Modern Taylor Series Method: Motivation examples in MATLAB

Václav Šátek et.al.

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 61266 Brno - Královo Pole

Václav Šátek, satek@fit.vutbr.cz

- \quad| BRNO FACULTY |
| :--- |
| UNIVERSITY OF INFORMATION |
| OF TECHNOLOGY TECHNOLOGY |
- Modern Taylor Series Method (MTSM)
- Example - circuit test
- Example - wave equation

Extremely Accurate Solutions of Systems of Differential Equations

The development project deals with extremely exact, stable and fast numerical solutions of systems of differential equations.

The project is based on a mathematical method which uses the Taylor series method for solving differential equations.

By a numerical solution of an ordinary differential equation

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

we understand the finding of a sequence:

$$
\begin{aligned}
& y\left(t_{1}\right)=y_{1} \\
& y\left(t_{2}\right)=y_{2} \\
& \ldots \\
& y\left(t_{n}\right)=y_{n}
\end{aligned}
$$

The best-known and most accurate method of calculating a new value of a numerical solution of a differential equation is to construct the Taylor series in the form

$$
y_{n+1}=y_{n}+h * f\left(t_{n}, y_{n}\right)+\frac{h^{2}}{2!} * f^{\prime}\left(t_{n}, y_{n}\right)+\cdots+\frac{h^{p}}{p!} * f^{[p-1]}\left(t_{n}, y_{n}\right)
$$

$$
\begin{array}{lc}
\begin{array}{ll}
y^{\prime}=f(t, y) & y(0)=y_{0} \\
y_{n+1}=y_{n} \\
+h \cdot y_{n}^{\prime}
\end{array} & O R D=1 \\
+\frac{h^{2}}{2!} \cdot y_{n}^{\prime \prime} & O R D=2 \\
+\frac{h^{3}}{3!} \cdot y_{n}^{\prime \prime \prime} & O R D=3
\end{array}
$$

$$
\begin{array}{lr}
y^{\prime}=f(t, y) & y(0)=y_{0} \\
y_{n+1}=y_{n} & \\
+h \cdot y_{n}^{\prime} & O R D=1
\end{array}
$$

Let us define ORD as the order of Taylor series method, respectively the highest Taylor series term used in computation

$$
\begin{aligned}
& y^{\prime}=f(t, y) \\
& y(0)=y_{0} \\
& y_{n+1}=y_{n} \\
& +h \cdot y_{n}^{\prime} \\
& +\frac{h^{2}}{2!} \cdot y_{n}^{\prime \prime} \\
& O R D=1 \\
& O R D=2
\end{aligned}
$$

$$
\begin{array}{lc}
\begin{array}{ll}
y^{\prime}=f(t, y) & y(0)=y_{0} \\
y_{n+1}=y_{n} \\
+h \cdot y_{n}^{\prime} & \\
+\frac{h^{2}}{2!} \cdot y_{n}^{\prime \prime} & \text { ORD }=1 \\
+\frac{h^{3}}{3!} \cdot y_{n}^{\prime \prime \prime} & O R D=2 \\
& \text { ORD }=3
\end{array}
\end{array}
$$

The Modern Taylor Series is based on a recurrent calculation of the Taylor series terms for each time interval. Thus the complicated calculation of higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor series term is numerically calculated.

$$
\begin{aligned}
& y_{n+1}=y_{n}+h \cdot y_{n}^{\prime}+\frac{h^{2}}{2!} \cdot y_{n}^{\prime \prime}+\frac{h^{3}}{3!} \cdot y_{n}^{\prime \prime \prime}+\cdots \\
& y_{n+1}=D Y 0_{n}+D Y 1_{n}+D Y 2_{n}+D Y 3_{n}+\cdots
\end{aligned}
$$

Very effective computation of linear systems of differential equations (only matrix-vector multiplications are needed for each Taylor series term calculation).

$$
\begin{aligned}
& \vec{y}=A \cdot \vec{y}, \quad \vec{y}(0)=D \vec{Y} 0_{0} \\
& \vec{y}_{n+1}=D \vec{Y} 0_{n}+D \vec{Y} 1_{n}+D \vec{Y} 2_{n}+D \vec{Y} 3_{n}+\cdots \\
& D \vec{Y} i_{n}=\frac{h}{i} \cdot A \cdot D \vec{Y}(i-1)_{n}, \quad i=1 \cdots k, \quad O R D=k
\end{aligned}
$$

An important part of the method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires.

