Towards Beneficial Hardware
Acceleration in HAVEN:
Evaluation of Testbed Architectures

FIT BUT Technical Report Series

Marcela Simkova and Ondrej Lengdl

Technical Report No. FIT-TR-2012-03
Faculty of Information Technology, Brno University of Technology

Last modified: January 4, 2013

Towards Beneficial Hardware Acceleration in HAVEN:
Evaluation of Testbed Architectures

Marcela Simkové and Ondfej Lengal

Faculty of Information Technology, Brno University of Technology, Czech Republic
{isimkova,ilengal}@fit.vutbr.cz

Abstract. Functional verification is a widespread technique to check whether
a hardware system satisfies a given correctness specification. As the complexity
of modern hardware systems rises rapidly, it is a challenging task to find ap-
propriate techniques for acceleration of this process. In our previous work, we
developed HAVEN, an open verification framework that enables hardware accel-
eration of functional verification runs by moving the design under test (DUT)
into a verification environment in a field-programmable gate array (FPGA). In
the original version of HAVEN, the generator of input stimuli, the scoreboard
and the transfer function still resided in a software simulator, and the peak accel-
eration ratio achieved was over 1,000. In the currently presented paper, we further
extend HAVEN with hardware acceleration of the remaining parts of the verifica-
tion environment. This enables the user to choose from several different testbed
architectures which are evaluated and compared. We show that each architecture
provides a different trade-off between the comfort of verification and the degree
of acceleration. Using the highest degree of acceleration, we were able to achieve
the speed-up in the order of hundreds of thousands while still being able to em-
ploy assertion and coverage analysis.

1 Introduction

Functional verification is a simulation-based technique which is typically used in the
pre-silicon phase of the development cycle to verify not only functional aspects but also
reliability and safety properties of hardware systems. Due to its ability to uncover the
vast majority of design errors in a reasonable time and thus decrease the time to market
of the developed product, functional verification has become the verification method of
choice for many successful projects.

The main idea of functional verification is to generate a set of constrained-random
test vectors and apply them to the verified system (called the design under test, or DUT)
in a simulator. The observed response is then compared to the expected one as specified
by a provided transfer function.

In order to have a strong confidence in the correctness of the verified system, a high
level of coverage of the system’s state space needs to be achieved. This issue can be
addressed in the following two ways: (i) to find a method how to generate test vectors
that cover critical parts of the state space, and (ii) to maximise the number of the vectors

tested. Coverage-driven verification is an approach that provides the verifier with a de-
tailed coverage feedback of verification runs so that new tests can be written to cover
parts of the state space which had not been exercised so far. Formal assertions may
be used with advantage during verification runs to provide further checks of internal
synchronisation and expected operations of the system by creating implicit monitors at
critical points of the system without the need to create separate testbenches where those
points would be externally visible.

Simulation-based pre-silicon verification approaches including functional verifica-
tion provide verifiers and designers with great comfort while debugging a failing com-
ponent, checking assertions or performing coverage analysis. Values of internal signals
are easily observable with arbitrary depth of history and it is easy to introduce precisely
timed events to the verified component. In general, pre-silicon verification approaches
have improved significantly during the last decade and a lot of new techniques, tools and
verification methodologies have been developed. One of the negative consequences of
Moore’s law, which claims that the number of transistors on integrated circuits doubles
approximately every two years, is that it is necessary to verify still more and more com-
plex systems. However, as the performance of computer processors’ cores has reached
its limit (and the overall performance of computer processors is currently increased
mainly by placing multiple cores in a single chip), software simulators of logical cir-
cuits cannot benefit from this increase much, because the simulation task is difficult to
be parallelised.

