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Chapter 1

MODERN TAYLOR SERIES
METHOD

1.1 Introduction

By a numerical solution of an ordinary differential equation

y' = [(t,y), y(to) = vo (1)

we understand the finding of a sequence:

[y(to) = wol,  [y(ty) =wl, [y(t2) = w2l [y(tn) = yal.

The best-known and most accurate method of calculating a new value of a
numerical solution of a differential equation (1) is to construct the Taylor series
in the form

Yosr = Yo + ot Ftayn) + 5 F(tayn) + o+ B f07 (8 y), (2)

where h is the integration step.

Methods of numerical solutions of differential equations have been studied
since the end of the last century. A large number of integration formulas have
been published especially for solving special systems of differential equations. In
general, 1t was not possible to choose the best method but for a subclass of tasks
defined by similar properties the most suitable method could always be found.

The presented ” Modern Taylor Series Method 7 has proved to be both very
accurate and fast. It is based on a direct use of the Taylor series.

The main idea behind the Modern Taylor Series Method is an automatic
integration method order setting, i.e. using as many Taylor series terms for com-
puting as needed to achieve the required accuracy.
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1.2 Positive Properties of the Taylor Series Method

To demonstrate the positive properties of the Taylor series method the following

differential equation is solved
y' = aycost, y(0)=1, a=2. (3)
The exact solution of (3) is

y = easint (4)

so that the absolute error of the numerical solution can be determined as the

difference between the numerical and exact solutions.

To numerically solve (3) by the Taylor series method ( using (2)) we need to
calculate the following formulas:

fty) = ageost
Mt y) = af(t,y)cost — aysint;

Bt y) = aflM(t,y)cost — aycost — 2af(t,y)sint;

Bt y) = affl(t,y)cost —3af(t,y)cost — 3afUl(t,y)sint + aysint;

Uty = affl(t,y)cost — 6afM(t, y)cost + aycost — 4afP(t, y)sint +
daf(t,y)sint;

Bt y) = afti(t,y)cost — 10afP(t, y)cost + Saf(t,y)cost —
5afB(t, y)sint + 10a fU (1, y)sint — aysint;
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¥t y) = afblt,y)cost — 15afBl(t, y)cost + 15a (1, y)cost —
aycost — 6a fU(t,y)sint 4+ 20a fP (1, y)sint —
6af(t,y)sint;

At y) = aflt, y)cost — 21afU(t, y)cost + 35afP(t, y)cost —
7af(t y)cost — TafPlt, y)sint + 35a (1, y)sint —
e,

LafH™(t, y)sint + aysint;

Bty = aflf(t,y)cost — 28a PNt y)cost + T0afP (1, y)cost —
28a f(t, y)cost + aycost — 8a flO(t, y)sint +
56a fU (1, y)sint — 56a fP(t, y)sint 4+ 8af(t,y)sint;

(8)

Note: One way to calculate the formulas (5) is to use the DERIVE system (a
special program for symbolic differentiation).

Methods of different orders can be used in a computation. For instance the
Ist order method ( ORD=1 ) means that when computing the new value y,41
only the first Taylor series term is taken into account

Yntl = Yn + h * f(tnv yn)v (6)

the 2nd order method ( ORD=2 ) uses Taylor series terms up to the second
power of the step h

Yn+1 :yn‘|’h*f(tnayn)‘|’%*f[l](tmyn)v (7)

etc.

The quality of the computation can be judged by the tables Tab.1 and Tab.2
(integration step h=0.1s and printing interval 1s were parameters of the compu-
tations). Tab.1 and Tab.2 present the numerical solution of (3) using formulas (5).



6 CHAPTER 1. MODERN TAYLOR SERIES METHOD

t(s) | ORD4(%) | ORD6(%) | ORD8(%)
1.0 | 5.5e-04 3.7e-06 1.0e-08
2.0 | 2.7e-04 9.2e-07 4.5e-09
3.0 | 7.9e-04 2.5e-07 7.1e-09
4.0 | 9.4e-04 1.7e-05 1.9e-08
5.0 | 8.0e-05 2.6e-05 2.3e-08
6.0 | 7.7e-04 3.7e-06 9.4e-09
7.0 | 1.3e-03 4.2e-06 3.9e-09
8.0 | 1.1e-03 2.8e-06 8.3e-09
9.0 | 1.5e-03 2.6e-06 4.8e-09

10.0 | 1.2e-03 9.6e-06 1.6e-08

Tab.1

The absolute value of the relative error of the computation at chosen times
(1,2,..10 s) is the main criterion for evaluating the computation ( Tab.1). In
the column "ORD4” the absolute values of the relative error of the computa-
tion are shown; the 4th order method ( ORD=4) was used. Similarly, the 6th
order method (ORD=6) and the 8th order method (ORD=8) were used for the
computation of "ORD6” and "ORDS”.

