630528), and the internal FIT BUT
grant FIT-10-1.



closures for these classes can be effectivelly computed, and that they are Presburger
definable.

On the practical side, the algorithm introduced in this paper computes the transitive
closure of difference bounds and octagonal relations up to four orders of magnitude
faster than the original methods from [8, 6], and also scalesmuch better in the number
of variables. The experimental comparison with the FAST tool [4] for difference bounds
relations shows that large relations (> 50 variables), causing FAST to run out of mem-
ory, can now be handled by our implementation in less than 8 seconds, on average. We
currently do not have a full implementation of the finite monoid affine transformation
class, which is needed in order to compare our method with tools like FAST [4], LASH
[14], or TReX [2], for this class of relations.

Related Work Early attempts to apply Model Checking techniques to the verification
of infinite-state systems consider the problem of accelerating transition relations by
successive under-approximations, without any guarantee of termination. For systems
with integer variables, the acceleration of affine relations has been considered primarily
in the works of Annichini et. al [1], Boigelot [5], and Finkeland Leroux [10]. Finite
monoid affine relations have been first studied by Boigelot [5], who shows that the finite
monoid property is decidable, and that the transitive closure is Presburger definable in
this case. On what concerns non-deterministic transition relations, difference bounds
constraints appear in the context of timed automata verification. The transitive closure
of a difference bounds constraint is shown to be Presburger definable first by Comon
and Jurski [9]. Their proof was subsequently simplified and extended to parametric
difference bounds constraints in [8]. We also showed that octagonal relations can be
accelerated precisely, and that the transitive closure is also Presburger definable [6].
The proofs of ultimate periodicity from this paper are basedon some of our previous
results [8, 6]. For difference bounds constraints, the proof from [8] was simplified using
a result from tropical semiring theory [13].
RoadmapThe paper is organized as follows: Section 2 gives the definition of ultimately
periodic relations, Section 3 describes the algorithm for computing transitive closures
of ultimately periodic relations, in general, Section 4 describes three instances of the
algorithm, Section 5 presents the experimental results, and Section 6 concludes. Missing
proofs are deferred to [7] due to reasons of space.

2 Preliminaries

We denote byZ, N andN+ the sets of integers, positive (including zero) and strictly
positive integers, respectivelly. The first order additivetheory of integers is known as
Presburger Arithmetic. Thetropical semiringis defined asT = (Z∞,min,+,∞, 0)
[13], whereZ∞ = Z ∪ {∞}, with the extended arithmetic operationsx + ∞ = ∞,
min(x,∞) = x, for all x ∈ Z, wheremin(x, y) denotes the minimum between the
valuesx and y. For two square matricesA,B ∈ Sm×m, we define(A + B)ij =
Aij + Bij and(A× B)ij = minmk=1(aik + bkj), for all 1 ≤ i, j ≤ m. Let I ∈ T

m×m

be the identity matrix, i.e.Iii = 0 andIij = ∞, for all 1 ≤ i, j ≤ m, i 6= j.

Definition 1. [13] An infinite sequence{sk}∞k=0 ∈ T is calledultimately periodicif:

∃K ∃c > 0 ∃λ0, λ1, . . . , λc−1 ∈ T . s(k+1)c+i = λi + skc+i
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for all k ≥ K and i = 0, 1, . . . , c − 1. The smallestc andλ0, λ1, . . . , λc−1 for which
the above holds are called theperiodandratesof {sk}∞k=0, respectivelly.

Example 1.The sequenceσk = {3k+1 | k = 2l, l ≥ 2} ∪ {5k+3 | k = 2l+1, l ≥ 2}
is ultimately periodic, withK = 4, periodc = 2 and ratesλ0 = 6, λ1 = 10. ⊓⊔

A sequence of matrices{Ak}
∞
k=0 ∈ T

m×m is said to be ultimately periodic if, for all
1 ≤ i, j ≤ m, the sequence{(Ak)ij}

∞
k=0 is ultimately periodic. A matrixA ∈ T

m×m

is called ultimately periodic if the sequence{Ak}∞k=1 is ultimately periodic, where
A0 = I andAk = A×Ak−1, for anyk > 0. It is known that, every matrix is ultimately
periodic in the tropical semiring [13].

We have the following characterization of ultimately periodic sequences of matri-
ces:

Lemma 1. A sequence of matrices{Ak}
∞
k=1 ∈ T

m×m is ultimately periodic if and
only if:

∃K ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
m×m . A(k+1)c+i = Λi +Akc+i

for all k ≥ K andi = 0, 1, . . . , c− 1.

If A ∈ T
m×m is a square matrix andn ∈ T, we define the matrix(n·A)ij = n·Aij ,

for all 1 ≤ i, j ≤ m. If k is a parameter (typically interpreted overT), thenT[k] denotes
the set of all terms wherek may occur, built from the constants and operators ofT. For
instance, ifA,B ∈ T

m×m, thenk · A + B ∈ T[k]m×m denotes the matrix of terms
(k ·A+B)ij = k ·Aij +Bij , for all 1 ≤ i, j ≤ m.

2.1 Ultimately Periodic Relations

Letx = {x1, x2, . . . , xN} be a set of variables,N > 0, and letx′ = {x′
1, x

′
2, . . . , x

′
N}.

A relation is an arithmetic formulaR(x,x′) with free variablesx∪x′. We say that two
relationsR andR′ are equivalent, denotedR ⇔ R′ if under all valuations ofx and
x′, R is true if and only ifR′ is true. A relation is calledconsistentif and only if there
exist valuations ofx andx′ under which it holds. We denote a consistent relationR by
writing R < false, and an inconsistent relation by writingR ⇔ false.

The composition of two relations is defined asR ◦R′ ≡ ∃y . R(x,y) ∧R′(y,x′).
Let I be the identity relation

∧

x∈x
x′ = x. We defineR0 ≡ I andRn ≡ Rn−1 ◦ R,

for anyn > 0. With these notations,R∗ ≡
∨∞

i=0 R
i denotes thetransitive closureof

R. A relationR is calledω-consistentif Rn is consistent for alln > 0. For the rest of
this section, letR be a class of relations3.

