VNV – adjoint operators

Václav Šátek Lecturer: Petr Veigend

Brno University of Technology, Faculty of Information Technology, Božetěchova 2, 61266 Brno satek AT fit.vut.cz

Version: March 30, 2020

Overview

- Introduction
- 2 Without the derivative of the forcing function
 - Problem analysis
 - Solution
 - Block representation
- 3 With the derivative of the forcing function
 - Problem analysis
 - Adjoint operators
 - HW representation
 - Alternative approach
- 4 Example higher derivatives
 - Problem definition
 - Adjoining
 - Solution check
- 6 Homework

Until now, all coefficients of the differential equations (terms a_i on the left side and b_j on the right side) were constant. We were just performing some transformations of the equations (creating the systems of the first order differential equations, . . .).

Possible problem: what if the coefficients would change in time?

Note: all time variable coefficients will be UPPER CASE.

We are going to start with the simpler case: the forcing function z does not have derivatives.

$$y' + \underline{\sin(t)}y = \underline{z}$$

The equation above contains on time variable (dependent) coefficient

$$A_0 = \sin(t)$$

Problem analysis

- the values of the coefficient A_0 change in time,
- there are **no derivatives** of the forcing function z (the right side).

The input equation has to be transformed into the system of the first order differential equations. We can use the **Method of derivation order reduction** (no derivatives of z). We substitute the coefficient A_0 (to make the solution more general) and perform the Laplace transform

$$y' = z - \sin(t)y = z - A_0y$$

$$LAPLANL py = z - A_0y$$

$$y = \frac{1}{p}(z - A_0y)$$

Initial condition: y(0) = 0

Time variable coefficients

$$A_0 = \sin(t) \qquad \qquad B_0 = \cos(t)$$

have to be generated using auxiliary system of differential equations

$$A'_0 = \underline{\cos(t)} = \underline{B_0} \qquad \qquad B'_0 = -\sin(t) = \underline{-A_0}$$

 $A_0'=\underline{\cos(t)}=\underline{B_0} \qquad \qquad B_0'=-\sin(t)=\underline{-A_0}$ with initial conditions: $A_0(0)=\sin(0)=0$, $A_{00}'(0)=\cos(0)=1$

Block scheme

Now, we will try to solve a more complicated problem, that has the derivatives of the forcing function z:

$$\underline{e^t}y' + \underline{\sin(t)}y = \underline{tz'} + \underline{\cos(t)}z$$

Time variable (dependent) coefficients

$$A_1 = e^t$$
 $B_1 = t$ $B_0 = \cos(t)$

Problem analysis

- the values of the coefficients change in time,
- the forcing function z has derivatives.

This problem can be solved by the method of **adjoint differential operators**.

General scheme of the solution

To solve this problem, we can create a general block scheme. This block scheme is going to contain some known and one completely new one:

- coefficients (as noted previously, all time variable coefficients will be UPPER CASE and double circles)
- integrators
- implicator \sum inputs = 0

What would the block scheme look like for

$$e^t y' + \sin(t)y = tz' + \cos(t)z$$

Note: in the following examples, we are going to use inverting integrators.

General scheme – equations I

$$A_1 = e^t$$
 $B_1 = t$
 $A_0 = \sin(t)$ $B_0 = \cos(t)$

With the block scheme, we can start solving it by writing down the **input equations** (from right to left)

implicator

$$B_1z + y_1 + A_1y = 0$$

 $-y_1 = B_1z + A_1y$
 $-y_1 = tz + e^ty$

We are solving the scheme from the right, we need to create an input signal for the integrator, so we need to derive equation for y_1 .

$$-y'_1 = 1z + tz' + e^t y + e^t y'$$

$$-y'_1 = 1z + tz' + e^t y + e^t y'$$

General scheme – equations II

$$A_1 = e^t$$
 $B_1 = t$ $A_0 = \sin(t)$ $B_0 = \cos(t)$

2 integrator
$$B_0z + A_0y = -y_1'$$

$$B_0z + A_0y = z + tz' + e^ty + e^ty'$$
$$\cos(t)z + \sin(t)y = z + tz' + e^ty + e^ty'$$

After rearranging the obtained equation, we get the system equation

$$\underbrace{-e^t y' + y(\sin(t) - e^t)}_{=} = tz' + z(1 - \cos(t))$$

Problem: the obtained coefficients **do not match** the original ones. Is the obtained solution correct?

