IELe - complex numbers

Václav Šátek

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 61266 Brno - Královo Pole
satek@fit.vutbr.cz

| - BRNO FACULTY |
| :--- | :--- |
| UNIVERSITY OF INFORMATION |
| OF TECHNOLOGY TECHNOLOGY |

November 10, 2017

- superset (algebraic extension) of the real numbers, allow rooting of negative numbers
- solution of quadratic equation $x^{2}+1=0$
- representation of complex numbers: ordered pair $[x, y]$ in the Cartesian plane
- x... real part
- y... imaginary part
- superset (algebraic extension) of the real numbers, allow rooting of negative numbers
- solution of quadratic equation $x^{2}+1=0$

- superset (algebraic extension) of the real numbers, allow rooting of negative numbers
- solution of quadratic equation $x^{2}+1=0$
- doesn't have solution in real numbers

$$
\begin{aligned}
& D=b^{2}-4 a c=-4 \ldots \text { Discriminant } \\
& x_{1,2}=\frac{-b+\sqrt{D}}{2 a} \ldots \sqrt{-4}=?
\end{aligned}
$$

- representation of complex numbers: ordered pair $[x, y]$ in the Cartesian plane
- superset (algebraic extension) of the real numbers, allow rooting of negative numbers
- solution of quadratic equation $x^{2}+1=0$
- doesn't have solution in real numbers

$$
\begin{aligned}
& D=b^{2}-4 a c=-4 \ldots \text { Discriminant } \\
& x_{1,2}=\frac{-b+\sqrt{D}}{2 a} \ldots \sqrt{-4}=?
\end{aligned}
$$

- has a solution in complex numbers :)
- representation of complex numbers: ordered pair $[x, y]$ in the Cartesian plane
- superset (algebraic extension) of the real numbers, allow rooting of negative numbers
- solution of quadratic equation $x^{2}+1=0$
- doesn't have solution in real numbers $D=b^{2}-4 a c=-4 \ldots$. Discriminant $x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a} \ldots \sqrt{-4}=$?
- has a solution in complex numbers :)
- representation of complex numbers: ordered pair $[x, y]$ in the Cartesian plane
- x... real part
- y... imaginary part
- algebraic form: $z=x+j y \in \mathbb{C}$
- j. . . imaginary unit (math ' i ', electronics ' j ')
- complex conjugate for $z: \bar{z}=x-j y$
- holds:
- $\mathrm{j}^{2}=-1$
- $j^{3}=j^{2} \cdot j=-j$
- $j^{4}=j^{2} \cdot j^{2}=1$
- if:
- $y=0 \ldots$ real number
- $x=0 \ldots$ pure imaginary number
- What is the solution of the equation $x^{2}+1=0$ in \mathbb{C} ?
$\sqrt{D}=\sqrt{-4}=\sqrt{j^{2} 4}=j 2$
$x_{1,2}=\frac{ \pm j 2}{2}= \pm j$
- roots of quadratic equation with negative discriminant are complex conjugate

Complex numbers - graphical representatio中佂

- complex numbers are represented graphically using Gauss (complex) plane:
- Cartesian orthogonal coordinate system
- x axis - real part (Re) of a complex number
- y axis - imaginary part (Im) of a complex number

Graphical representation of complex numbers $z=1+j 2$, $\bar{z}=1-j 2$

Complex number $z=1+j 2$ and a conjugate $\bar{z}=1-j 2$

- complex number is represented as a vector with orientation $\overrightarrow{O z}$
- vector is used in polar form: $z=|z|(\cos \gamma+j \sin \gamma)$
- $|z| \ldots$ absolute value or modulus (size of vector $\overrightarrow{0 z}$)
- $\gamma \ldots$ angle with orientation (argument)

Goniometric functions

- right angle triangle

- $\sin \gamma=\frac{y}{|z|}$
- $\cos \gamma=\frac{x}{|z|}$
- $|z|=\sqrt{x^{2}+y^{2}}$
- $\operatorname{tg} \gamma=\frac{y}{x}$
$\gamma=\operatorname{arctg}\left(\frac{y}{z}\right)$
- $\mathrm{D}(\mathrm{tg})=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

To obtain the correct result, it is necessary to determine the correct quadrant.

Computation of argument γ
What is the argument γ for complex number $z=1+j 2$?