Because of this limitation in the speed of software simulation, even with a high
effort devoted to the pre-silicon verification, some previously uncovered functional er-
rors are recognised only after the system is manufactured. The reasons why these errors
had not been found in the pre-silicon stage are, e.g. because the errors may appear af-
ter several hours of operation of the target device (a condition which may take years
or even centuries to reproduce in a simulator), or because the errors might have been
introduced by the synthesiser or caused by the discrepancy between the behaviour of
a resource and the behaviour of its simulation model. In order to eliminate as many re-
maining bugs as possible before the target device is fabricated, verification is currently
applied even in the post-silicon phase of the development cycle when a prototype run-
ning at the frequency close to that of the target device is available [3]]. Unfortunately,
not many techniques standard for simulation can be directly used in post-silicon veri-
fication, as these techniques heavily rely on perfect observability of internal signals of
the system, while in post-silicon, the observation of a system is often limited to the use
of logic analysers, oscilloscopes, etc., and often only errors leading to some catastrophe
(such as a system crash) are detectable. Further, it is also difficult to apply a sequence
of events with precise timing as the post-silicon testing environment may not be able to
deliver large amounts of data quickly enough.

In recent years, several approaches that addressed the issue of performance of pre-
silicon verification appeared. The first approach discussed in [4/5l6] translates VHDL
or Verilog testbenches, which contain not directly synthesisable behavioural constructs,
using advanced synthesis techniques into the synthesisable subset of the corresponding
language. Note that these techniques are limited since some of the non-synthesisable
constructs, such as reading from a file or evaluation of recursive functions, still can-

not be synthesised. With the advent of higher-level hardware verification languages
(HVLs) for writing testbenches, with SystemVerilog being the most prominent, auto-
matic synthesis of testbenches that use advanced features, such as constrained-random
stimulus generation, coverage-driven and assertion-based verification, has become even
more infeasible.

However, soon after the introduction of HVLs, several transaction-based method-
ologies emerged, e.g. SystemVerilog-based VMM, OVM, and UVM. These methodolo-
gies use higher-level of abstraction and group sequences of stimuli applied to the DUT
into fransactions. Transactions are sent to drivers that decode them and apply proper
stimuli to the DUT. Since drivers can usually be written using synthesisable constructs,
it is possible to accelerate the performance of a testbench by dividing the testbench
into the synthesised part that is placed in a hardware emulator, and the behavioural part
that runs on a CPU, such that the two parts communicate using simple channels. Solu-
tions that use emulators to accelerate functional verification has been provided by major
companies that focus on tools for hardware verification. Examples of these emulator-
based solutions are Mentor Graphics’ Veloce2 technology [7]] and Cadence’s TBA [8]
that use emulators running on frequencies in the order of MHz. Synopsys [[13[] provide
solution for prototyping of ASICs based on field-programmable gate arrays (FPGAs).
A similar approach is taken by Huang et al [9]]; their proposal is also to place the DUT
with necessary components in an FPGA, and in addition provide limited observability
of the DUT’s signals. Nevertheless, to the best of our knowledge, there is currently still
no available working implementation based on their proposal. Unfortunately, we could
not perform a detailed comparison of these solutions as they are not available to us.

The authors of 3] relate pre-silicon and post-silicon verification in terms of achiev-
ing coverage closure. Instead of observing values of internal signals, the approach pre-
sented for post-silicon verification observes the behaviour of a post-silicon exerciser
(which is not given by a set of test vectors but rather by a test template) in the pre-
silicon simulation environment and determines the probability of the exerciser hitting
certain cover points in a given number of clock cycles.

We focus our research on bridging the gap between pre- and post-silicon verification
using hardware acceleration with functional verification features. In [1l], we introduced
HAVEN (Hardware-Accelerated Verification ENvironment), an open framework{ﬂ for
hardware-accelerated functional verification of hardware designs that tackles the bot-
tleneck of the simulation speed of a highly parallel DUT by moving the DUT into
a verification environment in an FPGA. Using this solution, we were able to achieve the
acceleration ratio of over 1,000.

In the currently presented paper, we describe the new features added to HAVEN
in order to support seamless transition from pre- to post-silicon verification using sev-
eral architectures of the verification testbed. The user can start with the pure software
version of the functional verification environment to debug base system functions and
discover the main bulk of errors. Later, when the simulation cannot find any new bugs
in a reasonable time, the user can start to incrementally move some parts of the ver-
ification environment from software to hardware, with each step obtaining a different
trade-off between the acceleration ratio and the debugging comfort.

Unttp://www.fit.vutbr.cz/~isimkova/haven/

http://www.fit.vutbr.cz/~isimkova/haven/

The rest of the paper is structured as follows. In Section |2} we give a detailed de-
scription of the main features of HAVEN. In Section [3]we propose several architectures
of the HAVEN testbed and in Section] we evaluate them using a set of experiments.
Section [5|concludes the paper and gives directions for future work.

