
Václav Šátek et.al.

Modern Taylor Series Method:

Motivation examples in MATLAB

Brno University of Technology, Faculty of Information Technology

Božetěchova 1/2, 612 66 Brno - Královo Pole

Václav Šátek, satek@fit.vutbr.cz

TU Vienna, 25.04.2017

• Modern Taylor Series Method (MTSM)

• Example – circuit test

• Example – wave equation

MTSM and MATLAB ode solvers comparisons 2

Overview

Extremely Accurate Solutions of Systems of

Differential Equations

The development project deals with extremely exact,

stable and fast numerical solutions of systems of

differential equations.

MTSM and MATLAB ode solvers comparisons 3

Modern Taylor Series Method (MTSM)

The project is based on a mathematical method which

uses the Taylor series method for solving differential

equations.

MTSM and MATLAB ode solvers comparisons 4

Modern Taylor Series Method (MTSM)

By a numerical solution of an ordinary differential

equation

we understand the finding of a sequence:

MTSM and MATLAB ode solvers comparisons 5

Introduction

00)(),,(ytyytfy

nn yty

yty

yty

)(

,

,)(

,)(

22

11

The best-known and most accurate method of calculating

a new value of a numerical solution of a differential

equation is to construct the Taylor series in the form

MTSM and MATLAB ode solvers comparisons 6

Introduction

),(
!

),(
!2

),(]1[
2

1 nn

p
p

nnnnnn ytf
p

h
ytf

h
ytfhyy

MTSM and MATLAB ode solvers comparisons 7

Taylor Series Method

),(ytfy
0)0(yy

3
!3

2
!2

1

3

2

1

ORDy
h

ORDy
h

ORDyh

yy

n

n

n

nn

Let us define ORD as the order of Taylor series method,

respectively the highest Taylor series term used in

computation

MTSM and MATLAB ode solvers comparisons 8

Taylor Series Method

),(ytfy
0)0(yy

1

1

ORDyh

yy

n

nn

MTSM and MATLAB ode solvers comparisons 9

Taylor Series Method

),(ytfy
0)0(yy

2
!2

1

2

1

ORDy
h

ORDyh

yy

n

n

nn

MTSM and MATLAB ode solvers comparisons 10

Taylor Series Method

),(ytfy
0)0(yy

3
!3

2
!2

1

3

2

1

ORDy
h

ORDy
h

ORDyh

yy

n

n

n

nn

The Modern Taylor Series is based on a recurrent

calculation of the Taylor series terms for each time

interval. Thus the complicated calculation of higher order

derivatives (much criticised in the literature) need not be

performed but rather the value of each Taylor series term

is numerically calculated.

MTSM and MATLAB ode solvers comparisons 11

Modern Taylor Series Method (MTSM)

nnnnn

nnnnn

DYDYDYDYy

y
h

y
h

yhyy

3210

!3!2

1

32

1

Very effective computation of linear systems of differential

equations (only matrix-vector multiplications are

needed for each Taylor series term calculation).

MTSM and MATLAB ode solvers comparisons 12

Modern Taylor Series Method (MTSM)

kORDkiiYDA
i

h
iYD

YDYDYDYDy

YDyyAy

nn

nnnnn

,1,)1(

3210

0)0(,'

1

0

An important part of the method is an automatic

integration order setting, i.e. using as many Taylor series

terms as the defined accuracy requires.

MTSM and MATLAB ode solvers comparisons 13

Modern Taylor Series Method (MTSM)

• Lets consider the following functions

• 𝑢 = sin(𝜔𝑡) 𝑢′ = 𝜔 𝑣, 𝑢 0 = 0

• 𝑣 = cos 𝜔𝑡 𝑣′ = −𝜔 𝑢, 𝑣 0 = 1

• These functions can be represented by the following

block scheme:

• The behavior of the system depends on 𝜔

MTSM and MATLAB ode solvers comparisons 14

Example 1 – circuit test

MTSM and MATLAB ode solvers comparisons 15

Example 1 – circuit test, 𝜔 = 1

• MATLAB ode23 solver (default settings)