I. quadrant ($x=1>0, y=2>0$), result is correct.

Graphical representation of $z_{2}=-1+j 2$

Graphical representation of $z_{3}=-1-j 2$

Is algebraic form $z=x+j y$ equivalent to the polar form $z=|z|(\cos \gamma+j \sin \gamma)$?

$$
\begin{aligned}
& \text { For } z=1+j 2 \\
& \bullet|z|=\sqrt{1^{2}+2^{2}}=\sqrt{5} \\
& \text { - } \cos \gamma=\frac{x}{|z|}=\frac{1}{\sqrt{5}} \\
& \text { - } \sin \gamma=\frac{y}{|z|}=\frac{2}{\sqrt{5}}
\end{aligned}
$$

After substitution

$$
1+j 2=\sqrt{5}\left(\frac{1}{\sqrt{5}}+j \frac{2}{\sqrt{5}}\right)=1+j 2
$$

Note. When multiplying by the real number, real and imaginary parts are multiplied separately!

COMPLEX NUMBERS OPERATIONS

Addition: $z_{1}+z_{2}$

$$
\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right)=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
$$

Subtraction: $z_{1}-z_{2}$

$$
\left(x_{1}+j y_{1}\right)-\left(x_{2}+j y_{2}\right)=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
$$

Multiplication: $z_{1} \cdot z_{2}$

$$
\begin{aligned}
\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}+j y_{2}\right) & =\left(x_{1} x_{2}+j x_{1} y_{2}+j y_{1} x_{2}+j^{2} y_{1} y_{2}\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

Addition: $z_{1}+z_{2}$

$$
\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right)=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
$$

Subtraction: $z_{1}-z_{2}$

$$
\left(x_{1}+j y_{1}\right)-\left(x_{2}+j y_{2}\right)=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
$$

Multiplication: $z_{1} \cdot z_{2}$

Addition: $z_{1}+z_{2}$

$$
\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right)=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
$$

Subtraction: $z_{1}-z_{2}$

$$
\left(x_{1}+j y_{1}\right)-\left(x_{2}+j y_{2}\right)=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
$$

Multiplication: $z_{1} \cdot z_{2}$

$$
\begin{aligned}
\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}+j y_{2}\right) & =\left(x_{1} x_{2}+j x_{1} y_{2}+j y_{1} x_{2}+j^{2} y_{1} y_{2}\right) \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+y_{1} x_{2}\right)
\end{aligned}
$$

Division: $\frac{Z_{1}}{z_{2}}$

Using the complex conjugate to the denominator and multiplying the nominator and denominator (real number in denominator).

$$
\begin{aligned}
\frac{x_{1}+j y_{1}}{x_{2}+j y_{2}} & =\frac{\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}-j y_{2}\right)}{\left(x_{2}+j y_{2}\right) \cdot\left(x_{2}-j y_{2}\right)}=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+j\left(y_{1} x_{2}-x_{1} y_{2}\right)}{x_{2}^{2}+y_{2}^{2}} \\
& =\frac{x_{1} x_{2}+y_{1} y_{2}}{x^{2}+y^{2}}+j \frac{y_{1} x_{2}-x_{1} y_{2}}{x^{2}+y^{2}}
\end{aligned}
$$

Example: $z_{1}=2+j 3, z_{2}=2-j 3$

$$
\frac{2+j 3}{2-j 3}=\frac{4-9}{4+9}+j \frac{6-2 \cdot(-3)}{4+9}=-\frac{5}{13}+j \frac{12}{13}
$$

EXAMPLE: RLC CIRCUITS

- Calculate overall voltage U in the serial RLC circuit.

$$
U_{R}=4 \mathrm{~V}, U_{C}=-j 1 \mathrm{~V}, U_{L}=j 3 \mathrm{~V}, I=2 \mathrm{~A}
$$

Using II. Kirchhoff's law:

$$
\begin{aligned}
U_{R}+U_{C}+U_{L}-U & =0 \\
U & =U_{R}+U_{C}+U_{L} \\
U & =4+j 2
\end{aligned}
$$

Serial RLC circuit: $U_{R}=4 \mathrm{~V}, U_{C}=-j 1 \mathrm{~V}, U_{L}=j 3 \mathrm{~V}, I=2 \mathrm{~A}$

Argument γ_{U} of the voltage U depends on the size of the voltage on the capacitor U_{C} and coil U_{L} (on their addition). When $\left|U_{C}\right|=\left|U_{L}\right| \gamma U=0\left(U_{C}+U_{L}=0\right)$, resonance occurs.

Thank you for your attention!