2 The HAVEN Verification Framework

HAVEN [1]] is a SystemVerilog verification framework that allows to speed up func-
tional verification runs using an FPGA-based accelerator. The DUT that is being ver-
ified is synthesised and placed into a testbed in the FPGA, and generated transactions
are passed to the accelerator instead of the model of the DUT in the software simulator.
The cycle accuracy is maintained in the accelerator so that a failed accelerated verifi-
cation run can be easily reproduced in the perfect debug environment of the simulator.
In order to be able to detect violation of expected internal behaviour, protocols’ specifi-
cations, etc., HAVEN enables to connect assertion checkers implemented as finite-state
automata to report violations of assertions to the user. Moreover, for verification runs
which are not easily reproducible in the software simulator (e.g. runs with a very long
trace), it is possible to observe values of signals directly in hardware using so-called
signal observers and display the waveform to the user in the simulator.

HAVEN is advantageous especially in the (currently expanding) area of devices that
use FPGAs, since the verification may run directly on the target platform and check the
system after synthesis and not only a model in simulation. This is even more advanta-
geous when the verified component uses some specialised resources of the FPGA (such
as in-built multipliers), or a design which is already synthesised and its source code is
not available, so that the real hardware is evaluated instead of simulation models which
may contain inaccuracies or errors.

For the evaluation of HAVEN, we chose a set of components that use the Frame-
Link protocol (its description can be found in [2]) at their input and output interfaces.
FrameLink is a frame-oriented point-to-point protocol developed for the use in network
applications, which is based on Xilinx’s LocalLink [10]]. A frame on FrameLink may
consist of several parts of an arbitrary length and there may be any number of delays
inside a frame part and between parts.

Using the solution presented in [[1]], we were able to achieve the acceleration ratio of
over 140 when we included the time for generation of test vectors in software and over
1,000 when we did not include it (which is a relevant value for the case when test vectors
are pre-generated and stored e.g. in a file). During the evaluation, we observed that
the main performance bottlenecks were generation of constrained-random transactions,
maintaining transactions in the scoreboard and comparing them to the outputs of the
DUT.

In this paper, we address these issues and extend HAVEN with even better sup-
port for hardware acceleration by providing hardware implementations of the following
components of the verification environment:

Hardware Generator The Hardware Generator consists of a random number gen-
erator of an arbitrary width (we used the fast hardware implementation of the

Software Generator Input Software Software
Generator Controller Controller Driver | | DuT ™| Monitor

\ Software /

Scoreboard

Fig. 1. Software version (SW—FULL).

Mersenne Twister from [[11] which provides a random vector in each clock cy-
cle) and an adapter to the FrameLink format with a constraint solver. The seed of
the generator as well as the constraints on the number/lengths of parts and delays
can be set from the simulator using a simple configuration interface.

Hardware Scoreboard The Hardware Scoreboard is a component that selects data
sent from hardware monitors corresponding to output transactions from the DUT
and performs comparison of these data from several interfaces. Any discrepancy in
the received data is reported to the user.

Transfer Function Hardware implementation of the Transfer Function depends on the
verified component and can be performed in several ways. For components with
an already existing reference hardware implementation, we can use this as the trans-
fer function (this use case may be suitable e.g. for regression testing). In the case
only a software implementation of the transfer function is available, it is possible
to use a soft processor core (e.g. MicroBlaze [12]) and run the transfer function as
a program on the processor. If the transfer function takes a long time to be evalu-
ated, a block of processor cores working in parallel may be used.

Coverage Monitor In order to be able to guarantee reaching coverage closure in larger
designs, the Coverage Monitor may be used to check whether given points of the
DUT'’s state space have been covered. The component is connected to the wires
which are to be checked and periodically sends the information about triggered
cover points to the simulator. This information is reported to the user so that she
knows which cover points have not been triggered. The user can in turn e.g. write
directed tests or change settings of the generator to target these points. Since this
component uses a register for every cover point, it is recommended for monitoring
coverage of so far not covered points only.