Definition 2. A relationR(x,x′) ∈ R is calledultimately periodicif and only if either:

1. there existsi0 ≥ 0 such thatRi0 is inconsistent, or
2. for all i ≥ 0, Ri is consistent, and there exists two functions:

– σ : R → T
m×m
⊥ mapping eachconsistentrelation inR into am×m matrix

ofT, for somem > 0, and each inconsistent relation into⊥.
– ρ : T

m×m → R mapping eachm×m matrix ofT into a relation inR, such
thatρ(σ(R)) ⇔ R, for each consistent relationR ∈ R

3 A class of relations is usually defined by syntactic conditions.
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such that the infinite sequence of matrices{σ(Ri)}∞i=0 ∈ T
m×m is ultimately pe-

riodic.

Notice that the first condition of the definition implies thatσ(Ri) = ⊥, for all i ≥ i0. If
each relationR ∈ R is ultimately periodic, thenR is called ultimately periodic as well.
The following lemma gives an alternative characterizationof ω-consistent ultimately
periodic relations.

Lemma 2. An ω-consistent relationR is ultimately periodic if and only if there exist
K ≥ 0, b ≥ 0, c > 0 andΛ0, Λ1, . . . , Λc−1 ∈ T

m×m such that the following hold:

1. σ(R(n+1)c+i) = Λi + σ(Rnc+i), for all n ≥ K.
2. Rnc+b+i ⇔ ρ(n · Λi + σ(Rb+i)), for all n ≥ 0.

for all i = 0, 1, . . . , c− 1, whereσ andρ are the functions from Def. 2.

Proof. By Lemma 1, ifR is ω-consistent, then it is ultimately periodic if and only if

∃K ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
N×N . σ(R(k+1)c+i) = Λi + σ(Rkc+i)

for all k ≥ K andi = 0, 1, . . . , c− 1. By induction onk ≥ K, one shows first that

Rkc+i ⇔ ρ(Λi
k−K + σ(RKc+i)), ∀k ≥ K

Let b = Kc. By replacingk −K with k, we obtain

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i)), ∀k ≥ 0

⊓⊔
For practical reasons related to the representation ofR∗, we are interested in finding

the symbolic expressionRk, wherek is a parameter (becauseR∗ ≡ ∃k . Rk). Notice
that the second point of lemma 2 can be used to compute the expressionRk symbol-
ically (as a formula overx, x′ andk), assuming that we are given a function, call it
π : T[k]m×m → R(k), whereR(k) is the class of all parametric relations overx,x′

andk. Intuitivelly, π is the parametric counterpart of theρ function from Def. 2, map-
ping a matrix of terms overk into a parametric relationR(x,x′, k). Concrete definitions
of π will be given in Section 4.

3 Computing Transitive Closures of Ultimately Periodic Relations

In this section we give a generic algorithm that computes thetransitive closure of a given
ultimately periodic relation. The algorithm needs to be instantiated for a specific class
R of ultimately periodic relations by providing the mappingsσ, ρ (Def. 2) andπ (the
parametric counterpart ofρ) as discussed in the previous. Next, in Section 4, we show
how this algorithm can be used for accelerating three classes of relations: difference
bounds, octagons, and finite monoid affine transformations.

Fig. 1 shows the generic framework for computing transitiveclosures. The input to
the algorithm is a relationR, and the mappingsσ : R → T

m×m, ρ : T
m×m → R,

andπ : T[k]m×m → R(k). The algorithm is guaranteed to terminate ifR is ultimately
periodic, as it will be explained in the following.
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The main idea of the algorithm is to discover the prefixb and periodc of the se-
quence{σ(Ri)}∞i=0 – cf. the second point of lemma 2. IfR is ultimately periodic, such
values are guaranteed to exist. The dove-tailing enumeration on lines 1 and 2 is guaran-
teed to yield the smallest valuec for which the sequence is shown to be periodic4.

Second, the algorithm attempts to compute the first rate of the sequence (line 6),
by comparing the matricesσ(Rb), σ(Rc+b) andσ(R2c+b). If the differenceΛ between
σ(Rc+b) andσ(Rb) equals the difference betweenσ(R2c+b) andσ(Rc+b), thenΛ is a
valid candidate for the first rate of the progression (see lemma 2). Notice that the con-
sistency check on line 4 is needed to ensure that we applyσ to consistent relations –
otherwise, the relation is notω-consistent, and the algorithm returns directly the transi-
tive closure, i.e. the finite disjunction

∨kc+b−1
i=0 Ri, 0 ≤ k ≤ 2 (line 4).

Once a candidateΛ for the initial rate was found, the testQ1 on line 7 is used to
check thatR is ultimately periodic andω-consistent. Notice that the characterization
of ultimately periodic relations from lemma 2 cannot be applied here, sinceRn is not
known in general, for arbitraryn ≥ 0. The condition used here is local, i.e. it needs
only the relationRb, for a typically small constantb ≥ 0. The next lemma establishes
the correctness of the criterion used byQ1:

Lemma 3. Anω-consistent relationR is ultimately periodic if and only if

∃b ∃c > 0 ∃Λ0, Λ1, . . . , Λc−1 ∈ T
m×m . ρ(n·Λi+σ(Rb+i))◦Rc ⇔ ρ((n+1)·Λi+σ(Rb+i))

for all n ≥ 0 and i = 0, 1, . . . , c − 1, whereσ and ρ are the functions from Def. 2.
Moreover,Λ0, Λ1, . . . , Λc−1 satisfy the equivalences of Lemma 2.

