RC Circuit

1 Problem 1 - Discharging Capacity

Let's find a solution of u_{C} in RC circuit in Fig. 1.

Figure 1: RC Circuit

$$
\begin{align*}
u_{R}= & R i \ldots \text { Ohm's law } \\
u_{C}+R i= & u_{C}+u_{C}^{\prime} R C=0 \quad \ldots \quad \text { 2. Kirchhoff's law } \\
u_{C}^{\prime}= & \frac{i}{C} \Rightarrow \quad i=u_{C}^{\prime} C \\
& u_{C}+R C u_{C}^{\prime}=0 \\
& u_{C}^{\prime}+\frac{u_{C}}{R C}=0, \quad u_{C}(0)=u_{C_{0}} \tag{1}
\end{align*}
$$

1.1 Analytic solution

Finding solution of homogenous differential equation

$$
u_{C}^{\prime}+\frac{1}{R C} \cdot u_{C}=0
$$

that leads to characteristic equation

$$
\begin{aligned}
\lambda+\frac{1}{R C} & =0 \\
\lambda & =-\frac{1}{R C}
\end{aligned}
$$

General solution of homogenous differential equation

$$
u_{C}=K(t) e^{\lambda t} \Rightarrow u_{C}=K(t) e^{-\frac{1}{R C} t}
$$

We have to find $K(t)=$??? so we must derive u_{C}

$$
u_{C}^{\prime}=K^{\prime}(t) e^{-\frac{1}{R C} t}-K(t) \frac{1}{R C} e^{-\frac{1}{R C} t}
$$

and substitute u_{C} and u_{C}^{\prime} into (1)

$$
\begin{gathered}
K^{\prime}(t) e^{-\frac{1}{R C} t}-K(t) \frac{1}{R C} e^{-\frac{1}{R C} t}+\frac{1}{R C} e^{-\frac{1}{R C} t}=0 \\
K^{\prime}(t) e^{-\frac{1}{R C} t}=0
\end{gathered}
$$

to obtain $K(t)$ we have to integrate :-(

$$
\begin{aligned}
\int K^{\prime}(t) & =\int 0 \\
K(t) & =k \ldots \text { constant of integration }
\end{aligned}
$$

General solution of homogenous differential Eq. (1)

$$
u_{C}=k e^{-\frac{1}{R C} t}
$$

Substituting initial value $u_{C}(0)=u_{C_{0}}$

$$
\begin{aligned}
u_{C 0} & =k e^{-\frac{1}{R C} \cdot 0} \\
k & =u_{C_{0}}
\end{aligned}
$$

we obtain particular solution

$$
\begin{equation*}
u_{C}=u_{C_{0}} e^{-\frac{1}{R C} t} \tag{2}
\end{equation*}
$$

1.2 TKSL

```
var ur, uc, ucanal;
const dt=0.1, eps=1e-10, tmax=10, C=1e-3, R=1000, uc0=10;
system
    uc'= (-1/(R*C))*uc &uc0;
    ur = -uc;
    ucanal = uc0*exp(-(1/(R*C))*t);
    sysend.
```


1.3 Homework

Compare analytic solution (2) with numerical computation of differential equation u_{C}^{\prime} in TKSL 386.

2 Problem - Charging of Capacitance

Let's find a solution of u_{C} in RC circuit in Fig. 2.

Figure 2: RC Circuit with Supply Voltage U

$$
\begin{align*}
& u_{R}= R i \ldots \text { Ohm's law } \\
& u_{C}+R i= u_{C}+u_{C}^{\prime} R C=U \ldots \text { 2. Kirchhoff's law } \\
& u_{C}^{\prime}= \frac{i}{C} \Rightarrow \quad i=u_{C}^{\prime} C \\
& u_{C}+R C u_{C}^{\prime}=U \\
& u_{C}^{\prime}+\frac{u_{C}}{R C}=\frac{U}{R C}, \quad u_{C}(0)=u_{C 0} \tag{3}
\end{align*}
$$

2.1 Analytic solution

Finding solution of non-homogenous differential equation

$$
u_{C}^{\prime}+\frac{1}{R C} \cdot u_{C}=\frac{1}{R C} U
$$

that leads to characteristic equation

$$
\begin{aligned}
\lambda+\frac{1}{R C} & =0 \\
\lambda & =-\frac{1}{R C}
\end{aligned}
$$

General solution of homogenous differential equation

$$
u_{C}=K(t) e^{\lambda t} \quad \Rightarrow \quad u_{C}=K(t) e^{-\frac{1}{R C} t}
$$

We have to find $K(t)=$??? so we must derive u_{C}

$$
u_{C}^{\prime}=K^{\prime}(t) e^{-\frac{1}{R C} t}-K(t) \frac{1}{R C} e^{-\frac{1}{R C} t}
$$

and substitute u_{C} and u_{C}^{\prime} into (3)

$$
\begin{gathered}
K^{\prime}(t) e^{-\frac{1}{R C} t}-K(t) \frac{1}{R C} e^{-\frac{1}{R C} t}+\frac{1}{R C} e^{-\frac{1}{R C} t}=\frac{1}{R C} U \\
K^{\prime}(t) e^{-\frac{1}{R C} t}=\frac{1}{R C} U
\end{gathered}
$$

to obtain $K(t)$ we have to integrate :-(

$$
\begin{aligned}
\int K^{\prime}(t) & =\int \frac{1}{R C} U \cdot e^{\frac{1}{R C} t} \\
K(t) & =U e^{\frac{1}{R C} t}+k \quad \ldots \text { constant of integration }
\end{aligned}
$$

General solution of homogenous differential Eq. (3)

$$
\begin{aligned}
& u_{C}=\left(U e^{\frac{1}{R C} t}+k\right) e^{-\frac{1}{R C} t} \\
& u_{C}=U+k e^{-\frac{1}{R C} t}
\end{aligned}
$$

Substituting initial value $u_{C}(0)=u_{C_{0}}$

$$
\begin{aligned}
u_{C 0} & =U+k e^{-\frac{1}{R C} 0}=U+k \\
k & =u_{C_{0}}-U
\end{aligned}
$$

we obtain particular solution

$$
\begin{align*}
& u_{C}=\left(U e^{\frac{1}{R C} t}+u_{C_{0}}-U\right) \cdot e^{-\frac{1}{R C} t} \\
& u_{C}=U+\left(u_{C_{0}}-U\right) e^{-\frac{1}{R C} t} \tag{4}
\end{align*}
$$

2.2 TKSL

```
var u, ur, uc, ucanal;
const dt=0.1, eps=1e-10, tmax=10, C=1e-3, R=1000;
system
    u = 1;
    uc'= (u-uc)*(1/(R*C)) &0;
    ur = u-uc;
    ucanal = u-u*exp(-(1/(R*C))*t);
    sysend.
```


2.3 Homework

Compare analytic solution (4) with numerical computation of differential equation u_{C}^{\prime} in TKSL 386.

