Modern Taylor Series Method: Motivation examples in MATLAB

Václav Šátek et.al.

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Václav Šátek, satek@fit.vutbr.cz

TU Vienna, 25.04.2017

Overview

- Modern Taylor Series Method (MTSM)
- Example circuit test
- Example wave equation

Extremely Accurate Solutions of Systems of Differential Equations

The development project deals with extremely exact, stable and fast numerical solutions of systems of differential equations.

The project is based on a mathematical method which uses the Taylor series method for solving differential equations.

Introduction

By a numerical solution of an ordinary differential equation

$$y' = f(t, y), \quad y(t_0) = y_0$$

we understand the finding of a sequence: $y(t_1) = y_1,$ $y(t_2) = y_2,$...,

$$\mathbf{y}(t_n) = \mathbf{y}_n$$

The best-known and most accurate method of calculating a new value of a numerical solution of a differential equation is to construct the Taylor series in the form

$$y_{n+1} = y_n + h * f(t_n, y_n) + \frac{h^2}{2!} * f'(t_n, y_n) + \dots + \frac{h^p}{p!} * f^{[p-1]}(t_n, y_n)$$

Let us define *ORD* as the order of Taylor series method, respectively the highest Taylor series term used in computation

ORD = 2

- - ORD = 2

ORD = 3

MTSM and MATLAB ode solvers comparisons 10

The Modern Taylor Series is based on a **recurrent calculation of the Taylor series terms** for each time interval. Thus the complicated calculation of higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor series term is numerically calculated.

$$y_{n+1} = y_n + h \cdot y'_n + \frac{h^2}{2!} \cdot y''_n + \frac{h^3}{3!} \cdot y'''_n + \cdots$$
$$y_{n+1} = DY0_n + DY1_n + DY2_n + DY3_n + \cdots$$

Very effective computation of linear systems of differential equations (only **matrix-vector multiplications** are needed for each Taylor series term calculation).

$$\vec{y}' = A \cdot \vec{y}, \quad \vec{y}(0) = D\vec{Y}0_0$$

$$\vec{y}_{n+1} = D\vec{Y}0_n + D\vec{Y}1_n + D\vec{Y}2_n + D\vec{Y}3_n + \cdots$$

$$D\vec{Y}i_n = \frac{h}{i} \cdot A \cdot D\vec{Y}(i-1)_n, \quad i = 1 \cdots k, \quad ORD = k$$

An important part of the method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires.

Example 1 – circuit test

- · Lets consider the following functions
 - $u = \sin(\omega t) \longrightarrow u' = \omega v, \qquad u(0) = 0$
 - $v = \cos(\omega t) \longrightarrow v' = -\omega u, \quad v(0) = 1$
- These functions can be represented by the following block scheme:

- The behavior of the system depends on $\boldsymbol{\omega}$

MATLAB ode23 solver (default settings)

16

• $\omega = 1, tmax = 50, dt = 0.1$

Method	Steps	Error
ode23	245	0.0365738
ode45	277	0.00731112
MTSM	500	6.99885e-13

• Lets increase ω to 100

Example 1 – circuit test, $\omega = 100$, ode (default settings)

19

- Matlab solvers (with default settings) don't get accurate solution
- Let's try to increase the precision of the MATLAB solvers

Example 1 – circuit test, $\omega = 100$, $RelTol = 10^{-10}$

MTSM and MATLAB ode solvers comparisons

IT.

Example 1 – circuit test, $\omega = 100$, $RelTol = 10^{-10}$

• $\omega = 100$, tmax = 50, $RelTol = 10^{-10}$

Method	Time [s]	Steps	Error
ode23	153	3 573 706	8.12405e-07
ode45	15	888 829	8.93866e-08
MTSM	0.102145	500	4.88108e-10

Example 2 – wave equation

- Hyperbolic partial diff.eq. (1D) $\frac{\partial^2 y(x,t)}{\partial t^2} - \frac{\partial^2 y(x,t)}{\partial x^2} = 0$
- Dirichlet boundary conditions:

 $y(0,t) = y(L,t) = 0, \ 0 \le t \le Tmax$

• Initial conditions:

$$y(x,0) = \sin(\pi x), \ 0 \le x \le L$$
$$\frac{\partial y(x,0)}{\partial t} = 0$$