Proof. “⇒” If R isω-consistent and ultimately periodic, by Lemma 2, there exist b ≥ 0,
c > 0 andΛ0, Λ1, . . . , Λc−1 ∈ T

m×m such that

Rkc+b+i ⇔ ρ(Λi
k + σ(Rb+i))

for all k ≥ 0 andi = 0, 1, . . . , c− 1. We have:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

ρ(Λi
k+1 + σ(Rb+i)) ⇔ ρ(Λi

k + σ(Rb+i)) ◦Rc

“⇐” We prove the equivalent condition of Lemma 2 by induction onk ≥ 0. The base
casek = 0 is immediate. The induction step is as follows:

R(k+1)c+b+i ⇔ Rkc+b+i ◦Rc

⇔ ρ(Λi
k + σ(Rb+i)) ◦Rc , by the induction hypothesis

⇔ ρ(Λi
k+1 + σ(Rb+i))

⊓⊔
The universal queryQ1 on line 7 is in general handled by procedures that are spe-

cific to the class of relationsR we work with. Notice furthermore thatQ1 can be han-
dled symbolically by checking the validity of the first orderformula:∀k . π(k · Λ +
σ(Rb)) ◦ Rc ⇔ π((k + 1) · Λ + σ(Rb)), whereπ is the parametric counterpart ofρ.
Next, in Section 4, we detail two ways in which this test can beperformed efficiently
(for difference bounds and octagonal relations), without resorting to external proof en-
gines, such as SMT or Presburger solvers.

4 The nested loop from Fig. 1 will always yield a pair(b, c) such thatb ≥ c. To ensure thatb is
also minimal, and thus cover up the caseb < c, once the smallest periodc has been detected
at prefixb = c, we need to also try all prefixesb = c− 1, c− 2, . . . , 0.
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1. foreachb := 0, 1, 2, . . . do
2. foreachc := 1, 2, . . . , b do
3. foreachk := 0, 1, 2 do
4. if Rkc+b ⇔ false thenreturnR∗ ≡

∨kc+b−1
i=0 Ri

5. endfor
6. if existsΛ ∈ T

m×m : σ(Rc+b) = Λ+ σ(Rb) andσ(R2c+b) = Λ+ σ(Rc+b) then
7. if forall n ≥ 0 : ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ ρ((n+ 1) · Λ+ σ(Rb)) < false(Q1) then
8. returnR∗ ≡

∨b−1
i=0 Ri ∨ ∃k ≥ 0 .

∨c−1
i=0 π(k · Λ+ σ(Rb)) ◦Ri

9. elseif existsn ≥ 0 : ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ false(Q2) then
10. letn0 = min{n | ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ false}
11. if forall n ∈ [0, n0 − 1] : ρ(n · Λ+ σ(Rb)) ◦Rc ⇔ ρ((n+ 1) · Λ+ σ(Rb)) then
12. returnR∗ ≡

∨b−1
i=0 Ri ∨

∨n0−1
n=0

∨c−1
i=0 ρ(n · Λ+ σ(Rb)) ◦Ri

13. endif
14. endif
15. endfor
16. endfor

Fig. 1: Transitive Closure Algorithm

If the universal query on line 7 holds, the rateΛ can be used now to express the
transitive closure (line 8) as a finite disjunction over the prefix (

∨b−1
i=0 R

i) followed by
a formula defining an arbitrary number of iterations (∃k .

∨c−1
i=0 π(k · Λ + σ(Rb)) ◦

Ri). Note that the formula on line 8 defines indeed the transitive closure ofR, as a
consequence of lemma 2. Moreover, this is a formula of Presburger arithmetic, provided
that the classes of relationsR andR(k) are Presburger definable.

Otherwise, ifQ1 does not hold, there are two possibilities: either (i)Λ is actually not
the first rate of the sequence{σ(Ri)}∞i=0 for givenb ≥ 0 andc > 0, or (ii) the relation
is notω-consistent. In the first case, we need to reiterate with another prefix-period pair,
which will give us another candidateΛ.

In the second case,Rm becomes inconsistent, for somem > 0 – in this case the
computation of its transitive closure is possible, in principle, by taking the disjunction
of all powers ofR up tom. However, in practice this may take a long time, ifm is large.
In order to speed up the computation, we check whether:

– ρ(n ·Λ+σ(Rb))◦Rc is inconsistent (line 9); the existential queryQ2 (and namely
finding the smallest value for which it holds) is dealt with inSection 4, specifically
for the classes of difference bounds and octagonal relations.

– R is periodic with first rateΛ between0 andn0 − 1 (line 11), wheren0 is the
smallestn satisfying the first point (line 10).

If both conditions above hold, thenm = (n0 + 1)c + b is the smallest value for which
Rm becomes inconsistent, and moreover,R is periodic with rateΛ between0 andm.
If this is the case, we compute the transitive closure using the periodΛ and return (line
12). The following theorem can be proved along the lines of the discussion above:

Theorem 1. If R is an ultimately periodic relation, the algorithm in Fig. 1 eventually
terminates and returns the transitive closure ofR.

4 Some Ultimately Periodic Classes of Arithmetic Relations

This section is dedicated to the application of the transitive closure computation al-
gorithm from the previous section (Fig. 1) to three classes of arithmetic relations, for
which the transitive closure is Presburger-definable: difference bounds relations [8],
octagonal relations [6], and finite monoid affine transformations [5].
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In order to apply the transitive closure computation method, one needs to address
two issues. First, the class of relations considered needs to be proved ultimately periodic
(or else, our algorithm is not guaranteed to terminate). Theproofs rely mostly on the
fact that any matrixA is ultimately periodic inT [13] (see Section 2 for the definition
of ultimately periodic matrices).

Second, the queriesQ1 andQ2 (Fig. 1) need to be answered efficiently, by avoiding
excessive calls to external decision procedures. In theory, all these queries can be ex-
pressed in Presburger arithmetic, for the classes of difference constraints, octagons and
affine transformations, yet in practice we would like to avoid as much as possible us-
ing Presburger solvers, due to reasons of high complexity. For the classes of difference
bounds and octagons, we give direct decision methods for handling these queries. The
class of affine transformations without guards can also be dealt with by simply check-
ing equivalence between Diophantine systems, whereas the general case still needs to
be handled by a Presburger solver.

4.1 Difference Constraints

Let x = {x1, x2, ..., xN} be a set of variables ranging overZ.

Definition 3. A formulaφ(x) is a difference bounds constraintif it is equivalent to a
finite conjunction of atomic propositions of the formxi−xj ≤ aij , 1 ≤ i, j ≤ N, i 6= j,
whereaij ∈ Z.