3 Architectures of HAVEN

In this section we show how the components presented in the previous section may be
(together with the components from [2]]) assembled to create several different testbed
architectures, each suitable for a different use case and a different phase of the overall
verification process. We start our description with the non-accelerated version running
solely in the simulator and proceed by moving components of the verification environ-
ment into hardware in several steps.

Software version (SW—FULL). This architecture is similar to the standard architecture
of a functional verification testbench. All components of the verification environ-

ment are situated in the software simulator (Fig. [T). The Software Generator pro-
duces input transactions which are propagated to the Software Driver and further
supplied on the input interface of the DUT. The copy of a transaction is sent to
the Software Scoreboard where the expected output is computed using a reference
transfer function. The Software Monitor drives the output interface of the DUT and
sends received output transactions also to the Software Scoreboard to be compared
to the expected ones.

Hardware Generator version (HW—GEN). The architecture (in Fig. [2) is similar to the
SW-FULL version with the exception of the Hardware Generator and the Constraint
Solver, which are placed in the FPGA. Generated transactions are sent to software
to be applied to the model of the DUT in the simulator and sent to the Software
Scoreboard.

Hardware DUT version (HW—DUT). In this architecture (Fig. , the Software Gener-
ator is used and the flow of input transactions is sent to the verification environment
in hardware. In addition, a copy of every transaction is sent to the Software Score-
board for further comparison. The Hardware Driver and the Hardware Monitor
fulfill the same functions as their software counterparts in the SW—FULL version,
but they drive the input and output interfaces of the DUT running in the FPGA. The
output transactions produced by the DUT are directed from the Hardware Monitor
to the Software Scoreboard.

Hardware Generator and DUT version (HW—GEN-DUT). (Fig. This architecture
is similar to the HW—DUT version, but the generator is in hardware, as in the HN—GEN
version.

Hardware version (HW—FULL). All core components of the verification environment
in this architecture (Fig. [5) reside in the FPGA. The components in the software
environment only set constraints for the Constraint Solver and report assertion fail-
ures, coverage statistics, or display waveforms of signals from hardware compo-
nents.

For those architectures of the HAVEN testbed that place the DUT into the FPGA
(HW-DUT, HW—GEN-DUT, HW—-FULL), it is possible to use the following optional com-
ponents in hardware:

) il

Generator Input Software Software
Controller Controller Driver buTt Monitor SR
\ Software / Output
Scoreboard Wrapper
Hardware Constraint .
Generator Solver Einder

FPGA

Fig. 2. Hardware Generator version (HW—GEN).

Software Generator Input
Generator Controller Controller

Assertion
I / Reporter

Sender H Software H_{ Output H Sorter

Scoreboard Controller

I I \ Signal
Reporter
Input Output
Wrapper ‘Wrapper

+ -

Hardware % % Hardware .
Driver DuT Monitor Binder

FPGA

Fig. 3. Hardware DUT version (HW—DUT).

Assertion Checkers (illustrated by squares in figures) detect assertion violations of the
DUT in hardware and report them to Assertion Reporters in the simulator, which
in turn display them to the user.

Signal Observers (illustrated by circles in figures) store values of signals in hardware
and periodically send them to Signal Reporters in the simulator to be displayed as
waveforms to the user.

Coverage Monitors check coverage as described in Section 2}

4 Evaluation
We performed a set of experiments using an acceleration card with the Xilinx Virtex-5
FPGAE| supporting fast communication through the PCle bus in a PC with two quad-

2 We used Xilinx Virtex-5 XC5VLX155T (speed grade -2) with 24,320 slices, which is roughly
equivalent to 155,000 logical gates.

i L A R

Generator }_’{ Input }_’{ Software H_{ Output H Sotter

Controller Controller Scoreboard Controller
I \ Signal
Reporter
Output
Wrapper

Hardware Constraint Hardware % % Hardware .
Generator Solver Driver puT Monitor ider

FPGA | T

Fig. 4. Hardware Generator and DUT version (HW—GEN-DUT).

