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1 Intro

Theory of curcuit deals with analysis, synthesis, description, design and mutual connections of
electronic elements.
There are very complex and vast connections of electronic elements with very complicated
function. However, this connections can be dissasembled into individual functioning curcuits,
whose description does not have to be so much complicated. Individual curcuits can be divided
into:

1. Linear curcuits

(a) mutual connections of resistors and DC (direct current) voltage sources

(b) mutual connections of resistors, capacitors, coils and AC (alternate current) voltage
sources

2. Non-linear curcuits

(a) mutual connections of passive non-linear semicondacting elements, resistors, capaci-
tors, coils and voltage sources (DC/AC)

(b) mutual connections of active semicondacting elements (transistors), passive elements
(diods), RLC curcuits and voltage sources

2 Mutual connections of resistors and DC (direct current) volt-
age sources

The most important axiom of curcuits is Ohm’s law, which defines a relation between voltage
U , resistance R and current I flowing through an electric curcuit (figure 1).

I =
U

R
(1)
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Figure 1: A simple curcuit for Ohm’s law

In connection with Ohm’s law and (figure 1), there is another elementary curcuit with two
resistors in serial and one voltage source (figure 2).

Figure 2: Voltage divider

Even if this curcuit is very simple (called voltage divider), it is a basis for methods for
solving electrical curcuits. Often, some complex curcuits are transformed into this one.
Two very important laws hold for this curcuit:

• II. Kirchhoff’s law (U = UR1 + UR2)

• Ohm’s law (I = U
R1+R2

)

More, the following axiom holds for the same curcuit: voltages UR1 and UR2 are divided
directly between R1 and R2:

UR1

UR2

=
R1

R2
(2)

From the curcuit (figure 2) and II. Kirchhoff’s law, there is only a small step to a curcuit
(figure 3), where R1 and R2 are connected in parallel.
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Figure 3: A curcuit with two loops

In this curcuit, I. Kirchhoff’s law holds: I = IR1 + IR2 . Together with II. Kirchhoff’s law
U = UR + UR1,2 and Ohm’s law we get:

I =
U

R+ R1R2
R1+R2

(3)

Next, another important axiom holds for this curcuit: currents IR1 and IR2 are divided in
an indirect proporsion to R1 and R2:

IR1

IR2

=
R2

R1
(4)

From a point of view of possible connections of resistors and one DC voltage source a curcuit
on figure 4 is interesting.

Figure 4: More complex connection of resistors

In this curcuit it is not unambiguous to decide which resistors are connected in serial and
which ones in parallel. Mathematically, it can be proved that ”triangual” connection of resistors
R1, R2, R3 can be transformed into an equivalent curcuit (figure 5). In this simplified curcuit,
it is now easy to simplify it except for Ohm’s law I = U

Rekv
.
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Figure 5: A simplified curcuit from the figure 4

From a point of view of resistor’s nets and one voltage source, a curcuit on figure 6 has
important meaning (called R − 2R distributed element model). It is used in analog-to-digital
(A/D) and digital-to-analog (D/A) converters (e.g. scanners, digital cameras), where a con-
tinuous analog signal is converted into a digital one (for postprocessing in digital computers).
Eventually in conversion of a digital signal to an analog one.

Figure 6: A distributed element model

The following holds:

U1 = U
2 = 2−1U I1 = I

2 = 2−1I

U2 = U1
2 = 2−2U I2 = I1

2 = 2−2I

U3 = U2
2 = 2−3U I3 = I2

2 = 2−3I
... ...

(5)

Flowing currents are decreased exponentially (with a base 2).
In connection with the previous curcuits, a simple curcuit with a resistor’s net and two

voltage sources (figure 7) follows.
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Figure 7: A curcuit with two voltage sources

To solve this curcuit, two methods can be used:

1. A method of loop currents:

R1IA +R3(IA − IB)− U1 = 0
R2IB + U2 +R3(IB − IA) = 0

⇒ Ia = . . . Ib = . . .
(6)

2. A method of loop’s voltages:

I1 + I2 = I3
U1−Up

R1
+ U2−Up

R2
= Up

R3

⇒ Up = . . .