For example,x = y + 5 is a difference bounds constraint, as it is equivalent to
x − y ≤ 5 ∧ y − x ≤ −5. Let Rdb denote the class of difference bound relations.
Difference bounds constraints are alternatively represented as matrices or, equivalently,
weighted graphs.

Given a difference bounds constraintφ, a difference bounds matrix(DBM) repre-
sentingφ is a matrixMφ ∈ T

N×N such that(Mφ)ij = aij , if xi − xj ≤ aij is

an atomic proposition inφ, and∞, otherwise. Dually, ifM ∈ T
N×N is a DBM, the

corresponding difference bounds constraint is∆M ≡
∧

Mij<∞ xi − xj ≤ Mij .
A DBM M is said to be consistent if and only if its corresponding constraint

ϕM is consistent. Anelementary pathin a DBM M is a sequence of indices1 ≤
i1, i2, . . . , ik ≤ N , wherei1,...,k−1 are pairwise distinct, such thatMijij+1

< ∞, for
all 1 ≤ j < k. An elementary path is called anelementary cycleif moreoveri1 = ik.
An elementary cycle is said to bestrictly negativeif

∑k−1
j=1 Mijij+1

< 0. A DBM M
is inconsistent if and only if it has a strictly negative elementary cycle – a proof can be
found in [12]. The next definition gives a canonical form for consistent DBMs.

Definition 4. A consistent DBMM ∈ T
N×N is said to beclosedif and only ifMii = 0

andMij ≤ Mik +Mkj , for all 1 ≤ i, j, k ≤ N .

Given a consistent DBMM , we denote byM∗ the (unique) closed DBM such
thatϕM ⇔ ϕM∗ . It is well-known that, ifM is consistent, thenM∗ is unique, and
can be computed fromM in time O(N3), by the classical Floyd-Warshall algorithm.
Moreover, ifM is a consistent DBM, we have, for all1 ≤ i, j ≤ N :

M∗
ij = min

{

k−1
∑

l=0

Milil+1
i = i0 . . . ik−1 = j is an elementary path inM

}

(1)
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The closed form of DBMs is needed for the elimination of existentially quantified vari-
ables – ifφ is a difference bounds constraint, then∃x . φ is also a difference bounds
constraint [12]. Consequently, we have that the class of difference bounds relations is
closed under relational composition:R1(x,x

′)◦R2(x,x
′) ≡ ∃y . R1(x,y)∧R2(y,x

′).

Difference Bounds Relations are Ultimately PeriodicGiven a consistent difference
bounds relationR(x,x′) ∈ Rdb, let σ(R) = MR ∈ T

2N×2N be the characteristic
DBM of R, and for anyM ∈ T

2N×2N , let ρ(M) = ∆M ∈ Rdb be the difference
bounds relation corresponding toR. Clearly,ρ(σ(R)) ⇔ R, as required by Def. 2.

With these definitions, the algorithm in Fig. 1 will return the transitive closure of
a difference bounds relationR, provided that the sequence{σ(Ri)}∞i=0 is ultimately
periodic. IfR is notω-consistent then, by Def. 2, it is ultimately periodic. We consider
henceforth thatR is ω-consistent, i.e.σ(Ri) = MRi , for all i ≥ 0.

For a difference bounds relationR, we define the directed graphGR, whose set of
vertices is the setx ∪ x′, and in which there is an edge fromxi to xj labeledαij if and
only if the atomic propositionxi − xj ≤ αij occurs inR. Clearly,MR is the incidence
matrix ofGR.

Next, we define the concatenation ofGR with itself as the disjoint union of two
copies ofGR, in which thex′ vertices of the second copy overlap with thex vertices
of the first copy. ThenRm corresponds to the graphGm

R , obtained by concatenating the
graph ofR to itself m > 0 times. SinceRdb is closed under relational composition,
thenRm ∈ Rdb, and moreover we have:

∧

1≤i,j≤N xi − xj ≤ min{x0
i −→ x0

j} ∧ x′
i − x′

j ≤ min{xm
i −→ xm

j } ∧

xi − x′
j ≤ min{x0

i −→ xm
j } ∧ x′

i − xj ≤ min{xm
i −→ x0

j}

wheremin{xp
i −→ xq

j} is the minimal weight of all paths between the extremal vertices

xp
i andxq

j in Gm
R , for p, q ∈ {0,m}. In other words, we have the equalities from Fig. 2

(a), for all1 ≤ i, j ≤ N .

(MRm)i,j = min{x0
i −→ x0

j}

(MRm)i+N,j+N = min{xm
i −→ xm

j }

(MRm)i,j+N = min{x0
i −→ xm

j }

(MRm)i+N,j = min{xm
i −→ x0

j}

(a)

min{x0
i −→ x0

j} = (Mm
R )Ief (xi),Fef (xj)

min{xm
i −→ xm

j } = (Mm
R )Ieb(xi),Feb(xj)

min{x0
i −→ xm

j } = (Mm
R )Iof (xi),Fof (xj)

min{xm
i −→ x0

j} = (Mm
R )Iob(xi),Fob(xj)

(b)

Fig. 2

As proved in [8], the paths betweenxp
i andxq

j , for arbitrary1 ≤ i, j ≤ N andp, q ∈

{0,m}, can be seen as words (over a finite alphabet of subgraphs ofGm
R ) recognized by

a finite weighted automaton of size up to5N . For space reasons, the definition of this
automaton is detailed in [7].

LetMR be the incidence matrix of this automaton. By the construction ofMR, for
each variablex ∈ x, there are eight indices, denoted as5 Iof (x), Iob(x), Ief (x), Ieb(x),
Fof (x), Fob(x), Fef (x), Feb(x) ∈ {1, . . . , 5N}, such that all relations from Fig. 2 (b)

5 Paths betweenx0 andym (xm andy0) are called odd forward (backward) in [8], whereas
paths betweenx0 andy0 (xm andym) are called even forward (backward). Hence the indices
of , ob, ef andeb.
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hold, for all 1 ≤ i, j ≤ N . Intuitivelly, all paths fromx0
i to x0

j are recognized by
the automaton withIef (xi) andFef (xj) as the initial and final states, respectivelly.
The same holds for the other pairs of indices, from Fig. 2 (b).It is easy to see (as an
immediate consequence of the interpretation of the matrix product inT) that, for any
m > 0, the matrixMm

R gives the minimal weight among all paths, of lengthm, between
xp
i andxq

j , for any1 ≤ i, j ≤ N andp, q ∈ {0,m}. But the sequence{Mm
R }∞m=0 is

ultimately periodic, since every matrix is ultimately periodic in T [13]. By equating
the relations from Fig. 2 (a) with the ones from Fig. 2 (b), we obtain that the sequence
{σ(Rm)}∞m=0 = {MRm}∞m=0 is ultimately periodic as well.