Assertion

/ Reporter
Sorter

Generator
Controller

f \ Signal

Reporter

Output
Wrapper

Hardware Constraint Hardware Hardware I Hardware
Generator Solver Driver % DUT % Monitor Scoreboard

A

Hardware Transfer Hardware
Driver Function Monitor

FPGA

Fig. 5. Hardware version (HW—FULL).

core Intel Xeon E5620@2.40 GHz processors and 24 GiB of RAM, and Mentor Graph-
ics’ ModelSim SE-64 10.0c as the simulator. We evaluated the performance of the archi-
tectures of HAVEN presented in the previous section on several hardware components:
a simple FIFO buffer and several versions of a hash generator (HGEN) which computes
the hash value of input data, each version with a different level of parallelism (2, 4, 8
and 16 units connected in parallel). Resources consumed by these components (in the
number of occupied slices and portion of the used FPGA they took) are in Table[T] Ta-
ble[2]shows resources consumed by hardware components of HAVEN; from the table it
can be observed that the overhead of HAVEN is quite negligible.

For each of the components, Table [3] gives the wall-clock time it took to verify
the component for 100,000 input transactions for each architecture of the HAVEN
testbed (because of issues with precise measurements of the time for the HW—FULL
architecture, we measured for this case the time it took to verify the component for
1,000,000,000 input transactions and computed the average time for 100,000 trans-
actions). Table [] in turn shows the acceleration ratio of each of the architectures of
HAVEN testbed against the SW—FULL architecture.

We can observe several facts from the experiments. First, they confirm that the time
of simulation (SW—FULL) increases with the complexity of the verified DUT, so that it
is not feasible to simulate complex designs for large numbers of transactions. Second,
we can observe that it is not reasonable to use the simulator with hardware acceleration
of the transaction generator only (HW—GEN), at least for simple input protocols, which is
the case of FrameLink. In this case, the overhead of communication with the accelerator
is too high. However, for the case when the DUT is also in hardware (HW—GEN-DUT),
hardware generation of transactions is (with the exception of the FIFO unit) advanta-
geous compared with software generation (HW—-DUT). Lastly, we can observe that the
major speed-up of the hardware version (HW—FULL) makes this version preferable to
use for very large amounts of transactions, e.g. when trying to reach coverage closure.
Running verification of HGENx 16 for a billion transactions, which took less than 7
minutes in this version, would take more than 21 months in the SW—FULL version.

Table 1. Resource consumption of the evaluated components.

(Component [FIFO] HGEN| HGEN x 2| HGEN x4| HGEN x8] HGEN x 16|
Slices (of 24,320) [[282] 805 2,030] 3637 7376 16,821
Slices [%] L16] 331 8.35 14.95 30.33 69.17

Table 2. Resource consumption of HAVEN components. GEN: Hardware Generator and Con-
straint Solver, SB: Hardware Scoreboard, CHECKER: Assertion Checker, COV: Coverage
Monitor, OBSERVER: Signal Observer.

[Component [DRIVER] MONITOR| GEN| SB| CHECKER| COV| OBSERVER|
Slices (of 24,320) 161 64] 567] 124 55 18 64
Slices [%] 0.66 0.26] 2.33]0.88 0.23] 0.07 0.26

5 Conclusions and Future Research

In this paper, several extensions of the HAVEN verification framework were presented.
These extensions allow the user to incrementally move parts of a verification envi-
ronment into an FPGA-based hardware accelerator and thus accelerate the verification
process. Several architectures of the HAVEN testbed allow the user to choose the most
suitable version for the preferred trade-off between acceleration ratio and debugging
capabilities. The best speed-up achieved in our experiments for the case that used fully
accelerated testbed was over 100,000 while still performing assertion checking and cov-
erage analysis.

In the future, we wish to extend HAVEN with a technique to automatically drive
generation of test vectors to target coverage holes given by continuously measured cov-
erage information. As a result, we expect to obtain a set of input test vectors or settings
of the software generator which would achieve a high level of coverage in regression
testing. These could also be used in the hardware generator, thus improving its ability
to reach coverage closure. Such generators might also be useful in post-silicon vali-
dation as they are closer to the speed of real hardware. A challenging direction is to
develop a technique for representation of triggered cover points that would be feasible
to be used in hardware Coverage Monitors for a large amount of cover points, as the
currently used technique does not scale well. In addition, our future effort will lead
also to the integration of HAVEN into various research areas, especially into diagnos-
tics, where we wish to explore the capability of functional verification to improve the
quality of fault-tolerant systems. Collaboration on any of these issues is welcome.