(7)

The stated methods are used whenever we need to compute all currents and all voltages in
a curcuit, i.e. UR1 , IR1 , UR2 , IR2 , UR3 , IR3 . If we want to compute only one current (e.g. I3), we
can use ”one crocodile”’s method or Thevenin’s theorem.
”One crocodile”’s method describes an original way how to catch one crocodile. It is simple -
we catch two crocodiles and release one (i.e. we compute all currents I1, I2, I3 and I1, I2 forget).
Based on Thevenin’s theorem we mark on the previous curcuit (figure 7) two points A,B ,
among which I3 flows and redraw it into an equivalent curcuit (figure 8).
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Figure 8: An equivalent curcuit for curcuit on figure 7

Then:
I3 = Ui

Ri+R3
(8)

Ri can be computed as a resistance (figure 7) between A,B (withnout resistor R3), voltage
sources are short-curcuited (figure 9).

Ri = R1R2
R1+R2

(9)

Ui can be computed as a voltage between A,B (without R3) - figure 10.
E.g.:

IR1 + Ui − U1 = 0 IR1 + IR2 + U2 − U1 = 0
I = U1−U2

R1+R2
U1−U2
R1+R2

R1 + Ui − U1

⇒ Ui = . . .

(10)

Figure 9: Determination of Ri
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Figure 10: Determination of Ui

Higher amount of voltage sources and resistor’s nets is dependend on a maliciousness of a
lecturer or a guarantor of this subject (figure 11).

Figure 11: A complicated curcuit

For example, 7 loop’s current equations or 2 voltage’s loop equations.

3 Mutual connections of resistors, capacitors, coils and AC (al-
ternate current) voltage sources

For alternating harmonic voltages the following equation is usually used:

u = Um sin(ωt) (11)
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Ohm’s law for alternating voltage and resistance R is in an expected form:

i =
u

R
=
Um
R

sin(ωt) = Im sin(ωt) (12)

(resistor’s voltage and resistor’s current are in the same phase).
Ohm’s law for an alternating voltage and a capacitor are in a differential form:

iC = C duC
dt (uC(0) = uC0)

iC = Cu′C
(13)

Ohm’s law for and alternating voltages and a induction are in a differential form:

uL = LdiLdt , (iL(0) = iL0)
uL = Li′L

(14)

For resistors in a series (analogy for figure 2) with source with alternating current, the
following holds:

u = uR1 + uR2 i = u
R1+R2

(15)

For RL, RC or LC in series, the situation is mathematically complicate. For example, for
an RL curcuit (figure 12), we have:

u = uR + uL
u = RiL + Li′C

(16)

Figure 12: RL curcuit

For specified values R = 10Ω, L = 0.1H,ω = 100rad/s, iL(0) = 0, u = 200 sin(t), the solution
is described by the following differential equation:

0.1i′L + 10iL = 200 sin(100t), iL(0) = 0 (17)

And this is a problem.
Then mathematicians came and created the following steps for solving this non-homogeneous
linear differential equation of the first order:
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1. First we compute a solution of the following homogeneous equation:

0.1i′L + 10iL = 0 (18)

(0 on the right-hand side of an equation) and get a homogeneous solution:

iLH = Keλt (19)

This equation is called ”expected solution” of an investigated homogeneous linear differ-
ential equation of the first order.
A constant λ is derived using a characteristic equation:

0.1λ+ 10 = 0
⇒ λ = −100

(20)

So the expected homogeneous solution is:

iLH = Ke−100t (21)

2. Now we investigate the right-hand side (function 200 sin(100t))
Mathematicians found out that this solution has an expected form:

iLP = A sin(100t) +B cos(100t) (22)

(P index means particular).
How can we check that this solution holds for a given equation? ⇒ Substitute iLP .
For substition, iLP must be derived:

i′LP = A100 cos(100t)−B100 sin(100t) (23)

After substitution:

0.1(A100 cos(100t)−B100 sin(100t))+10(A sin(100t)+B cos(100t)) = 200 sin(100t) (24)

After symbol manipulation we get:

(10A− 10B) sin(100t) + (10A− 10B) cos(100t) = 200 sin(100t) (25)

Comparing coefficients on the left-hand and right-hand side:

10A− 10B = 200
10A+ 10B = 0

(26)

This is a system of equations for A,B
For example

10A = −10B
−10B − 10B = 200⇒ B = −10, A = 10

(27)

so
iLP = 10 sin(100t)− 10 cos(100t) (28)