Solution check

New (adjoint) coefficients of the obtained solution

The solution can be checked by substituting the adjoint coefficients $(A_1^*, A_0^*, B_1^*, B_0^*)$ into the input equations of the general solution (we are adjoining again: $(A_1^*)^*, (A_0^*)^*, (B_1^*)^*, (B_0^*)^* \Rightarrow A_1, A_0, B_1, B_0$).

Solution check I

$$A_1^* = -e^t$$
 $B_1^* = t$
 $A_0^* = \sin(t) - e^t$ $B_0^* = 1 - \cos(t)$

New input equations (with substituted adjoint coefficients):

1 implicator $B_1^*z + y_1 + A_1^*y = 0$

$$-y_1 = B_1^* z + A_1^* y$$

$$-y_1 = tz - e^t y$$

We are solving the scheme from the right, we need to create an input signal for the integrator, so we need to derive equation for y_1 .

$$-y'_{1} = 1z + tz' - e^{t}y - e^{t}y'$$

$$-y'_{1} - 1_{2} + 4n' - e^{t}y - e^{t}y'$$

Solution check II

$$A_1^* = -e^t$$
 $B_1^* = t$ $A_0^* = \sin(t) - e^t$ $B_0^* = 1 - \cos(t)$

2 integrator $B_0^*z + A_0^*y = -y_1'$

$$B_0^*z + A_0^*y = z + tz' - e^ty - e^ty'$$

$$(1 - \cos(t))z + (\sin(t) - e^t)y = z + tz' - e^ty - e^ty'$$

$$z - \cos(t)z + \sin(t)y - e^ty = z + tz' - e^ty - e^ty'$$

Simplifying

$$e^t y' + \sin(t)y = tz' + \cos(t)z$$

The resulting equation: $e^t y' + \sin(t)y = tz' + \cos(t)z$ has the original coefficients A_1, A_0, B_1, B_0 .

The adjoint coefficients A_1^*, A_0^*, B_1^* a B_0^* are correct and can be used.

$$e^t y' + \sin(t)y = tz' + \cos(t)z$$

Summary

$$A_1^* = -e^t$$
 $A_0^* = \sin(t) - e^t$
 $B_1^* = t$
 $B_0^* = 1 - \cos(t)$

The input first order differential equation

$$e^t y' + \sin(t)y = tz' + \cos(t)z$$

can be solved using **one** first order differential equation (**one integrator**)

$$y'_1 = -B_0^* z - A_0^* y$$

$$y'_1 = -(1 - \cos(t))z - (\sin(t) - e^t)y, y_1(0) = 0$$

Output of the system (always implicator) can be expressed as

$$B_1^*z + y_1 + \underline{A_1^*y} = 0$$

$$y = -\frac{B_1^*z + y_1}{A_1^*}$$

$$y = -\frac{1}{e^t}(tz + y_1)$$

HW representation of time variable coefficients

- time variable (dependent) coefficient multiplier + generating differential equations
- implicator divider

HW representation of time variable coefficients – scheme

HW representation of time variable coefficients

$$A_1^* = -e^t$$
 $B_1^* = t$
 $A_0^* = \sin(t) - e^t$ $B_0^* = 1 - \cos(t)$

It is necessary to **generate the functions of time** $B_0^*(t), B_1^*(t), A_0^*(t)$ a $A_1^*(t)$. For the adjoint coefficient B_0^* is the function of time $B_0^*(t) = 1 - \cos(t)$

$$B_0^* = 1 - \cos(t)$$
 $B_{00}^* = \sin(t)$ $B_{00}^{*'} = \sin(t) = B_{00}^*$ $B_{00}^{*'} = \cos(t) = 1 - B_0^*$