In conclusion, the algorithm from Fig. 1 will terminate on difference bounds re-
lations. Moreover, the result is a formula in Presburger arithmetic. This also simplifies
the proof that transitive closures of difference bounds relations are Presburger definable,
from [8], since the minimal paths of lengthm within the weighted automaton recog-
nizing the paths ofGm

R correspond in fact to elements of them-th power ofMR (the
incidence matrix of the automaton) inT.

Checking ω-Consistency and Inconsistency of Difference Bounds Relations For
a difference bounds relationR(x,x′) ∈ Rdb and a matrixΛ ∈ T

2N×2N , we give
methods to decide the queriesQ1 andQ2 (lines 7 and 9 in Fig. 1) efficiently. To this
end, we consider the class of parametric difference bounds relations. From now on, let
k 6∈ x be a variable interpreted overN+.

Definition 5. A formulaφ(x, k) is a parametric difference bounds constraintif it is
equivalent to a finite conjunction of atomic propositions ofthe formxi−xj ≤ aij · k+
bij , for some1 ≤ i, j ≤ N , i 6= j, whereaij , bij ∈ Z.

The class of parametric difference bounds relations with parameterk is denoted as
Rdb(k). A parametric difference bounds constraintφ(k) can be represented by a matrix
Mφ[k] of linear terms, where(Mφ[k])ij = aij · k + bij if xi − xj ≤ aij · k + bij
occurs inφ, and∞ otherwise. Dually, a matrixM [k] of linear terms corresponds to the
formula∆M (k) ≡

∧

M [k]ij 6=∞ xi−xj ≤ M [k]ij . With these considerations, we define

π(M [k]) = ∆M (k). Clearly, we haveπ(k ·Λ+σ(Rb)) ∈ Rdb(k), for R ∈ Rdb, b ≥ 0
andΛ ∈ T

2N×2N .
Parametric DBMs do not have a closed form, since in general, the minimum of two

linear terms ink (for all valuations ofk) cannot be expressed again as a linear term.
According to (1), one can define the closed form of a parametric DBM as a matrix of
terms of the formmin{ai·k+bi}

m
i=1, for someai, bi ∈ Z andm > 0. Then the queryQ1

can be written as a conjunction of formulae of the form∀k > 0 . min{ai ·k+bi}
m
i=1 =

a0 · k + b0. The following lemma gives a way to decide the validity of such formulae:

Lemma 4. Givenℓ, a0, a1, . . . , am, b0, b1, . . . , bm ∈ Z, the following are equivalent:

1. ∀k ≥ ℓ . min{ai · k + bi}
m
i=1 = a0 · k + b0

2.
∨m

i=1(ai = a0 ∧ bi = b0) ∧
∧m

j=1(a0 ≤ aj ∧ a0 · ℓ+ b0 ≤ aj · ℓ+ bj)

In analogy to the non-parametric case, the inconsistency ofa parametric difference
bounds constraintφ(k) amounts to the existence of a strictly negative elementary cycle
in Mφ[k], for some valuationk ∈ N+. We are also interested in finding the smallest
value for which such a cycle exists. The following lemma gives this value.
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Lemma 5. Let φ(x, k) be a parametric difference bounds constraint andMφ[k] be
its associated matrix. For someaij , bij ∈ Z, let {aij · k + bij}

mi

j=1, i = 1, . . . , 2N
be the set of terms denoting weights of elementary cycles going throughi. Thenφ is
inconsistent for someℓ ∈ N and k ≥ ℓ if and only if there exists1 ≤ i ≤ 2N and
1 ≤ j ≤ mi such that either (i)aij < 0 or (ii) aij ≥ 0 ∧ aij · ℓ + bij < 0 holds.
Moreover, the smallest value for whichφ becomes inconsistent ismin2Ni=1{minmi

j=1 γij},

whereγij = max(ℓ, ⌊−
bij
aij

⌋ + 1), if aij < 0, γij = ℓ, if aij ≥ 0 ∧ aij · ℓ + bij < 0,
andγij = ∞, otherwise.

4.2 Octagons

Let x = {x1, x2, ..., xN} be a set of variables ranging overZ.

Definition 6. A formulaφ(x) is an octagonal constraintif it is equivalent to a finite
conjunction of terms of the form±xi ± xj ≤ aij , 2xi ≤ bi, or −2xi ≤ ci, where
aij , bi, ci ∈ Z and1 ≤ i, j ≤ N, i 6= j.

The class of octagonal relations is denoted byRoct in the following. We represent
octagons as difference bounds constraints over the set of variablesy = {y1, y2, . . . , y2N},
with the convention thaty2i−1 stands forxi andy2i for −xi, respectively. For example,
the octagonal constraintx1 +x2 = 3 is represented asy1 − y4 ≤ 3∧ y2 − y3 ≤ −3. To
handle they variables in the following, we definēı = i− 1, if i is even, and̄ı = i+1 if
i is odd. Obviously, we havē̄ı = i, for all i ∈ Z, i ≥ 0. We denote byφ the difference
bounds formulaφ[y1/x1, y2/ − x1, . . . , y2n−1/xn, y2n/ − xn] overy. The following
equivalence relatesφ andφ :

φ(x) ⇔ (∃y2, y4, . . . , y2N . φ ∧

N
∧

i=1

y2i−1 + y2i = 0)[x1/y1, . . . , xn/y2N−1] (2)

An octagonal constraintφ is equivalently represented by the DBMMφ ∈ T
2N×2N ,

corresponding toφ. We say that a DBMM ∈ T
2N×2N is coherentiff Mij = Mj̄ı̄ for

all 1 ≤ i, j ≤ 2N . This property is needed since any atomic propositionxi − xj ≤ a,
in φ can be represented as bothy2i−1 − y2j−1 ≤ a andy2j − y2i ≤ a, 1 ≤ i, j ≤ N .
Dually, a coherent DBMM ∈ T

2N×2N corresponds to the octagonal constraintΩM :
∧

1≤i,j≤N

(xi − xj ≤ M2i−1,2j−1 ∧ xi + xj ≤ M2i−1,2j ∧ −xi − xj ≤ M2i,2j−1) (3)

A coherent DBMM is said to beoctagonal-consistentif and only ifΩM is consistent.