- Lets consider the following functions
- $u=\sin (\omega t) \longrightarrow u^{\prime}=\omega v, u(0)=0$
- $v=\cos (\omega t) \longrightarrow v^{\prime}=-\omega u, v(0)=1$
- These functions can be represented by the following block scheme:

omega
- The behavior of the system depends on ω

- MATLAB ode23 solver (default settings)

Example 1 - circuit test, $\omega=1$

T FIT

Taylor series based method: Order

- MTSM (h=0.1)
- ORD ≈ 10 stable and fast solution

- $\omega=1$, tmax $=50, d t=0.1$

Method	Steps	$\\|$ Error $\\|$
ode23	245	0.0365738
ode45	277	0.00731112
MTSM	500	$6.99885 \mathrm{e}-13$

- Lets increase ω to 100

Example 1 - circuit test, $\omega=100$, ode (default settings) | \mathbb{T} FIT

Taylor series based method: Order

- MTSM (h=0.1)
- ORD ≈ 47
stable and fast solution

- Matlab solvers (with default settings) don't get accurate solution
- Let's try to increase the precision of the MATLAB solvers

Example 1 - circuit test, $\omega=100$, RelTol $=10^{-10}$

- $\omega=100$, tmax $=50$, RelTol $=10^{-10}$

Method	Time $[s]$	Steps	$\|\mid$ Error $\\|$
ode23	153	3573706	$8.12405 \mathrm{e}-07$
ode45	15	888829	$8.93866 \mathrm{e}-08$
MTSM	0.102145	500	$4.88108 \mathrm{e}-10$

- Hyperbolic partial diff.eq. (1D)

$$
\frac{\partial^{2} y(x, t)}{\partial t^{2}}-\frac{\partial^{2} y(x, t)}{\partial x^{2}}=0
$$

- Dirichlet boundary conditions:

$$
y(0, t)=y(L, t)=0, \quad 0 \leq t \leq \operatorname{Tmax}
$$

$$
\begin{aligned}
& 0 \leq x \leq L, L=1 \\
& 0 \leq t \leq \operatorname{Tmax}
\end{aligned}
$$

- Initial conditions:

$$
\begin{aligned}
y(x, 0) & =\sin (\pi x), \quad 0 \leq x \leq L \\
\frac{\partial y(x, 0)}{\partial t} & =0
\end{aligned}
$$

- Hyperbolic partial diff.eq. (1D)

$$
\frac{\partial^{2} y(x, t)}{\partial t^{2}}-\frac{\partial^{2} y(x, t)}{\partial x^{2}}=0
$$

- Dirichlet boundary conditions:

$$
y(0, t)=y(L, t)=0, \quad 0 \leq t \leq \operatorname{Tmax}
$$

$$
\begin{aligned}
& 0 \leq x \leq L, L=1 \\
& 0 \leq t \leq \operatorname{Tmax}
\end{aligned}
$$

- Initial conditions:

$$
\begin{aligned}
y(x, 0) & =\sin (\pi x), \quad 0 \leq x \leq L \\
\frac{\partial y(x, 0)}{\partial t} & =0
\end{aligned}
$$

Analytic solution:

$$
\begin{aligned}
y & =\sin (\pi x) \cos (\pi t) \\
\frac{\partial y}{\partial t} & =-\pi \sin (\pi x) \sin (\pi t) \\
\frac{\partial^{2} y}{\partial t^{2}} & =-\pi^{2} \sin (\pi x) \cos (\pi t)
\end{aligned}
$$