All initial conditions $(B_0^*(0) \text{ a } B_{00}^*(0))$ are **zero**. After Laplace transform :

$$pB_0^* = B_0$$
 $pB_{00}^* = 1 - B_0^*$ $B_{00}^* = -\frac{1}{p}(-B_0)$ $B_{00}^* = -\frac{1}{p}(1 - B_0^*)$

HW representation – function generation

Alternative approach to the solution

The differential equations with time-variable coefficients can be solved using a differential operators (for example Sturm-Liouville operator 1) It is proven, that

$$L^*(y) = -M^*(z)$$

where $\underline{L}(y)$ is the left side, M(z) is the right side of the input differential equation. Operation * represents the adjoining of the operators.

Alternative approach – example

For the differential equation

erential equation
$$A_1^* = -e^t \qquad B_1^* = t$$

$$A_0^* = \sin(t) - e^t \qquad B_0^* = 1 - \cos(t)$$

$$e^t y' + \sin(t) y = tz' + \cos(t) z$$

$$A_0^* = (-1)^1 \left(\frac{1}{2} \right)^1 + (-1)^1 \left(\frac{1}{2} \right)^1 + \frac{1}{2} \left(\frac{1}{2} \right)^$$

$$L(y) = e^{t}y' + \sin(t)y$$

$$L^{*}(y) = (-1)^{1}(e^{t}y)' + (-1)^{0}(\sin(t)y) = -(e^{t}y + e^{t}y') + \sin(t)y$$

$$= -e^{t}y - e^{t}y' + \sin(t)y = -e^{t}y' + y(\sin(t) - e^{t})$$

Expected coefficients of the left side:

$$A_1^* = -e^t$$
 $A_0^* = \sin(t) - e^t$

To check the result: $(L^*(y))^* = L(y)$

Alternative approach – example (check of the left side)

$$\begin{aligned} & L^*(y) = -e^t y' + y(\sin(t) - e^t) \\ & L^*(y) = -e^t y' + y(\sin(t) - e^t) \\ & (L^*(y))^* = (-1)^1 (-e^t y)' + (-1)^0 (\sin(t) - e^t) y \\ & = e^t y + e^t y' + \sin(t) y - e^t y \\ & = e^t y' + \sin(t) y \end{aligned}$$

Original coefficients:

$$A_1 = e^t$$
 $A_0 = \sin(t)$

Left side coefficients are **correct** $((L^*(y))^* = L(y))_{\cdot 1}$

Alternative approach – example (right side)

$$B_1^* = t$$
$$B_0^* = 1 - \cos(t)$$

$$M(z) = tz' + \cos(t)z$$

$$M^*(z) = (-1)^1(tz)' + (-1)^0(\cos(t)z) = -(z + tz') + \cos(t)z$$

$$= -z - tz' + \cos(t)z = -tz' + z(-1 + \cos(t))$$

Check:

$$M^*(z) = -tz' + z(-1 + \cos(t))$$

$$(M^*(z)^*) = (-1)^1(-tz)' + (-1)^0(-z + \cos(t)z)$$

$$= z + tz' - z + \cos(t)z = \underline{tz' + \cos(t)z}$$

Right side coefficients are correct. It is however necessary to multiply the obtained adjoint coefficients by -1 (because it holds that $L^*(y) = -M^*(z)$).

Alternative approach – summary

The obtained adjoint coefficients are:

$$A_1^* = -e^t$$
 $B_1^* = t$ $A_0^* = \sin(t) - e^t$ $B_0^* = 1 - \cos(t)$

These adjoint coefficients match the coefficients obtained using the previous method.