MTSM and MATLAB ode solvers comparisons 16

Example 1 – circuit test, 𝜔 = 1

• MTSM (h=0.1)

• ORD≈10

stable and fast solution

• 𝜔 = 1, 𝑡𝑚𝑎𝑥 = 50, 𝑑𝑡 = 0.1

• Lets increase 𝜔 to 100

MTSM and MATLAB ode solvers comparisons 17

Example 1 – circuit test, 𝜔 = 1

Method Steps ||Error||

ode23 245 0.0365738

ode45 277 0.00731112

MTSM 500 6.99885e-13

MTSM and MATLAB ode solvers comparisons 18

Example 1 – circuit test, 𝜔 = 100, ode (default settings)

MTSM and MATLAB ode solvers comparisons 19

Example 1 – circuit test, 𝜔 = 100

• MTSM (h=0.1)

• ORD≈47

stable and fast solution

• Matlab solvers (with default settings) don’t get accurate

solution

• Let’s try to increase the precision of the MATLAB

solvers

MTSM and MATLAB ode solvers comparisons 20

Example 1 – circuit test, 𝜔 = 100

MTSM and MATLAB ode solvers comparisons 21

Example 1 – circuit test, 𝜔 = 100, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−10

• 𝜔 = 100, 𝑡𝑚𝑎𝑥 = 50, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−10

MTSM and MATLAB ode solvers comparisons 22

Example 1 – circuit test, 𝜔 = 100, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−10

Method Time [s] Steps ||Error||

ode23 153 3 573 706 8.12405e-07

ode45 15 888 829 8.93866e-08

MTSM 0.102145 500 4.88108e-10

• Hyperbolic partial diff.eq. (1D)

• Dirichlet boundary conditions: 0 ≤ 𝑥 ≤ 𝐿, 𝐿 = 1

0 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

• Initial conditions:

MTSM and MATLAB ode solvers comparisons 23

Example 2 – wave equation

• Hyperbolic partial diff.eq. (1D)

• Dirichlet boundary conditions: 0 ≤ 𝑥 ≤ 𝐿, 𝐿 = 1

0 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

• Initial conditions: Analytic solution:

MTSM and MATLAB ode solvers comparisons 24

Example 2 – wave equation

MTSM and MATLAB ode solvers comparisons 25

Space discretization – Finite difference method

• Central difference formula for 𝑦𝑘 = 𝑦2

𝑦𝑘′′ = 𝐷𝑌2𝑘(𝑦𝑘−2, 𝑦𝑘−1, 𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2) ⋅
2

ℎ2

 𝑦′′ = 𝐴𝑎𝑝𝑝𝑟𝑜𝑥 ⋅ 𝑦

MTSM and MATLAB ode solvers comparisons 26

Space discretization – Finite difference method

𝑦𝑘′′ = 𝐷𝑌2𝑘(𝑦𝑘−2, 𝑦𝑘−1, 𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2) ⋅
2

ℎ2

 𝑦′′ = 𝐴𝑎𝑝𝑝𝑟𝑜𝑥 ⋅ 𝑦 𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 =
𝜕2𝑦

𝜕𝑥2 − 𝑦′′

MTSM and MATLAB ode solvers comparisons 27

Space discretization – Finite difference method

• Solution in time – initial value problem

𝑢𝑦′ = A ⋅ 𝑢𝑦, 𝑢𝑦 𝑥, 0 = 0, sin 𝜋𝑥 𝑇

𝐴 =
𝟎 𝐴𝑎𝑝𝑝𝑟𝑜𝑥

𝐼 𝟎

MTSM and MATLAB ode solvers comparisons 28

Example 2 – time solution

• Solution in time – initial value problem

𝑢𝑦′ = A ⋅ 𝑢𝑦, 𝑢𝑦 𝑥, 0 = 0, sin 𝜋𝑥 𝑇

𝐴 =
𝟎 𝐴𝑎𝑝𝑝𝑟𝑜𝑥

𝐼 𝟎

MTSM and MATLAB ode solvers comparisons 29

Example 2 – time solution

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑦𝑎𝑛𝑎𝑙 − 𝑦

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝜕 𝑦

𝜕𝑡
− 𝑢

Numerical experiments:

• Fixed number of cuts in space domain 𝑁𝑐𝑢𝑡𝑠 = 10

(ℎ = 0.1)

• Time of simulation 𝑇𝑚𝑎𝑥 = 10 000

• Compare MTSM and MATLAB ode solvers

• Note: fully explicit scheme was used -> for spatial

approximation and for solution in time

MTSM and MATLAB ode solvers comparisons 30

Example 2 – numerical experiments

• 3-point approximation of
𝜕2𝑦

𝜕𝑥2

MTSM and MATLAB ode solvers comparisons 31

Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 = 0.0809 ≈ 10−1

• 5-point approximation of
𝜕2𝑦

𝜕𝑥2

MTSM and MATLAB ode solvers comparisons 32

Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 = 0.0011 ≈ 10−3

• 7-point approximation of
𝜕2𝑦

𝜕𝑥2

MTSM and MATLAB ode solvers comparisons 33

Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 ≈ 10−5

• 9-point approximation of
𝜕2𝑦

𝜕𝑥2

MTSM and MATLAB ode solvers comparisons 34

Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 ≈ 10−7

• 11-point approximation of
𝜕2𝑦

𝜕𝑥2

MTSM and MATLAB ode solvers comparisons 35

Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 ≈ 10−9

• 3-point approximation

MTSM and MATLAB ode solvers comparisons 36

Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1.67

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 5.25

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 2

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 6.27

• 3-point approximation

MTSM and MATLAB ode solvers comparisons 37

Example 2 – error in time domain

• 3-point approximation

MTSM and MATLAB ode solvers comparisons 38

Example 2 – error in time domain

• MTSM (dt = 0.1)

• ORD≈30

stable and fast solution

• 5-point approximation

MTSM and MATLAB ode solvers comparisons 39

Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 7 ⋅ 10−3

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 2.2 ⋅ 10−2

• 7-point approximation

MTSM and MATLAB ode solvers comparisons 40

Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 8.8 ⋅ 10−5

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 2.8 ⋅ 10−4

• 9-point approximation

MTSM and MATLAB ode solvers comparisons 41

Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 1.4 ⋅ 10−6

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 4.5 ⋅ 10−6

• 11-point approximation

MTSM and MATLAB ode solvers comparisons 42

Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 2.5 ⋅ 10−8

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 8 ⋅ 10−8

• 5-point approximation (ode45, 𝑇𝑜𝑙 = 10−6)

MTSM and MATLAB ode solvers comparisons 43

Example 2 – stable solution in MATLAB

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒45
= 0.007

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒45
= 0.023

• 5-point approximation (ode45, 𝑇𝑜𝑙 = 10−6)

𝑇𝑚𝑎𝑥 = 100

MTSM and MATLAB ode solvers comparisons 44

Example 2 – stable solution in MATLAB

Method Time [s] Steps ||Errorposition|| ||Errorvelocity||

ode45 12.8 6364 0.007 0.022

MTSM 0.07 200 0.007 0.022

• 5-point approximation (ode45, 𝑇𝑜𝑙 = 10−6)

𝑇𝑚𝑎𝑥 = 100

𝑇𝑚𝑎𝑥 = 1000

MTSM and MATLAB ode solvers comparisons 45

Example 2 – stable solution in MATLAB

Method Time [s] Steps ||Errorposition|| ||Errorvelocity||

ode45 12.8 6364 0.007 0.022

MTSM 0.07 200 0.007 0.022

Method Time [s] Steps ||Errorposition|| ||Errorvelocity||

ode45 66012.4

(18.3h)

83756 0.007 0.023

MTSM 0.863 2000 0.007 0.022

• Implementation of MTSM in MATLAB for linear

systems of ODEs - fast and stable solution

• Next step will be implementation of nonlinear systems

of ODEs in MATLAB using matrix-vector computation

in MTSM

MTSM and MATLAB ode solvers comparisons 46

Conclusion

Thank you for your attention!