In this paper we also define, as an important criterion, the tallying of the
valid figures of a numerical computation with the analytical solution - for clarity
in table Tab.2 only those digits of the numerical solution of (3) tallying with the
analytical solution are shown.

The 4th order method ( ORD=4) was used for the computation of results
shown in the column "NUM4”. Similarly, the 6th order method ( ORD=6) and

t(s) | NUM4 NUMG6 NUMS MTSM
1.0 | 5.3813 5.381364 5.38136451 5.38136451648877
2.0 | 6.1631 6.1631921 | 6.163192175 | 6.16319217563612
3.0 | 1.326 1.32609696 | 1.326096966 | 1.3260969664414
4.0 |1 0.22011 | 0.22011 0.2201150333 | 0.220115033306814
5.0 | 0.146922 | 0.146922 0.1469227193 | 0.146922719324015
6.0 | 0.57187 | 0.5718771 | 0.571877199 | 0.571877199752585
7.0 | 3.7209 3.720928 3.720928364 | 3.72092836426954
8.0 | 7.233 7.23345 7.233452838 | 7.23345283888572
9.0 | 2.2801 2.2801402 | 2.28014028 2.28014028705485
10.0 | 0.33687 | 0.3368753 | 0.336875375 | 0.336875375797793
Tab.2
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8th order method ( ORD=8) were used for the computation of "NUM6” and
"NUMS”. Results in the column "MTSM” were obtained by the Modern Taylor
Series Method.

The Modern Taylor Series Method used in the computations increases the
method order ORD automatically, i.e. the values of the terms

p

h _
E * f[p 1](tn7 yn)

are computed for increasing integer values of p until adding the next term does
not improve the accuracy of the solution.

Even though calculating (5) by the DERIVE program requires a substantial
amount of time, it stresses the important fact that the numerical calculation is
most exact when the method order ORD is accordingly high for the integration
step h given.

For completeness’ sake, the numerical solution of the differential equation (3)
( for a=2) as a function of time is shown in Fig.1.1.

=[] ESIN.GRP [$]
e . : . . : . o . el 18
: : Y 8.336875375797793

M

o 1 F] 3 4 5 & 7 8 9 10 T

Figure 1.1:

The Modern Taylor Series Method was used for the solution. In the right-
hand part of Fig.1.1 a particular time value T and the corresponding value of Y
are shown.
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1.3 Technical Initial Problems

The main problem connected with using Taylor series (in the form of (2)) is the
need to generate higher derivatives I, 21 ... This is in fact the reason why
Runge-Kutta formulas of various orders have been used.

If we succeed, however, to obtain the terms with higher derivatives, the accu-
racy of calculations by Taylor series method is extreme (it is in fact only limited
by the type of the arithmetic unit used). This is typical, in particular, of the
solution of the technical initial problems.

Technical initial problems are defined as initial problems where the right-
hand side functions of the system are those occurring in the technical practice,
that is functions generated by adding, multiplying and superposing elementary
functions. Such systems can be expanded into systems with polynomials on the
right-hand sides of the equations. In such a case the Taylor series terms can easily
be calculated.

To demonstrate this, the equation (3)

y' = aycost, y(0) = yo

is analyzed again. A simple computation scheme based on equation (1) fol-
lows:

f(ty) = aycost.
Tet v = cost

Then

fty) = ayv,

Mty) = alft,y)+yv'),

Aty = a(fU y)o +2f (8 y)o' + yv”),

~
=
=

~—~

\'N

<

pa—
I

p—2 . .
a( L [0 N y) o () F ) (0 p22),
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u = sint,
ol — 2 ( p>2),
u[p_l] = U[p_z] ( p 2 2)

Similar constructions can be created for all elementary functions, such as exp,
sin, cos, tg, cotg, In, sinh, ....