Problem definition

The solution of the **second order** differential equation is going to be a little bit more "complicated":

$$t^{2}y'' + \sin(t)y' + e^{-t}y = 2tz'' + \cos(t)z' + e^{3t}z$$

Again, we need to solve for y. Because, the input differential equation is second order, we need to create a system of two first order differential equations. Coefficients:

Coefficients:
$$A_{2} = \mathcal{L} \qquad \qquad \beta_{n} = 2\mathcal{L}$$

$$A_{1} = s_{1} \qquad (\beta) \qquad \beta_{n} = c_{n} \qquad (d)$$

$$A_{0} = \mathcal{L} \qquad \beta_{0} = 2\mathcal{L}$$

Problem definition

The solution of the **second order** differential equation is going to be a little bit more "complicated":

$$t^{2}y'' + \sin(t)y' + e^{-t}y = 2tz'' + \cos(t)z' + e^{3t}z$$

Again, we need to solve for y. Because, the input differential equation is second order, we need to create a system of two first order differential equations. Coefficients:

$$A_2 = t^2$$
 $B_2 = 2t$
 $A_1 = \sin(t)$ $B_1 = \cos(t)$
 $A_0 = e^{-t}$ $B_0 = e^{3t}$

General block scheme

General block scheme - equations I

The equations for the inputs:

1 implicator
$$B_2z + y_1 + A_2y = 0$$

$$A_2 = t^2$$
 $B_2 = 2t$
 $A_1 = \sin(t)$ $B_1 = \cos(t)$
 $A_0 = e^{-t}$ $B_0 = e^{3t}$

$$-y_1 = B_2 z + A_2 y$$
$$-y_1 = 2tz + t^2 y$$

We are solving the scheme from the right, we need to create an input signal for the integrator, so we need to derive equation for y_1 .

$$-y'_{1} = 2z + 2tz' + 2ty + t^{2}y'$$

$$-y'_{1} = 2c + 2 \int (1 + 2 \int y)^{2} dy$$

General block scheme - equations II

1. integrator
$$B_1z + y_2 + A_1y = -y_1'$$

$$B_1z + \underline{y_2} + A_1y = 2z + 2tz' + 2ty + t^2y'$$

$$\cos(t)z + \underline{y_2} + \sin(t)y = 2z + 2tz' + 2ty + t^2y'$$

$$y_2 = 2z + 2tz' + 2ty + t^2y' - \sin(t)y - \cos(t)z$$

We are solving the scheme from the right, we need to create an input signal for the integrator, so we need to derive equation for y_2 .

 $A_2 = t^2$

 $A_1 = \sin(t)$

 $A_0 = e^{-t}$

 $B_2 = 2t$

 $B_1 = \cos(t)$ $B_0 = e^{3t}$

$$y'_{2} = 2z' + 2z' + 2tz'' + 2y + 2ty' + 2ty' + t^{2}y'' \cdot -\cos(t)y - \sin(t)y' - (-\sin(t)z + \cos(t)z')$$

$$y'_{2} = 4z' + 2tz'' + 2y + 4ty' + t^{2}y'' -\cos(t)y - \sin(t)y' + \sin(t)z - \cos(t)z'$$

$$-y'_{2} = -4z' - 2tz'' - 2y - 4ty' - t^{2}y'' + \cos(t)y + \sin(t)y' - \sin(t)z + \cos(t)z'$$

$$\mathcal{Y}_{1} = 0 \cdot 0 + 0 \cdot t' + (n' + 1) \cdot (n' + 1)$$

General block scheme - equations III

3 2. integrator $B_0z + A_0y = -y_2'$

$$B_0z + A_0y = -4z' - 2tz'' - 2y - 4ty' - t^2y''$$

$$+ \cos(t)y + \sin(t)y' - \sin(t)z + \cos(t)z'$$

$$e^{3t}z + e^{-t}y = -4z' - 2tz'' - 2y - 4ty' - t^2y''$$

$$+ \cos(t)y + \sin(t)y' - \sin(t)z + \cos(t)z'$$

After rearranging into the proper form, the **resulting system equation**:

$$t^{2}y'' + 4ty' - \sin(t)y' + 2y + e^{-t}y - \cos(t)y$$

= -2tz'' - 4z' + \cos(t)z' - \sin(t)z - e^{3t}z

Solution check

Adjoint coefficients or the resulting equation

$$t^{2}y'' + y'(4t - \sin(t)) + y(2 + e^{-t} - \cos(t))$$

= $-2tz'' + z'(-4 + \cos(t)) + z(-\sin(t) - e^{3t})$

$$A_2^* = t^2$$
 $B_2^* = -2t$
 $A_1^* = 4t - \sin(t)$ $B_1^* = -4 + \cos(t)$
 $A_0^* = 2 + e^{-t} - \cos(t)$ $B_0^* = -\sin(t) - e^{3t}$