5.1 Acknowledgements

This work was supported by the Czech Ministry of Education (projects LD12036 and
MSM 0021630528), the Czech Science Foundation (project 102/09/H042), the Brno
City Municipality (Brno Ph.D. Talent programme) and the BUT FIT projects FIT-S-11-
1 and FIT-S-12-1.

Table 3. Results of experiments: times for verifying 100,000 transactions (in seconds).

[Component | FIFO | HGEN | HGENx2[HGENx4| HGENx8| HGENx16]

SW-FULL 199. 319. 1,126. 1,617. 2,539. 5,650.
HW-GEN 268. 308. 1,101. 1,984. 3,274. 7,534.
HW-DUT 65. 45. 48. 48. 48. 48.
HW-GEN-DUT|| 74. 22. 12. 12. 13. 13.
HW-FULL 0.0148] 0.0205 0.0205 0.0239 0.0341 0.0410

Table 4. Results of experiments: acceleration ratios.

Component H FIFO HGEN | HGENx2| HGENx4 | HGENx8| HGENx16

HW-GEN 0.743 1.036 1.023 0.815 0.776 0.750
HW-DUT 3.062 7.089 23.458 33.688 52.896 117.708
HW-GEN-DUT 2.689 14.500 93.833 134.750 195.308 434.615
HW-FULL 13,429. 15,564. 54,925. 67,626. 74,347. 137,875.

References

1. M. Simkovd, O. Lengdl, and M. Kajan. HAVEN: An Open Framework for FPGA-
Accelerated Functional Verification of Hardware. = To appear in Proc. of HVC’lI,
LNCS 7261, Springer.

2. M. Simkovd, O. Lengdl, and M. Kajan. HAVEN: An Open Framework for FPGA-
Accelerated Functional Verification of Hardware. Technical Report FIT-TR-2011-05, FIT
BUT, 2011. http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2011-05.pdf

3. A. Adir, A. Nahir, A. Ziv, Ch. Meissner, and J. Schumann. Reaching Coverage Closure in
Post-silicon Validation. In Proc. of HVC’10, p. 60-75, 2010, Springer.

4. R. Henftling, A. Zinn, M. Bauer, M. Zambaldi, and W. Ecker. Re-Use-Centric Architecture
for a Fully Accelerated Testbench Environment. In Proc. of DAC’03, p. 372-375, 2003,
ACM.

5. M. R. Kakoee, M. Riazati, and S. Mohammadi Generating RTL Synthesizable Code from
Behavioral Testbenches for Hardware-Accelerated Verification. In Proc. of DSD’08, p. 714—
720, 2008, IEEE.

6. Y.-I. Kim, and C.-M. Kyung. Automatic Translation of Behavioral Testbench for Fully Ac-
celerated Simulation. In Proc. of ICCAD’04, p. 218-221, 2004, IEEE.

7. Mentor Graphics. Veloce2. 2012.
http://www.mentor.com/products/fv/emulation-systems/veloce/

8. Cadence. Transaction-based Acceleration (TBA). 2012.
http://www.cadence.com/products/sd/pages/transactionacc.aspx

9. C.-Y. Huang, Y.-F. Yin, C.-J. Hsu, T. B. Huang, and T. M. Chang. SoC HW/SW Verification
and Validation. In Proc. of ASPDAC’11, IEEE, 2011.

10. Xilinx. LocalLink User Interface. 2012. |http://www.xilinx.com/products/
intellectual-property/Locallink_UserInterface.htm

11. HT-LAB. Mersenne Twister, MT32: Pseudo Random Number Generator for Xilinx FPGA.
2007. http://www.ht-lab.com/freecores/mt32/mersenne.html

12. Xilinx. MicroBlaze Soft Processor Core. 2012.
http://www.x1linx.com/tools/microblaze.htm

13. Synopsys. FPGA-Based Prototyping. 2012.
http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/default.aspx

10

http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2011-05.pdf
http://www.mentor.com/products/fv/emulation-systems/veloce/
http://www.cadence.com/products/sd/pages/transactionacc.aspx
http://www.xilinx.com/products/intellectual-property/LocalLink_UserInterface.htm
http://www.xilinx.com/products/intellectual-property/LocalLink_UserInterface.htm
http://www.ht-lab.com/freecores/mt32/mersenne.html
http://www.xilinx.com/tools/microblaze.htm
http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/default.aspx

A Encountered Issues

In this appendix, we briefly describe issues that we encountered while developing and
extending the HAVEN framework and the approaches we chose to deal with them.