- Central difference formula for $y_{k}=y_{2}$

$$
\begin{aligned}
y_{k-2} & =y_{k}+(-2 h) y_{k}^{\prime}+\frac{(-2 h)^{2}}{2!} y_{k}^{\prime \prime}+\frac{(-2 h)^{3}}{3!} y_{k}^{\prime \prime \prime}+\frac{(-2 h)^{4}}{4!} y_{k}^{\prime \prime \prime \prime} \\
y_{k-1} & =y_{k}+(-h) y_{k}^{\prime}+\frac{(-h)^{2}}{2!} y_{k}^{\prime \prime}+\frac{(-h)^{3}}{3!} y_{k}^{\prime \prime \prime}+\frac{(-h)^{4}}{4!} y_{k}^{\prime \prime \prime \prime} \\
y_{k+1} & =y_{k}+h y_{k}^{\prime}+\frac{h^{2}}{2!} y_{k}^{\prime \prime}+\frac{h^{3}}{3!} y_{k}^{\prime \prime \prime}+\frac{h^{4}}{4!} y_{k}^{\prime \prime \prime \prime}, \\
y_{k+2} & =y_{k}+2 h y_{k}^{\prime}+\frac{(2 h)^{2}}{2!} y_{k}^{\prime \prime}+\frac{(2 h)^{3}}{3!} y_{k}^{\prime \prime \prime}+\frac{(2 h)^{4}}{4!} y_{k}^{\prime \prime \prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
D Y 1 \\
D Y 2 \\
D Y 3 \\
D Y 4
\end{array}\right)=\left(\begin{array}{cccc}
-2 & (-2)^{2} & (-2)^{3} & (-2)^{4} \\
-1 & (-1)^{2} & (-1)^{3} & \left(-14^{4}\right. \\
1 & 1^{2} & 1^{3} & 1^{4} \\
2 & 2^{2} & 2^{3} & 2^{4}
\end{array}\right)^{-1} \cdot\left(\begin{array}{l}
y_{k-2}-y_{k} \\
y_{k-1}-y_{k} \\
y_{k+1}-y_{k} \\
y_{k+2}-y_{k}
\end{array}\right) \\
& y_{k}{ }^{\prime \prime}=D Y 2_{k}\left(y_{k-2}, y_{k-1}, y_{k}, y_{k+1}, y_{k+2}\right) \cdot \frac{2}{h^{2}}
\end{aligned}
$$

$$
\vec{y}^{\prime \prime}=A_{\text {approx }} \cdot \vec{y}
$$

$$
\left(\begin{array}{l}
D Y 1 \\
D Y 2 \\
D Y 3 \\
D Y 4
\end{array}\right)=\left(\begin{array}{cccc}
-2 & (-2)^{2} & (-2)^{3} & (-2)^{4} \\
-1 & (-1)^{2} & (-1)^{3} & (-1)^{4} \\
1 & 1^{2} & 1^{3} & 1^{4} \\
2 & 2^{2} & 2^{3} & 2^{4}
\end{array}\right)^{-1} \cdot\left(\begin{array}{l}
y_{k-2}-y_{k} \\
y_{k-1}-y_{k} \\
y_{k+1}-y_{k} \\
y_{k+2}-y_{k}
\end{array}\right)
$$

$$
y_{k}^{\prime \prime}=D Y 2_{k}\left(y_{k-2}, y_{k-1}, y_{k}, y_{k+1}, y_{k+2}\right) \cdot \frac{2}{h^{2}}
$$

$$
\vec{y}^{\prime \prime}=A_{\text {approx }} \cdot \vec{y} \quad \| \text { Error }_{\text {space }}\|=\| \frac{\partial^{2} \vec{y}}{\partial x^{2}}-\vec{y}^{\prime \prime} \|
$$

- Solution in time - initial value problem

$$
\begin{aligned}
& \overrightarrow{u y}^{\prime}=\mathrm{A} \cdot \overrightarrow{u y}, \quad \overrightarrow{u y}(x, 0)=(0, \sin (\pi x))^{T} \\
& A=\left[\begin{array}{cc}
\mathbf{0} & A_{\text {approx }} \\
I & \mathbf{0}
\end{array}\right]
\end{aligned}
$$

- Solution in time - initial value problem

$$
\begin{array}{cc}
\overrightarrow{u y}^{\prime}=\mathrm{A} \cdot \overrightarrow{u y}, & \overrightarrow{u y}(x, 0)=(0, \sin (\pi x))^{T} \\
A=\left[\begin{array}{cc}
\mathbf{0} & A_{\text {approx }} \\
I & \mathbf{0}
\end{array}\right] & \\
& \| \text { Error }_{\text {position }}\|=\| \vec{y}_{\text {anal }}-\vec{y} \| \\
& \| \text { Error }_{\text {velocity }}\|=\| \frac{\partial \vec{y}}{\partial t}-\vec{u} \|
\end{array}
$$

Numerical experiments:

- Fixed number of cuts in space domain $N_{\text {cuts }}=10$ ($h=0.1$)
- Time of simulation $T_{\max }=10000$
- Compare MTSM and MATLAB ode solvers
- Note: fully explicit scheme was used -> for spatial approximation and for solution in time
- 3-point approximation of $\frac{\partial^{2} \vec{y}}{\partial x^{2}}$