Definition 7. An octagonal-consistent coherent DBMM ∈ T
2N×2N is said to be

tightly closedif and only if the following hold:

1. Mii = 0, ∀1 ≤ i ≤ 2N 3. Mij ≤ Mik +Mkj , ∀1 ≤ i, j, k ≤ 2N

2. Miı̄ is even, ∀1 ≤ i ≤ 2N 4. Mij ≤ ⌊Miı̄

2 ⌋+ ⌊
Mj̄j

2 ⌋, ∀1 ≤ i, j ≤ 2N

The following theorem from [3] provides an effective way of testing consistency
and computing the tight closure of a coherent DBM. Moreover,it shows that the tight
closure of a given DBM is unique and can also be computed in timeO(N3).
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Theorem 2. [3] Let M ∈ T
2N×2N be a coherent DBM. ThenM is octagonal-consistent

if and only ifM is consistent and⌊Miı̄

2 ⌋ + ⌊
Mj̄j

2 ⌋ ≥ 0, for all 1 ≤ i, j ≤ 2N, i 6= j.
Moreover, the tight closure ofM is the DBMM t ∈ T

2N×2N defined asM t
ij =

min
{

M∗
ij ,

⌊

M∗

iı̄

2

⌋

+
⌊

M∗

j̄j

2

⌋}

, for all 1 ≤ i, j ≤ 2N , whereM∗ ∈ T
2N×2N is the

closure ofM .

The tight closure of an octagonal constraint is needed for existential quantifier elim-
ination, and ultimately, for proving that the class of octagonal relations is closed under
composition [6].

Octagonal Relations are Ultimately Periodic Given a consistent octagonal relation
R(x,x′) let σ(R) = MR. Dually, for any coherent DBMM ∈ T

4N×4N , let ρ(M) =
ΩM . Clearly,ρ(σ(R)) ⇔ R, as required by Def. 2.

In order to prove that the classRoct of octagonal relations is ultimately periodic,
we need to prove that the sequence{σ(Rm)}∞m=0 is ultimately periodic, for an arbitrary
relationR ∈ Roct. It is sufficient to consider only the case whereR is ω-consistent,
henceσ(Rm) = MRm , for all m ≥ 0. We rely in the following on the main result of
[6], which establishes a relation betweenMRm (the octagonal DBM corresponding to
them-th iteration ofR) andMR

m (the DBM corresponding to them-th iteration of
R ∈ Rdb), for m > 0:

(MRm)ij = min
{

(MR
m)ij ,

⌊

(MRm )iı̄
2

⌋

+
⌊

(MRm )j̄j
2

⌋}

, for all 1 ≤ i, j ≤ 4N (∗)

This relation is in fact a generalization of the tight closure expression from theorem 2,
fromm = 1 to anym > 0.

In Section 4.1 it was shown that difference bounds relationsare ultimately periodic.
In particular, this means that the sequence{MR

m}∞m=0, corresponding to the iteration
of the difference bounds relationR, is ultimately periodic. To prove that the sequence
{MRm}∞m=0 is also ultimately periodic, it is sufficient to show that: the minimum and
the sum of two ultimately periodic sequences are ultimatelyperiodic, and also that the
integer half of an ultimately periodic sequence is also ultimately periodic.

Lemma 6. Let {sm}∞m=0 and {tm}∞m=0 be two ultimately periodic sequences. Then
the sequences{min(sm, tm)}∞m=0, {sm + tm}∞m=0 and

{⌊

sm
2

⌋}∞

m=0
are ultimately

periodic as well.

Together with the above relation (∗), lemma 6 proves thatRoct is ultimately periodic.

Checking ω-Consistency and Inconsistency of Octagonal RelationsThis section
describes an efficient method of deciding the queriesQ1 andQ2 (lines 7 and 9 in Fig. 1)
for the class of octagonal relations. In order to deal with these queries symbolically,we
need to consider first the classRoct(k) of octagonal relations with parameterk. In the
rest of this section, letk 6∈ x be a variable ranging overN+.

Definition 8. Then a formulaφ(x, z) is aparametric octagonal constraintif it is equiv-
alent to a finite conjunction of terms of the form±xi±xj ≤ aij ·k+bij , 2xi ≤ ci ·k+di,
or −2xi ≤ c′i · k + d′i, whereaij , bij , ci, di, c′i, d

′
i ∈ Z and1 ≤ i, j ≤ N, i 6= j.
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A parametric octagonφ(x, k) is represented by a matrixMφ[k]T[k]
2N×2N of linear

terms overk, and viceversa, a matrixM [k] ∈ T[k]2N×2N corresponds to a parametric
octagonΩM (k). We defineπ(M [k]) = ΩM (k). As in the case of difference bounds
constraints, one notices thatπ(k · Λ + σ(Rb)) ∈ Roct(k), for R ∈ Roct, b ≥ 0 and
Λ ∈ T

4N×4N .
The composition of parametric octagonal relations (from e.g.Q1) requires the com-

putation of the tight closure in the presence of parameters.According to theorem 2,
the parametric tight closure can be expressed as a matrix of elements of the form
min{ti(k)}

m
i=1, whereti(k) are either: (i) linear terms, i.e.ti(k) = ai · k + bi, or

(ii) sums of halved linear terms, i.e.ti(k) = ⌊ai·k+bi
2 ⌋+ ⌊ ci·k+di

2 ⌋.
The main idea is to split a halved linear term of the form⌊a·k+b

2 ⌋, k > 0 into two
linear termsa · k + ⌊ b

2⌋ anda · k + ⌊ b−a
2 ⌋, corresponding to the cases ofk > 0 being

even or odd, respectivelly. This is justified by the following equivalence:

{⌊a·k+b
2 ⌋ | k > 0} = {a · k + ⌊ b

2⌋ | k > 0} ∪ {a · k + ⌊ b−a
2 ⌋ | k > 0}

Hence, an expression of the formmin{ti(k)}
m
i=1 yields two expressionsmin{tei (k)}

m
i=1,

for evenk, andmin{toi (k)}
m
i=1, for odd k, wheretei and toi , 1 ≤ i ≤ m, are effec-

tively computable linear terms. With these considerations, Q1 (for octagonal relations)
is equivalent to a conjunction of equalities of the form∀k > 0 . min{t•i (k)}

m
i=1 =

t•0(k), • ∈ {e, o}. Now we can apply lemma 4 to the right-hand sides of the equiva-
lences above, to give efficient equivalent conditions for decidingQ1.

The queryQ2 is, according to theorem 2, equivalent to finding either (i) astrictly
negative cycle in a parametric octagonal DBMM [k], or (ii) a pair of indices1 ≤ i, j ≤

4N, i 6= j such that⌊M [k]iı̄
2 ⌋+ ⌊

M [k]j̄j
2 ⌋ < 0. Considering that the set of terms corre-

sponding to the two cases above isT = {ai ·k+ bi}
m
i=1 ∪ {⌊ ci·k+di

2 ⌋+ ⌊ ei·k+fi
2 ⌋}pi=1,

we split each termt ∈ T into two matching linear terms, and obtain, equivalently:

Te,o = {αe
i · k + βe

i }
m+p
i=1 ∪ {αo

i · k + βo
i }

m+p
i=1

Now we can apply lemma 5, and compute the minimal value for which a termt ∈ Te,o

becomes negative, i.e.n0 = minm+p
i=1 min(2γe

i , 2γ
o
i −1), whereγ•

i = max(1, ⌊−
β•

i

α•

i

⌋+

1), if α•
i < 0, 1 if α•

i ≥ 0 ∧ α•
i + β•

i < 0, and∞, otherwise, for• ∈ {e, o}.

4.3 Finite Monoid Affine Transformations

The class of affine transformations is one of the most generalclasses of determinis-
tic transition relations involving integer variables. Ifx = 〈x1, . . . , xN 〉 is a vector of
variables ranging overZ, anaffine transformationis a relation of the form:

T ≡ x′ = A⊗ x+ b ∧ φ(x) (4)

whereA ∈ Z
N×N , b ∈ Z

N , φ is a Presburger formula, and⊗ stands for the standard
matrix multiplication inZ.

The affine transformation is said to have thefinite monoid property[5, 10] if the
monoid〈MA,⊗〉, whereMA = {A⊗i

| i ≥ 0} is finite. In this case, we also say that
A is finite monoid. HereA⊗0

= IN andA⊗i
= A ⊗ A⊗i−1, for i > 0. Intuitivelly,

the finite monoid property is equivalent to the fact thatA has finitely many powers (for
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the standard integer multiplication) that repeat periodically. It is easy to see thatA is
finite monoid if and only if there existsp ≥ 0 andl > 0 such thatA⊗p

= A⊗p+l, i.e.
MA = {A⊗0

, . . . , A⊗p
, . . . , A⊗p+l−1

}.
If A is finite monoid, it can be shown thatT ∗ can be defined in Presburger arith-

metic [5, 10]. We achieve the same result below, by showing that finite monoid affine
transformations are ultimately periodic relations. As a byproduct, the transitive closure
of such relations can also be computed by the algorithm in Fig. 1.

An affine tranformationT (4) can be equivalently written in the homogeneous form:

T ≡ x′
h = Ah ⊗ xh ∧ φh(xh) whereAh ≡

(

A b

0 . . . 0 1

)

wherexh = 〈x1, . . . xN , xN+1〉 with xN+1 6∈ x being a fresh variable andφh(xh) ≡
φ(x) ∧ xN+1 = 1. In general, thek-th iteration of an affine transformation can be
expressed as:

T k ≡ x′
h = Ah

⊗k
⊗ xh ∧ ∀0 ≤ ℓ < k . φh(Ah

⊗ℓ
⊗ xh) (5)

Notice that, ifx(0)
h denotes the initial values ofxh, the values ofxh at theℓ-th itera-

tion arex(ℓ)
h = Ah

⊗ℓ
⊗ x

(0)
h . Moreover, we need to ensure that all guards up to (and

including) the(k − 1)-th step are satisfied, i.e.φh(Ah
⊗ℓ

⊗ xh), for all 0 ≤ ℓ < k.
For the rest of the section we fixA andb, as in (4). The encoding of a consistent

affine transformationT is defined asσ(T ) = Ah ∈ T
(N+1)×(N+1). Dually, for some

M ∈ T[k](N+1)×(N+1), we define:

π(M) : ∃xN+1, x
′
N+1 . x

′
h = M ⊗ xh ∧ ∀0 ≤ ℓ < k . φh(M [ℓ/k]⊗ xh)

whereM [ℓ/k] denotes the matrixM in which each occurrence ofk is replaced byℓ. In
contrast with the previous cases (Section 4.1 and Section 4.2), onlyM is not sufficient
here to recover the relationπ(M) – φ needs to be remembered as well6.

With these definitions, we haveσ(T k) = A⊗
h

k
, for all k > 0 – as an immediate con-

sequence of (5). The next lemma proves that the class of finitemonoid affine relations
is ultimately periodic.

Lemma 7. Given a finite monoid matrixA ∈ Z
N×N and a vectorb ∈ Z

N , the se-

quence{A⊗
h

k
}∞k=0 is ultimately periodic.