3. The searched general solution iL is given by summing iLH and iLP :

iL = Ke−100t + 10 sin(100t)− 10 cos(100t) (29)
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4. The searched concrete solution is given by an initial condition iL(0) = 0

0 = Ke−100∗0 + 10 sin(100 ∗ 0)− 10 cos(100 ∗ 0)
0 = K − 10
K = 10

(30)

Solution is
iL = 10(e−100t + 10 sin 100t− 10 cos 100t) (31)

What about a voltage in the curcuit? For resistor it is obvious:

uR = RiL = 10 ∗ 10(e−100t + 10 sin 100t− 10 cos 100t)
uR = 100e−100t + 100 sin 100t− 100 cos 100t
uL = u− uR = 200 sin 100t− 100e−100t − 100 sin 100t+ 100 cos 100t
uL = −100e−100t + 100 sin 100t+ 100 cos 100t

(32)

More illustrative than equations are graphs (for example using TKSL). Individual progresses
are very illustrative and show what is the resulting behaviour of the RL curcuit: amplitudes
and phase ratios of currents and voltages are changing according to an input harmonic signal.
What about an RS in a series (figure 13)?

Figure 13: RC curcuit

u′C = 1
C iC iC = u−uC

R
u′C = 1

CR(u− uC) uC(0) = 0
(33)

For specified values C = 0.002F,R = 20Ω, u = 5 sin 100t we have:

u′C = 1
0.002∗20(5 sin 100t− uc)

25u′C + uC = 5 sin 100t
(34)

Repeating the process above we get:

25λ+ 1 = 0
λ = − 1

25
λ = −0.04
⇒ UCH = Ke−0.04t

(35)
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We are expecting:

uCP = A sin 100t+B cos 100t
. . .
uC = uCH + uCP
uC(0) = 0⇒ K = . . .

(36)

Results in TKSL, for example.
What about a little more complicated curcuits?

Figure 14: RCL curcuit

Figure 15: A little more complicated curcuit

4 A stabilized harmonic state of a curcuit

Mathematical deductions are not very pleasant so the following technical and practical simpli-
facation was introduced:
After finishing a temporary changes in a curcuit (change of currents and voltages caused by
inductance and capacitance) and neglicting very small changes (from certain time t, expression
e−100t is very small), stabilized harmonic state is created for a harmonic signal, where aplitudes
and phases of individual quantities stay the same.
So Ohm’s law for capacitor

iC = C
duC
dt

(37)

and
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uC = UM sinωt (38)

can be rewritten for a stabilized harmonic state into:

iC = CUMω cosωt
iC = IM cosωt
iC = IM sin(ωt+ π

2 )
IM = UM

XC
, XC = 1

ωC

(39)

and actually a current in a capacitor is overrunning a voltage on a capacitor for 90◦:

Figure 16: A phase diagram for RC curcuit

Similarly for

uL = L
diL
dt

(40)

and

iL = IM sinωt (41)

we get

uL = LIMω sinωt
uL = UM cosωt
uL = UM sin(ωt+ π

2 )
UM = IMXL, XLωL

(42)
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Figure 17: A phase diagram for RL curcuit

So the situation for RLC (figure 14) is - figure 19.

Figure 18: Phase diagram for RLC curcuit

But difficult for more complicated curcuits:
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Figure 19: A complex curcuit

⇒ trasformation into complex numbers.
But is it legit to use complex numbers? In RL curcuit, for example (figure 12) ...
With help of ”overrunning” and ”slowing” we can build a famous representation of Pythago-

ras’s theorem (on x, y-axis) - figure 20.

Figure 20: Ilustrutation of transmission to complex numbers

If we take a horizontal line as a ”real” axis and a vertical one as a ”imaginary”, we have:

UR = RI
UL = jωLI
~U = ~UR + ~UL = RI = jωLI

(43)

It is a little more better than to ”draw” Pythagoras’s theorem, but if a curcuit is complex
(and possibly nonlinear), we will make more computations again.
So we go back to differential equations: RL curcuit (figure 12) was described by a differential
equation:
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0.1i′L + 10iL = 200 sin 100t (44)

This kind of equations can be solved by efficient programs (e.g. TKSL) - this equation is
rewritten into:

i′L =
1

0.1
(200 sin 100t− 10iL) (45)

Similarly for the rest of curcuits ⇒ just be able to describe a curcuit by a system of differ-
ential equations of the first order.

So what is easier: mathematics or TKSL?
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