 $\begin{array}{ll} 0 & \leq x \leq L, \ L = 1 \\ 0 & \leq t \leq Tmax \end{array}$

Example 2 – wave equation

- Hyperbolic partial diff.eq. (1D) $\frac{\partial^2 y(x,t)}{\partial t^2} - \frac{\partial^2 y(x,t)}{\partial x^2} = 0$
- Dirichlet boundary conditions:

 $y(0,t)=y(L,t)=0\,,\ 0\leq t\leq Tmax$

Initial conditions:

$$y(x,0) = \sin(\pi x), \ 0 \le x \le L$$
$$\frac{\partial y(x,0)}{\partial t} = 0$$

Analytic solution:

$$y = \sin(\pi x)\cos(\pi t)$$

$$\frac{\partial y}{\partial t} = -\pi \sin(\pi x)\sin(\pi t)$$

$$\frac{\partial^2 y}{\partial t^2} = -\pi^2 \sin(\pi x)\cos(\pi t)$$

 $\begin{array}{l} 0 \leq x \leq L, \ L = 1 \\ 0 \leq t \leq Tmax \end{array}$

Space discretization – Finite difference method

• Central difference formula for $y_k = y_2$

$$y_{k-2} = y_k + (-2h)y'_k + \frac{(-2h)^2}{2!}y''_k + \frac{(-2h)^3}{3!}y'''_k + \frac{(-2h)^4}{4!}y'''_k,$$

$$y_{k-1} = y_k + (-h)y'_k + \frac{(-h)^2}{2!}y''_k + \frac{(-h)^3}{3!}y'''_k + \frac{(-h)^4}{4!}y'''_k,$$

$$y_{k+1} = y_k + hy'_k + \frac{h^2}{2!}y''_k + \frac{h^3}{3!}y'''_k + \frac{h^4}{4!}y''''_k,$$

$$y_{k+2} = y_k + 2hy'_k + \frac{(2h)^2}{2!}y''_k + \frac{(2h)^3}{3!}y'''_k + \frac{(2h)^4}{4!}y''''_k.$$

FIT

$$\begin{pmatrix} DY1\\DY2\\DY3\\DY4 \end{pmatrix} = \begin{pmatrix} -2 & (-2)^2 & (-2)^3 & (-2)^4\\-1 & (-1)^2 & (-1)^3 & (-1)^4\\1 & 1^2 & 1^3 & 1^4\\2 & 2^2 & 2^3 & 2^4 \end{pmatrix}^{-1} \cdot \begin{pmatrix} y_{k-2} - y_k\\y_{k-1} - y_k\\y_{k+1} - y_k\\y_{k+2} - y_k \end{pmatrix}$$

$$y_k'' = DY2_k(y_{k-2}, y_{k-1}, y_k, y_{k+1}, y_{k+2}) \cdot \frac{2}{h^2}$$

 $\vec{y}^{\prime\prime} = A_{approx} \cdot \vec{y}$

$$\begin{pmatrix} DY1\\DY2\\DY3\\DY4 \end{pmatrix} = \begin{pmatrix} -2 & (-2)^2 & (-2)^3 & (-2)^4\\ -1 & (-1)^2 & (-1)^3 & (-1)^4\\1 & 1^2 & 1^3 & 1^4\\2 & 2^2 & 2^3 & 2^4 \end{pmatrix}^{-1} \cdot \begin{pmatrix} y_{k-2} - y_k\\y_{k-1} - y_k\\y_{k+1} - y_k\\y_{k+2} - y_k \end{pmatrix}$$

$$y_{k}^{\prime\prime} = DY2_{k}(y_{k-2}, y_{k-1}, y_{k}, y_{k+1}, y_{k+2}) \cdot \frac{2}{h^{2}}$$

 $\vec{y}'' = A_{approx} \cdot \vec{y}$ $\|Error_{space}\| = \|\frac{\partial^2 \vec{y}}{\partial x^2} - \vec{y}''\|$