To check if the coefficients are correct, the obtained adjoint coefficients $(A_2^*, A_1^*, A_0^*, B_2^*, B_1^*, B_0^*)$ can be substituted into the input equations.

Solution check I

New input equations (with substituted adjoint coefficients):

1 implicator $B_2^*z + y_1 + A_2^*y = 0$

$$-y_1 = B_2^* z + A_2^* y$$
$$-y_1 = -2tz + t^2 y$$

We are solving the scheme from the right, we need to create an input signal for the integrator, so we need to derive equation for y_1 .

$$-y_1' = -2z - 2tz' + 2ty + t^2y'$$

Solution check II

2 1. integrátor $B_1^*z + y_2 + A_1^*y = -y_1'$

$$B_1^*z + y_2 + A_1^*y = -2z - 2tz' + 2ty + t^2y'$$
$$(-4 + \cos(t))z + y_2 + (4t - \sin(t))y = -2z - 2tz' + 2ty + t^2y'$$

Simplifying, solving for $-y_2$, and derivative:

$$-y_2 = -2z + 2tz' + 2ty - t^2y' + \cos(t)z - \sin(t)y$$

$$-y_2' = -2z' + 2z' + 2tz'' + 2y + 2ty' - 2ty' - t^2y''$$

$$-\sin(t)z + \cos(t)z' - \cos(t)y - \sin(t)y'$$

$$-y_2' = 2tz'' + 2y - t^2y'' - \sin(t)z + \cos(t)z' - \cos(t)y - \sin(t)y'$$

Solution check III

3 2. integrator $B_0^*z + A_0^*y = -y_2'$

$$B_0^*z + A_0^*y = -y_2'$$

$$(-\sin(t) - e^{3t})z + (2 + e^{-t} - \cos(t))y$$

$$= 2tz'' + 2y - t^2y'' - \sin(t)z + \cos(t)z' - \cos(t)y - \sin(t)y'$$

Rearranging into the proper form

$$t^{2}y'' + \sin(t)y' + e^{-t}y = 2tz'' + \cos(t)z' + e^{3t}z$$

The adjoint coefficients $A_2^*, A_1^*, A_0^*, B_2^*, B_1^*$ a B_0^* match the original coefficients A_2, A_1, A_0, B_2, B_1 a B_0 and can be used.

Summary – 2nd order I

The input **second order** differential equation

$$t^{2}y'' + \sin(t)y' + e^{-t}y = 2tz'' + \cos(t)z' + e^{3t}z$$

can be solved by the system of **two** first order differential equations

$$y_2' = -B_0^* z - A_0^* y = -(-\sin(t) - e^{3t})z - (2 + e^{-t} - \cos(t))y, \quad y_2(0) = 0$$

$$y_1' = -B_1^* z - A_1^* y - y_2 = -(-4 + \cos(t))z - (4t - \sin(t))y - y_2, \quad y_1(0) = 0$$

Summary – 2nd order II

The output of the system (always implicator) can be expressed as

$$B_2^*z + y_1 + A_2^*y = 0$$

$$y = -\frac{B_2^*z + y_1}{A_2^*}$$

$$y = -\frac{1}{t^2}(-2tz + y_1)$$

Homework

Solve:

$$e^{-t}y'' + \sin(t)y' + \cos(t)y = 2tz'' + \cos(t)z' + t^2z$$

Use both approaches, compare the time needed for solution. Do the solution check.

Thank you for your attention!