The idea above requires software capable of automatically performing the
decomposition of the right-hand sides of ordinary differential equations.

This new approach has been implemented in a simulation language TKSL/386
( an implementation of the Taylor Kunovsky Simulation Language on an Intel
80386 based personal computer).

In fact, the well-known rules of differential and integral calculus have been
used.
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Chapter 2

SIMULATION LANGUAGE
TKSL /386

Theoretical work on the numerical solution of ordinary differential equations by
the Taylor series method has been going on for a number of years. The simulation
language TKSL/386 has been created to test the properties of the technical initial
problems and to test an algorithm for Taylor series method.

TKSL/386 has the following features

e user friendly environment (Turbo Vision),

e adjustable computation accuracy,

e adjustable method order,

e computation with variable integration step h,
e exact detection of discountinuities.

TKSL offers the most practical features available today and it also presents an
entirely new approach to solving continuous systems:

e on analysing a particular continuous system only the required precision of
the solution is defined,

e the implicitly built-in integration method of order 64 (with the integration
step h automatically defined /fixed) is distinctly superior in the computation
quality to other integration algorithms currently used,

e the order of the implicitly built-in integration method can interactively be
increased (yielding a new computation quality),

o stiff systems are viewed as systems of ordinary differential equations (and
as such are automatically solved with the required precision).

11
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2.1 Programming in TKSL/386

Programming in TKSL/386 is very easy. The menu system in TKSL/386 is very
similar to that in TURBO PASCAL 6.0. Using TKSL /386 is demonstrated again
on the equation (3)

y' = aycost, y(0)=1, a=2.

The corresponding source text in TKSL/386 is

var y;
const a=2,

tmax=10,

dt=0.2,

eps=1e-20;
system

y’= a*y*cos(t) & 1;
sysend.

All variables that will be needed are declared in the line starting with var. All
necessary constants are declared in the line starting with const ( a is a constant
in the equation, tmax is the maximal computation time , dt is the step size
and eps is the required accuracy).

[$1
o i
Y #.336875375797793 %
| i
PP SO SOV NN N SO SN SV ST WO S i
; : : : : %
S8 UL IS0 O AUUNE TN SO WO SO NS I i
|

Figure 2.1:
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The equation (3) is declared in block mode (between system and sysend).
The initial condition for differential equation (3) is written in the form & initial
condition.

The two typical windows which are displayed on the screen immediately after
the program is started can be seen in Fig.2.1. In the right-hand part of Fig.2.1
the symbol <> marks the variable which is plotted on the horizontal axis (in this
case the time T).

The variable T is increased by the preset step size dt and at the same time the
corresponding values of the variables ORD and y (ORD stands for the method
order) are shown in the right-hand part of Fig.2.1. In the left-hand part of
Fig.2.1 two functions of time are shown in the course of the computation. There
are graphs of y and ORD . The last function has not yet been published in any
paper on this subject.

In the above example ( for a=2, integration step h=0.05s ) the value of ORD
ranges between the values 11 and 13.

-
had
—

=[a] ESINZ.GRP
16 - i ‘ ; inllmiE g T 18
_ORD 15

Y 0.336875375797793
14}

12l I b o

10} : LI foovenennd [ ITPITS APTS : fevndinnon

Figure 2.2:

If the value of integration step increases to h=0.1s , the corresponding result-
ing solution of the equation (3) (again for a=2) is in Fig.2.2 . The value Y of the
numerical solution at time T=10s is of course the same, only the value of ORD,
as expected, has increased ( ORD ranges between 13 and 16).

The value of the coefficient a can be changed easily in the simulation language
TKSL/386. The numerical solution of the equation (3) (for a=100, h=0.02 ) and
the value of ORD as functions of time are shown in Fig.2.3 .

It is typical of the Modern Taylor Series Method that the value of ORD
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ESIN4.GRP

DHD ......... FERRRERT ......... ......... ......... s e ......... “T 18

_____ n : : i ; _DRD 26
o i N N i i N i N N N
o 1 2 3 4 E & 7 a 9 10 +T
—[m] ESIN3.GRP [11
T e T . 1

: 2.661971A8848E+BA43.

Figure 2.3:

changes during the computation.