- 5-point approximation of $\frac{\partial^{2} \vec{y}}{\partial x^{2}}$

- 7-point approximation of $\frac{\partial^{2} \vec{y}}{\partial x^{2}}$

- 9-point approximation of $\frac{\partial^{2} \vec{y}}{\partial x^{2}}$

- 11-point approximation of $\frac{\partial^{2} \vec{y}}{\partial x^{2}}$

- 3-point approximation

Absolute error velocity ode23

$\|$ Error $_{\text {position }} \|_{\text {ode23 }}=1.67$
$\|$ Error $_{\text {velocity }} \|_{\text {ode } 23}=5.25$

Absolute error velocity Taylor

$\|$ Error $_{\text {position }} \|_{\text {MTSM }}=2$
$\|$ Error $_{\text {velocity }} \|_{\text {MTSM }}=6.27$

- 3-point approximation

Taylor solver position of middle point

- 3-point approximation

- MTSM ($d t=0.1$)
- ORD ≈ 30

stable and fast solution

- 5-point approximation

I Example 2 - error in time domain

- 7-point approximation

Absolute error velocity ode23

$\|$ Error $_{\text {position }} \|_{\text {ode } 23}=1$
$\|$ Error $_{\text {velocity }} \|_{\text {ode } 23}=3.14$

$\|$ Error $_{\text {position }} \|_{M T S M}=8.8 \cdot 10^{-5}$
$\|$ Error $_{\text {velocity }} \|_{M T S M}=2.8 \cdot 10^{-4}$

I Example 2 - error in time domain

- 9-point approximation

$\left\|E_{\text {Error }}^{\text {position }}\right\|_{\text {MTSM }}=1.4 \cdot 10^{-6}$
$\|$ Error $_{\text {velocity }} \|_{M T S M}=4.5 \cdot 10^{-6}$

- 11-point approximation

$\|$ Error $_{\text {position }} \|_{\text {ode } 23}=1$
$\|$ Error $_{\text {velocity }} \|_{\text {ode } 23}=3.14$

$$
\| \text { Error }_{\text {position }} \|_{M T S M}=2.5 \cdot 10^{-8}
$$

$$
\| \text { Error }_{\text {velocity }} \|_{M T S M}=8 \cdot 10^{-8}
$$

- 5-point approximation (ode45, $\mathrm{Tol}=10^{-6}$)

Absolute error velocity ode45

$$
\begin{aligned}
& \| \text { Error }_{\text {position }} \|_{\text {ode } 45}=0.007 \\
& \| \text { Error }_{\text {velocity }} \|_{\text {ode } 45}=0.023
\end{aligned}
$$

I Example 2 - stable solution in MATLAB

- 5-point approximation (ode45, $\mathrm{Tol}=10^{-6}$)

$$
T_{\max }=100
$$

| Method | Time [s] | Steps | \||Error ${ }_{\text {position }}$ II | \||Error ${ }_{\text {velocity }}$ \\| |
| :---: | :---: | :---: | :---: | :---: |
| ode45 | 12.8 | 6364 | 0.007 | 0.022 |
| MTSM | 0.07 | 200 | 0.007 | 0.022 |

- 5-point approximation (ode45, $\mathrm{Tol}=10^{-6}$)

$$
T_{\max }=100
$$

| Method | Time $[\mathrm{s}]$ | Steps | $\\|$ \|Error position I | \||Error $_{\text {velocity }} \\|$ |
| :--- | :--- | :--- | :--- | :--- |
| ode45 | 12.8 | 6364 | 0.007 | 0.022 |
| MTSM | 0.07 | 200 | 0.007 | 0.022 |

$$
T_{\max }=1000
$$

Method	Time $[\mathrm{s}]$	Steps	$\\|$ Error $_{\text {position }} \\|$	$\\|$ Error $_{\text {velocity }} \\|$
ode45	66012.4 $(18.3 \mathrm{~h})$	83756	0.007	0.023
MTSM	0.863	2000	0.007	0.022

- Implementation of MTSM in MATLAB for linear systems of ODEs - fast and stable solution
- Next step will be implementation of nonlinear systems of ODEs in MATLAB using matrix-vector computation in MTSM

Thank you for your attention!

