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1 Introduction

Let’s solve an ordinary differential equation (ODE) - an initial value problem

y′ = λy, y(0) = 1, λ < 0, (1)

using explicit and implicit numerical methods (Euler methods, Trapezoidal
rule, Taylor series methods).

Well-known analytic solution of the ODE (1) is in the form

y = eλt. (2)

2 Stability and convergence of numerical meth-

ods

Numerical method is absolute stable if and only if the local truncation error
is not increasing in computation of the next values yk, k > n for given
integration step h and for given ODE.

Definition 2.1 The sequence of values yi (aproximation using numerical
methods) must converge to exact solution y(ti).
Existence of limit is expected

lim
h→0,i→∞

(yi) = y(ti).

The Stability condition in the form must be accepted for our exam-
ple (1).

|yi+1| ≤ |yi|. (3)

Then the Stability function of numerical method is defined in a form

R(z) =
yi+1

yi
, where z = hλ, (4)
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supposing that the constant λ is generally a complex number z ∈ C.
The (absolute)1 Stability domain of numerical method is defined in

the form
D = {z ∈ C; |R(z)| ≤ 1} . (5)

2.1 Explicit numerical methods

Stability domain of explicit Euler method and Taylor series method will be
now analysed.

2.1.1 Explicit Euler method

Well-known explicit Euler method is in the form

yi+1 = yi + hy′i (6)

after substitution the ODE (1) into (6)

yi+1 = yi + hλyi = (1 + hλ)yi = (1 + hλ)iy0 , (7)

where y0 = y(0) = 1.
To apply the stability condition (3), the following definition

|1 + hλ| ≤ 1 , (8)

must be accepted.

Classification of the stability of the Euler method
Let’s z = hλ, then the unit circle |z + 1| ≤ 1 Fig. 1 (highlighted part) of the
complex plain with the centre (-1,0) represents the absolute stable domain (5)
of the explicit Euler method.

The explicit Euler method is not of a large stability domain. The explicit
Euler method can not be used to solution of “stiff” systems - ODE (1) where
|λ| � 1.

2.1.2 Explicit Taylor method

The explicit Taylor series is in the form

yi+1 = yi + hy′i +
h2

2!
y′′i +

h3

3!
y′′′i + · · ·+ hn

n!
y
(n)
i , (9)

yi+1 = yi +DY 1i +DY 2i + · · ·+DY ni, ORD = n . (10)

1The term “Absolute” stability domain of the numerical method can be found in some
literature.
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Figure 1: The stability domain of the explicit Euler method

where DY 1i, DY 2i, · · · , DY ni are Taylor series terms and the abbreviation
ORD means the order of Taylor series method (respectively the number of
Taylor series terms used during the computation).

Note: The Taylor series terms (10) can be calculated recurrently in the
form

DY 1i = hλyi ,

DY 2i = h
2
λDY 1i ,

...

DY ni = h
n
λDY (n− 1)i .

The higher derivatives of the ODE (1) can be calculated analytically in
the form

y′ = λy ,

y′′ = λy′ = λ2y ,
...

y(n) = λny .
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thus with the respect to (9) we have

yi+1 = yi + hλyi + h2

2
λ2yi + h3

3!
λ3yi + · · ·+ hn

n!
λnyi ,

yi+1 = (1 + hλ+ h2

2
λ2 + h3

3!
λ3 + · · ·+ hn

n!
λn)yi .

Homework:
– Determine the stability function R(z) = ? for the explicit Taylor series of
the ORD = 2,3,4,10.
– Plot the graphs of the stability domains D = ? with the GNUplot software
(use command - ‘load C: \...\GNUplotStability.gnu’).

2.2 Stability domains of numerical methods

Definition 2.2 Dahlquist 1963: A method, whose stability domain D satis-
fies

D ⊃ C− = {z ∈ C;<e(z) ≤ 0} ,
is called A-stable.

The stability domain of A-stable numerical method is overlaying the
whole left half-plane of complex plain C− = {z ∈ C;<e(z) < 0} see Fig. 2.

Figure 2: The stability domain of A-stable numerical method

Definition 2.3 Ehle 1969: A method is called L-stable, if it is A-stable
and if in addition

lim
<e(z)→−∞

R(z) = 0 .
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The L-stable numerical methods are suitable to stiff systems solution.

2.3 Implicit numerical methods

Let’s find stability domains for implicit Euler method, Trapezoidal rule and
implicit Taylor series method.

2.3.1 Implicit Euler method

The implicit Euler method is in the form

yi+1 = yi + hy′i+1 . (11)

Substitute the ODE (1) into (11) and obtain the form

yi+1 = yi + hλyi+1 . (12)

The stability function of implicit Euler method is obtained after some mod-
ification

R(z) =
1

1− z
. (13)

Note: that z is generally complex number z = a + ib, where a < 0 and
R(z) = 1

(1−a−ib) .

When |R(z)| ≤ 1 and lim
a→−∞

R(z) = 0 than the implicit Euler method is

L-stable. The stability domain of implicit Euler method is in Fig. 3.
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Figure 3: The stability domain - implicit Euler method
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2.3.2 Implicit trapezoidal rule

The implicit trapezoidal rule is in the form

yi+1 = yi +
h

2
(y′i + y′i+1) . (14)

again for the ODE (1) we have

yi+1 = yi +
h

2
(λyi + λyi+1) =

yi(1 + hλ/2)

1− hλ/2
. (15)

Homework:
– Determine the stability function R(z) = ? for the implicit Trapezoidal rule.
– Plot the graph of the stability domains D = ? with the GNUplot software
(use command - ‘load C: \...\GNUplotStability.gnu’).
– Is the Trapezoidal rule A-stable numerical method?
– BONUS QUESTION: Is the Trapezoidal rule L-stable numerical method
(see Def. 2.3))?

