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• Modern Taylor Series Method (MTSM)

• Example – circuit test

• Example – wave equation
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Overview



Extremely Accurate Solutions of Systems of

Differential Equations

The development project deals with extremely exact, 

stable and fast numerical solutions of systems of

differential equations.
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Modern Taylor Series Method (MTSM)



The project is based on a mathematical method which

uses the Taylor series method for solving differential

equations. 
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Modern Taylor Series Method (MTSM)



By a numerical solution of an ordinary differential 

equation

we understand the finding of a sequence:
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Introduction
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The best-known and most accurate method of calculating 

a new value of a numerical solution of a differential 

equation is to construct the Taylor series in the form
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Introduction
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Taylor Series Method

),( ytfy 
0)0( yy 



3
!3

2
!2

1

3

2

1









ORDy
h

ORDy
h

ORDyh

yy

n

n

n

nn



Let us define ORD as the order of Taylor series method, 

respectively the highest Taylor series term used in 

computation 
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Taylor Series Method
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Taylor Series Method
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Taylor Series Method
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The Modern Taylor Series is based on a recurrent 

calculation of the Taylor series terms for each time 

interval. Thus the complicated calculation of higher order 

derivatives (much criticised in the literature) need not be 

performed but rather the value of each Taylor series term 

is numerically calculated.
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Modern Taylor Series Method (MTSM)













nnnnn

nnnnn

DYDYDYDYy

y
h

y
h

yhyy

3210

!3!2

1

32

1



Very effective computation of linear systems of differential 

equations (only matrix-vector multiplications are 

needed for each Taylor series term calculation).
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Modern Taylor Series Method (MTSM)
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An important part of the method is an automatic

integration order setting, i.e. using as many Taylor series

terms as the defined accuracy requires. 
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Modern Taylor Series Method (MTSM)



• Lets consider the following functions

• 𝑢 = sin(𝜔𝑡) 𝑢′ = 𝜔 𝑣, 𝑢 0 = 0

• 𝑣 = cos 𝜔𝑡 𝑣′ = −𝜔 𝑢, 𝑣 0 = 1

• These functions can be represented by the following 

block scheme: 

• The behavior of the system depends on 𝜔
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Example 1 – circuit test



MTSM and MATLAB ode solvers comparisons 15

Example 1 – circuit test, 𝜔 = 1

• MATLAB ode23 solver (default settings)
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Example 1 – circuit test, 𝜔 = 1

• MTSM (h=0.1)

• ORD≈10

stable and fast solution



• 𝜔 = 1, 𝑡𝑚𝑎𝑥 = 50, 𝑑𝑡 = 0.1

• Lets increase 𝜔 to 100
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Example 1 – circuit test, 𝜔 = 1

Method Steps ||Error||

ode23 245 0.0365738 

ode45 277 0.00731112

MTSM 500 6.99885e-13  
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Example 1 – circuit test, 𝜔 = 100, ode (default settings)
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Example 1 – circuit test, 𝜔 = 100

• MTSM (h=0.1)

• ORD≈47

stable and fast solution



• Matlab solvers (with default settings) don’t get accurate 

solution

• Let’s try to increase the precision of the MATLAB 

solvers 
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Example 1 – circuit test, 𝜔 = 100
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Example 1 – circuit test, 𝜔 = 100, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−10



• 𝜔 = 100, 𝑡𝑚𝑎𝑥 = 50, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−10
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Example 1 – circuit test, 𝜔 = 100, 𝑅𝑒𝑙𝑇𝑜𝑙 = 10−10

Method Time [s] Steps ||Error||

ode23 153 3 573 706 8.12405e-07

ode45 15 888 829 8.93866e-08

MTSM 0.102145 500 4.88108e-10



• Hyperbolic partial diff.eq. (1D)

• Dirichlet boundary conditions: 0 ≤ 𝑥 ≤ 𝐿, 𝐿 = 1

0 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

• Initial conditions:
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Example 2 – wave equation



• Hyperbolic partial diff.eq. (1D)

• Dirichlet boundary conditions: 0 ≤ 𝑥 ≤ 𝐿, 𝐿 = 1

0 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥

• Initial conditions: Analytic solution:
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Example 2 – wave equation
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Space discretization – Finite difference method

• Central difference formula for 𝑦𝑘 = 𝑦2



𝑦𝑘′′ = 𝐷𝑌2𝑘(𝑦𝑘−2, 𝑦𝑘−1, 𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2) ⋅
2

ℎ2

 𝑦′′ = 𝐴𝑎𝑝𝑝𝑟𝑜𝑥 ⋅  𝑦
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Space discretization – Finite difference method