A.1 Optimisations

SystemVerilog is a high-level programming language that is usually interpreted by
an HDL simulator. This may be one the reasons why, according to our experience, is the
performance of a SystemVerilog program considerably inferior to the performance of
a C program with the same functionality. Fortunately, SystemVerilog allows a program
to call an external C program using the so-called Direct Programming Interface (DPI).
Using a C implementation of critical tasks often significantly improves the speed of
simulation.

A.2 Multithreading

Some software tasks in certain architectures of HAVEN are mutually independent and
call for being run in parallel. An example of such an architecture and a task is the
HW-DUT version, in which (/) data generated in the Software Generator are sent from
the simulator to the accelerator, and (ii) data from the accelerator are delivered to the
Software Scoreboard. These two tasks are natural to run in parallel (they are actually
needed to run in parallel because the sizes of transaction buffers in the accelerator are
limited and, therefore, output transactions need to be received at the output periodically,
otherwise the accelerator would be blocked), however, most interpreters of SystemVer-
ilog do not support creation and management of truly parallel threads. Although the
SystemVerilog language supports parallel threads, these threads run in parallel in the
simulation time while being usually run sequentially in the real time, switching con-
text in the nonpreemptive way (in order to switch a context, a thread needs to issue
some blocking command, for instance reading from an empty queue or issuing the wait
command).

We address this by issuing the "#10ns; " statement (that pauses the thread for 10 ns
of the simulation time) after sending every 100,000 transactions to the accelerator (we
observed that the performance for this setting was the best) to enforce a context switch.
However, in future, we wish to optimise this by creating a truly parallel wrapper in C
connected to the simulator via DPI.

A.3 Preventing Deadlock in Hardware

As mentioned in [1l], we maintain cycle-accuracy of accelerated verification by the
means of clock gating in the case the Hardware Driver does not have enough data to
send to the DUT, or when the Hardware Monitor is blocked. In some cases, e.g. in

11

the HW—FULL version, a special care needs to be taken so that this would not lead to
a deadlock, which may occur in the following case.

Suppose the Transfer Function is a reference implementation of the verified DUT
and both may contain several processed transactions inside (e.g. they use a FIFO). In
case the maximum number of transactions inside the units varies significantly, the fol-
lowing condition may happen. Suppose that the maximum number of transactions in
the DUT is larger than the maximum number of transactions in the Transfer Function.
Then, it may happen that the Transfer Function blocks its input, which in turn stops the
Hardware Driver of the Transfer Function, and, consequently via back-pressure, also
the Hardware Generator. The Hardware Generator cannot deliver data to the DUT’s
Hardware Driver that in turn stops the clock of the DUT. Because the DUT is stopped
and still contains some transactions that are being processed, these are not passed to
the Hardware Scoreboard which is filled up with output transactions from the Transfer
Function, thus blocking the Hardware Monitor of the Transfer Function. The Hardware
Monitor of the Transfer Function than in turn stops the clock of the Transfer Function.
The Transfer Function cannot accept data from its Hardware Driver and the hardware
environment is in the state of a deadlock. We solved this solution by adding the option
to insert buffers in front of the Hardware Drivers so that the Hardware Drivers would
not be able to block the Hardware Generator.

A4 Verification of Multiple DUTs

The versions of HAVEN that place the DUT into hardware (HW—DUT, HW—GEN-DUT,
HW-FULL) support the feature of verifying multiple DUTs (consider, e.g., a generic
data width component where each DUT is a specialisation of the component for a spe-
cific data width) at once. The DUTs can be put into the FPGA in parallel (as in the
HW-FULL version) and their input interfaces exercised at the same time during a single
verification run.

12

	Towards Beneficial Hardware Acceleration in HAVEN: Evaluation of Testbed Architectures