2.3.3 Implicit Taylor series

The implicit Taylor series is in the form

yi+1 = yi + hy′i+1 −
h2

2!
y′′i+1 +

h3

3!
y′′′i+1 − · · · −

(−h)n

n!
y
(n)
i+1 , (16)

yi+1 = yi −DY 1i+1 − · · · −DY ni+1, ORD = n . (17)

(18)

The higher derivatives of the ODE (1) can be calculated analytically in the
form

y′i+1 = λyi+1 ,

y′′i+1 = λy′i+1 = λ2yi+1 ,
...

y
(n)
i+1 = λnyi+1 .

thus with respect to (16) we have

yi+1 = yi + hλyi+1 − h2

2!
λ2yi+1 + h3

3!
λ3yi+1 − · · · − (−h)n

n!
λnyi+1 ,

yi+1 = ( 1

1−hλ+h2

2!
λ2−h3

3!
λ3+···+ (−h)n

n!
λn

)yi .
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Newton’s method
The well-known Newton’s iteration method (also known as Newton-Raphson
method) is used to find the roots of a function

x : f(x) = 0.

The Newton-Raphson method in one variable is implemented as follows:
Given a function f defined over the reals x, and its derivative f ′, we begin
with a first aproximation x0 for a root of the function f . Provided the
function satisfies all the assumptions made in the derivation of the formula,
a better approximation xj+1 is

xj+1 = xj −
f(xj)

f ′(xj)
,

The process is repeated until sufficiently accurate value TOL is reached

|xj+1 − xj| < TOL .

Implicit Taylor series - Newton’s iteration method
Let’s solve ODE (1) using implicit Taylor series (16). The Taylor series terms
(17) can be calculated recurrently in the form

DY 1i+1 = −hλyi+1 ,

DY 2i+1 = −h
2
λDY 1i+1 ,

...

DY ni+1 = −h
n
λDY (n− 1)i+1 .

The Newton’s iteration is in the form

yi+1,j+1 = yi+1,j −
f(yi+1,j)

f ′y(yi+1,j)
, (19)

where

f(yi+1,j) = −yi+1,j + yi −DY 1i+1,j −DY 2i+1,j − · · · −DY ni+1,j . (20)

As a starting itteration yi+1,0

yi+1,0 = yi
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is used.

The derivation f ′y(yi+1,j) can be computed symbolically or using differ-
ential formulae.

Symbolic computation of the derivative f ′y(yi+1,j)

Let’s derive (20) according to yi+1,j

f ′y(yi+1,j) = −1−DY 1′i+1,j −DY 2′i+1,j − · · · −DY n′i+1,j ,

where Taylor series terms are in the form

DY 1′i+1,j = −hλ ,

DY 2′i+1 = −h
2
λDY 1′i+1,j ,

...

DY n′i+1,j = −h
n
λDY (n− 1)′i+1,j .

Differential formulae used for computation of derivative f ′y(yi+1,j)

The derivation f ′y(yi+1,j) can be also computed using differential formula

f ′y(yi+1,j) =
f(yi+1,j + hN)− f(yi+1,j)

hN
,

where

f(yi+1,j+hN) = −(yi+1,j+hN)+yi−DY 1N,i+1,j−DY 2N,i+1,j−· · ·−DY nN,i+1,j .

Taylor series terms are in the form

DY 1N,i+1,j = −hλ(yi+1,j + hN) ,

DY 2N,i+1,j = (−h)2
2!

λ2(yi+1,j + hN) = −h
2
λDY 1N,i+1,j ,

...
...

DY nN,i+1,j = (−h)n
n!

λn(yi+1,j + hN) = −h
n
λDY (n− 1)N,i+1,j .

Homework:
– Determine the stability function R(z) = ? for the implicit Taylor series of
the ORD = 2,3,4,10.
– Plot the graphs of the stability domains D = ? with the GNUplot software
(use command - ‘load C: \...\GNUplotStability.gnu’).

8



3 Numerical solution - MATLAB

Homework:
– Run the script for numerical solution of ODE (1) in MATLAB software.
Start first with explicit numerical methods (script: “explicit.m”).
See a simple implementation of explicit numerical methods (m-files: “eul.m”,
“tay.m”).
Let the integration step size be the same for all numerical computations
h = 0.1. Set the constant lambda = −10 (then variable z = −1).
Verify the stability and convergence of numerical computations from plotted
graphs.
Then select the constant λ on the boundary of the stability domain of Euler
explicit method and observe the stability and convergence of numerical com-
putations.

– Run the script for implicit numerical solution of ODE (1) in MATLAB
software (script: “implicit.m”).
See a simple implementation of implicit numerical methods (m-files: “impl eul.m”,
“impl trap.m”, “impl tay.m”).
Let the integration step size be the same for all numerical computations
h = 0.1. Set the constant lambda = −10 (then variable z = −1).
Verify the stability and convergence of numerical computations from plotted
graphs.
Increase the absolute value of the constant |λ| > 10 and observe the stability
and convergence of numerical solutions. See the behaviour of the Trapezoidal
rule (A-stable, but not L-stable numerical method).
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