𝑦𝑘′′ = 𝐷𝑌2𝑘(𝑦𝑘−2, 𝑦𝑘−1, 𝑦𝑘 , 𝑦𝑘+1, 𝑦𝑘+2) ⋅
2

ℎ2

 𝑦′′ = 𝐴𝑎𝑝𝑝𝑟𝑜𝑥 ⋅  𝑦 𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 =
𝜕2𝑦

𝜕𝑥2 −  𝑦′′
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Space discretization – Finite difference method



• Solution in time – initial value problem

𝑢𝑦′ = A ⋅ 𝑢𝑦, 𝑢𝑦 𝑥, 0 = 0, sin 𝜋𝑥 𝑇

𝐴 =
𝟎 𝐴𝑎𝑝𝑝𝑟𝑜𝑥

𝐼 𝟎
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Example 2 – time solution



• Solution in time – initial value problem

𝑢𝑦′ = A ⋅ 𝑢𝑦, 𝑢𝑦 𝑥, 0 = 0, sin 𝜋𝑥 𝑇

𝐴 =
𝟎 𝐴𝑎𝑝𝑝𝑟𝑜𝑥

𝐼 𝟎
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Example 2 – time solution

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑦𝑎𝑛𝑎𝑙 −  𝑦

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝜕  𝑦

𝜕𝑡
− 𝑢



Numerical experiments:

• Fixed number of cuts in space domain 𝑁𝑐𝑢𝑡𝑠 = 10

(ℎ = 0.1)

• Time of simulation 𝑇𝑚𝑎𝑥 = 10 000

• Compare  MTSM and MATLAB ode solvers

• Note: fully explicit scheme was used -> for spatial 

approximation and for solution in time
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Example 2 – numerical experiments



• 3-point approximation of  
𝜕2𝑦

𝜕𝑥2
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Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 = 0.0809 ≈ 10−1



• 5-point approximation of  
𝜕2𝑦

𝜕𝑥2
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Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 = 0.0011 ≈ 10−3



• 7-point approximation of  
𝜕2𝑦

𝜕𝑥2
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Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 ≈ 10−5



• 9-point approximation of  
𝜕2𝑦

𝜕𝑥2
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Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 ≈ 10−7



• 11-point approximation of  
𝜕2𝑦

𝜕𝑥2
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Example 2 – error in space domain

𝐸𝑟𝑟𝑜𝑟𝑠𝑝𝑎𝑐𝑒 ≈ 10−9



• 3-point approximation
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Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1.67

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 5.25

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 2

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 6.27



• 3-point approximation
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Example 2 – error in time domain



• 3-point approximation
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Example 2 – error in time domain

• MTSM (dt = 0.1)

• ORD≈30

stable and fast solution



• 5-point approximation
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Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 7 ⋅ 10−3

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 2.2 ⋅ 10−2



• 7-point approximation
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Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 8.8 ⋅ 10−5

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 2.8 ⋅ 10−4



• 9-point approximation
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Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 1.4 ⋅ 10−6

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 4.5 ⋅ 10−6



• 11-point approximation
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Example 2 – error in time domain

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒23
= 1

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒23
= 3.14

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑇𝑆𝑀
= 2.5 ⋅ 10−8

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑀𝑇𝑆𝑀
= 8 ⋅ 10−8



• 5-point approximation (ode45, 𝑇𝑜𝑙 = 10−6)
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Example 2 – stable solution in MATLAB

𝐸𝑟𝑟𝑜𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑑𝑒45
= 0.007

𝐸𝑟𝑟𝑜𝑟𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑑𝑒45
= 0.023



• 5-point approximation (ode45, 𝑇𝑜𝑙 = 10−6)

𝑇𝑚𝑎𝑥 = 100
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Example 2 – stable solution in MATLAB

Method Time [s] Steps ||Errorposition|| ||Errorvelocity||

ode45 12.8 6364 0.007 0.022

MTSM 0.07 200 0.007 0.022



• 5-point approximation (ode45, 𝑇𝑜𝑙 = 10−6)

𝑇𝑚𝑎𝑥 = 100

𝑇𝑚𝑎𝑥 = 1000
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Example 2 – stable solution in MATLAB

Method Time [s] Steps ||Errorposition|| ||Errorvelocity||

ode45 12.8 6364 0.007 0.022

MTSM 0.07 200 0.007 0.022

Method Time [s] Steps ||Errorposition|| ||Errorvelocity||

ode45 66012.4

(18.3h)

83756 0.007 0.023

MTSM 0.863 2000 0.007 0.022



• Implementation of MTSM in MATLAB for linear 

systems of ODEs - fast and stable solution

• Next step will be implementation of nonlinear systems 

of ODEs in MATLAB using matrix-vector computation 

in MTSM
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Conclusion



Thank you for your attention!