Example 2 – time solution

• Solution in time – initial value problem

$$\overrightarrow{uy'} = \mathbf{A} \cdot \overrightarrow{uy}, \qquad \overrightarrow{uy}(x,0) = (0,\sin(\pi x))^T$$

$$A = \begin{bmatrix} \mathbf{0} & A_{approx} \\ I & \mathbf{0} \end{bmatrix}$$

FIT

Example 2 – time solution

• Solution in time – initial value problem

$$\overrightarrow{uy'} = \mathbf{A} \cdot \overrightarrow{uy}, \qquad \overrightarrow{uy}(x,0) = (0,\sin(\pi x))^T$$

$$A = \begin{bmatrix} \mathbf{0} & A_{approx} \\ I & \mathbf{0} \end{bmatrix}$$

$$\begin{aligned} \|Error_{position}\| &= \|\vec{y}_{anal} - \vec{y}\| \\ \|Error_{velocity}\| &= \left\|\frac{\partial \vec{y}}{\partial t} - \vec{u}\right\| \end{aligned}$$

IT.

Numerical experiments:

- Fixed number of cuts in space domain $N_{cuts} = 10$ (h = 0.1)
- Time of simulation $T_{max} = 10\ 000$
- Compare MTSM and MATLAB ode solvers
- Note: fully explicit scheme was used -> for spatial approximation and for solution in time

• 3-point approximation of $\frac{\partial^2 \vec{y}}{\partial x^2}$

• 5-point approximation of $\frac{\partial^2 \vec{y}}{\partial x^2}$

• 7-point approximation of $\frac{\partial^2 \vec{y}}{\partial x^2}$

• 9-point approximation of $\frac{\partial^2 \vec{y}}{\partial x^2}$

T FIT

• 11-point approximation of $\frac{\partial^2 \vec{y}}{\partial x^2}$

 $\left\| Error_{position} \right\|_{ode23} = 1.67$

$$\left\| Error_{velocity} \right\|_{ode23} = 5.25$$

$$\left\| Error_{position} \right\|_{MTSM} = 2$$

$$\left\| Error_{velocity} \right\|_{MTSM} = 6.27$$

3-point approximation

ľ	Taylor solver position of middle point											
	0.5	1111	uuuu	*****				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	0.5											
	0											
	-0.5											
	-1	Ш	шш		uuuu					uuuu	шш	1111
l	()	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000

- MTSM (*dt* = 0.1)
- ORD≈30

stable and fast solution

$$\left\| Error_{position} \right\|_{ode_{23}} = 1$$

$$\left\| Error_{velocity} \right\|_{ode23} = 3.14$$

 $\left\| Error_{position} \right\|_{MTSM} = 7 \cdot 10^{-3}$

 $\left\| Error_{velocity} \right\|_{MTSM} = 2.2 \cdot 10^{-2}$

 $\left\| Error_{position} \right\|_{ode23} = 1$

$$\left\| Error_{velocity} \right\|_{ode23} = 3.14$$

$$\left\| Error_{velocity} \right\|_{ode23} = 3.14$$

MTSM and MATLAB ode solvers comparisons 42

Example 2 – stable solution in MATLAB

• 5-point approximation (ode45, $Tol = 10^{-6}$)

 $\left\| Error_{position} \right\|_{ode45} = 0.007$

 $\left\| Error_{velocity} \right\|_{ode45} = 0.023$

MTSM and MATLAB ode solvers comparisons 43

Example 2 – stable solution in MATLAB

T FIT

• 5-point approximation (ode45, $Tol = 10^{-6}$)

$$T_{max}=100$$

Method	Time [s]	Steps	Error _{position}	Error _{velocity}
ode45	12.8	6364	0.007	0.022
MTSM	0.07	200	0.007	0.022

Example 2 – stable solution in MATLAB

FIT

• 5-point approximation (ode45, $Tol = 10^{-6}$)

$$T_{max}=100$$

Method	Time [s]	Steps	Error _{position}	Error _{velocity}
ode45	12.8	6364	0.007	0.022
MTSM	0.07	200	0.007	0.022

 $T_{max} = 1000$

Method	Time [s]	Steps	Error _{position}	Error _{velocity}
ode45	66012.4 (18.3h)	83756	0.007	0.023
MTSM	0.863	2000	0.007	0.022

- Implementation of MTSM in MATLAB for linear systems of ODEs - fast and stable solution
- Next step will be implementation of nonlinear systems of ODEs in MATLAB using matrix-vector computation in MTSM

Thank you for your attention!