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1 Analytical solution

y′ = sin(y) (1)

To solve the equation we can use a method of separating variables. Equation can be written
in an equivalent form:
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Solving by gradual adjustment:
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Expressing y with initial condition y(0) = 1 we have:

y = 2 ∗ arctan(et+ln(tan( 1
2
))) (14)
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2 Comparsion with TKSL

To compare this solution with TKSL, following code can be used:

var y,ya;

const
c=-0.60458244594159155435541791367007157248446956657791, {ln(tg(0.5))}
eps=1e-20,
tmax=20,
dt=0.1;

system
y’ = sin(y) & 1;
ya = 2*arctg(exp(t+c));
sysend.

Analytical (Y A) and computed (Y ) functions are depicted on picture (1). You can see that
both functions are identical and aproche π.

Figure 1: Solution of y′ = sin(y)
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