The queriesQ1 andQ2 (lines 7 and 9 in Fig. 1) in the case of finite monoid affine
transformations, are expressible in Presburger arithmetic. These problems could be sim-
plified in the case of affine transformationswithout guards, i.e T ≡ x′ = Ax + b.
The transformation is, in this case,ω-consistent. Consequently,Q1 reduces to an equiv-
alence between two homogeneous systemsx′

h = A1h⊗xh andx′
h = A2h⊗xh. This

is true if and only ifA1h = A2h. The queryQ2 becomes trivially false in this case.

6 This incurs a slight modification of the algorithm presented in Fig. 1.
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5 Experimental Results

We have implemented the transitive closure algorithm from Fig. 1 within the FLATA
toolset [11], a framework we develop for the analysis of counter systems. We compared
the performance of this algorithm with our older transitiveclosure computation methods
for difference bounds [8] and octagonal relations [6]. We currently lack experimental
data for finite monoid relations (namely, a comparison with existing tools such as FAST
[4], LASH [14] or TReX [2] on this class), as our implementation of finite monoid affine
transformation class is still underway.

Table 1 shows the results of the comparison between the olderalgorithms described
in [8, 6] (denoted asold) and the algorithm in Fig. 1 for difference bounds relations
d1,...,6 and octagonal relationso1,...,6. The tests have been performed on bothcompact
(minimum number of constraints) andcanonical(i.e. closed, for difference bounds and
tightly closed, for octagons) relations. Thespeedupcolumn gives the ratio between the
old andnewexecution times. The experiments were performed on a 2.53GHz machine
with 2.9GB of memory.

Relation new compact canonical
old speedup old speedup

d0 (x− x′ = −1) ∧ (x = y′) 0.18 0.7 3.89 38.77 215.39
d1 (x− x′ = −1) ∧ (x′ = y′) 0.18 18.18 101.0 38.77 215.39
d2 (x− x′ = −1) ∧ (x = y′) ∧ (x− z′ ≤ 5) ∧ (z = z′) 1.2 26.5 22.1 33431.227859.3
d3 (x− x′ = −1) ∧ (x = y′) ∧ (x− z ≤ 5) ∧ (z = z′) 0.6 32.7 54.5 33505.555841.7
d4 (x− x′ = −1) ∧ (x = y) ∧ (x− z ≤ 5) ∧ (z = z′) 0.5 702.3 1404.6 48913.897827.6
d5 (a = c) ∧ (b = a′) ∧ (b = b′) ∧ (c = c′) 1.8 5556.6 3087.0 > 106 ∞

d6

(a− b′ ≤ −1) ∧ (a− e′ ≤ −2) ∧ (b− a′ ≤ −2)

5.6 > 106 ∞ > 106 ∞

∧(b− c′ ≤ −1) ∧ (c− b′ ≤ −2) ∧ (c− d′ ≤ −1)
∧(d− c′ ≤ −2) ∧ (d− e′ ≤ −1 ∧ e− a′ ≤ −1)
∧(e− d′ ≤ −2) ∧ (a′ − b ≤ 4) ∧ (a′ − c ≤ 3)
∧(b′−c ≤ 4 ∧ b′−d ≤ 3) ∧ (c′−d ≤ 4) ∧ (c′−e ≤ 3)
∧(d′−a ≤ 3 ∧ d′−e ≤ 4) ∧ (e′−a ≤ 4) ∧ (e′−b ≤ 3)

o1 (x+ x′ = 1) 0.21 0.91 4.33 0.91 4.33
o2 (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.29 0.85 2.93 0.84 2.9
o3 (x ≤ x′) ∧ (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.32 0.93 2.91 0.94 2.94
o4 (x+ y ≤ 5) ∧ (−x+ x′ ≤ −2) ∧ (−y + y′ ≤ −3) 0.21 3.67 17.48 13.52 64.38
o5 (x+ y ≤ 1) ∧ (−x ≤ 0) ∧ (−y ≤ 0) 1.2 20050.916709.1 > 106 ∞

o6

(x ≥ 0) ∧ (y ≥ 0) ∧ (x′ ≥ 0) ∧ (y′ ≥ 0)
2.5 > 106 ∞ > 106 ∞∧(x+ y ≤ 1) ∧ (x′ + y′ ≤ 1) ∧ (x− 1 ≤ x′)

∧(x′ ≤ x+ 1) ∧ (y − 1 ≤ y′) ∧ (y′ ≤ y + 1)

Table 1: Comparison with older algorithms on difference bounds and octagons. Times
are in milliseconds.

As shown in Table 1, the maximum observed speedup is almost105 for difference
bounds (d4 in canonical form) and of the order of four for octagons. For the relations
d5 (canonical form),d6 ando6 the computation using older methods took longer than
106 msec. It is also worth noticing that the highest execution time with the new method
was of 2.5 msec.

Table 2 compares FLATA with FAST [4] on counter systems with one self loop la-
beled with a randomly generated deterministic difference bound relation. We generated
50 such relations for each sizeN = 10, 15, 20, 25, 50, 100. Notice that FAST usually
runs out of memory for more than 25 variables, whereas FLATA can handle 100 vari-
ables in reasonable time (less than 8 seconds on average).
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vars FLATA FAST
doneav. ET done av. ET EM EB

10 50 1.5 0 49 0.6 0 0 1
15 50 1.6 0 31 10.5 17 0 2
20 50 1.6 0 4 3.4 9 8 29
25 50 1.6 0 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50
100 49 7.7 1 0 - 0 0 50

vars FLATA FAST
done av. ET done av. ET EM EB

10 50 1.5 0 22 6.9 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 1.7 7 0 - 0 0 50
50 50 2.3 0 0 - 0 0 50
100 42 5.5 8 0 - 0 0 50

(a) – matrix density 3% (b) – matrix density 10%
Table 2: Comparison with FAST (MONA plugin) on deterministic difference bounds.
Times are in seconds.ET – timeout 30 s,EB – BDD too large,EM – out of memory

6 Conclusion

We presented a new, scalable algorithm for computing the transitive closure of ul-
timately periodic relations. We show that this algorithm isapplicable to difference
bounds, octagonal and finite monoid affine relations, as all three classes are shown to be
ultimately periodic. Experimental results show great improvement in the time needed
to compute transitive closures of difference bounds and octagonal relations.
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