The high accuracy of the TKSL /386 is demonstrated on the following system
of equations

y' = aycost y(0)=1 (8)
¥’ = —axcost x(0)=1 (9)
2= ay (10)

In the left-hand part of Fig.2.4, x, y, z and ORD as functions of time are
shown in the course of the computation (for a=2, h=0.1s). In the right-hand
part of Fig.2.4 the values of ORD, x, y, z are plotted (for T=10s).

The system of equations (8), (9), (10) was deliberately designed for the vari-
able z to characterize the accuracy of the computation.

For the test function
z=x-y we have z=1,

since the exact solution of (8) is

asint

y=¢
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=[a] EXPCOS.GRP
16 - -

-
had
—

T 18
HU_ _ORD 16

: : X 2.96845679988271
b : Y 8.336875375797793
2 1

14}

1a -

20 oo

Figure 2.4:

and the exact solution of (9) is

T ::e—amnﬁ

The accuracy of the computation is preserved even if the variables reach values
of 10* and 107** by order of magnitude. The numerical solution of the system
(8),(9),(10) reaches these values for a=100 (Fig.2.5).

The corresponding test function Z and the values of ORD as a function of time
( for h=0.01s, a =100) are shown in Fig.2.6 - in the part labelled EXPCOS5. In
the part labelled EXPCOS6 time functions of Z and ORD (for h= 0.1s, a=100)
are shown. The value of the test function z is constantly at z=1, only the values
of the function ORD increase as h grows, as expected.

The achieved high accuracy of the computation of the expression

z=x-y=1

is based on the fact that the new value of y,,, is calculated in each step auto-
matically until the adding of the next Taylor series terms has no effect.
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EXPCOS3.GRP

=t |

4.
Z.6b756683097E+8043

[t]
4.7
3.74873457110E-8044

Figure 2.5:

EXPCOS5.GRP

[1] 1 2 3 4 s 3 7 8 9 10 T

Figure 2.6:
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POLYNOMIAL FUNCTIONS

3.1 An Accurate Solution

If the right-hand side of a first order differential equation
y'=axt", y0)=yo (11)

has the form of a polynomial of a degree k, then the integration method
of order ORD = k+1 will ensure the absolute accuracy of calculations with an
arbitrary integration step.

The numerical solution of (11) by the Taylor series method is

ynH:yn—|-h>|<a>|<tf§—|—%*a*k*tﬁ_l—l—...—l—T:>|<a (12)

The integration step h can be chosen arbitrarily; the numerical solution of
(11) will be absolutely accurate.

Note: The Modern Taylor Series Method used in the computations automat-
ically sets the value

ORD =Fk+1.

To demonstrate the effect of a calculation with an arbitrary integration step
two simple examples will be shown.

17
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Example 1:
y'=a, y(0)=0. (13)

The numerical solution of (13) by the Taylor series method (using (2)) is

Ynt1 = Yo + hxy/ (14)
(y// _ y/// e y(n) — 0)

or

Yl = Yn + h x a. (15)

The integration step h can be chosen arbitrarily for the calculation; the nu-

merical solution of (13) is absolutely accurate due to (15). ( In Fig.3.1 the solution
of (13) is shown for a=1, h=0.2s, tmax=10s).

=8l TEST1.GRP

Figure 3.1:

Note: The Modern Taylor Series Method used in the computations automat-

ically sets the value

ORD = 1.
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Example 2:
Yy =axt, y(0)=0. (16)

The numerical solution of (16) by the Taylor series method is

Ynp1 = Yo+ hxy + 5k y” (17)
(" =yW=..=y"=0),

or

yn_H:yn—l—h*a*tn—l—%*a. (18)

In Fig.3.2 in the part labelled TEST2 the solution of (16) is shown for a=2,
h=0.2s, tmax=10s.

TESTZ.GRP

Figure 3.2:

The calculation of the equation (16) can be carried out with an arbitrary in-
tegration step h. For illustration, a calculation for h=>5s is shown in Fig.3.2. (in
the part labelled Test2_5). The graphical software used connects the calculated
points of the numerical solution with line segments.

Note: The Modern Taylor Series Method used in the computations automat-
ically sets the value

ORD = 2.
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The analytical solution of (16) is

y=a—.

3.2 An Approximate Solution

Let us suppose again that the right-hand side of a first order differential equation
has the form of a polynomial of a degree k.

If the order of the integration method is less than k+1, we can get the numer-
ical solution of the differential equation (11) only approximately. The accuracy,
in such a case, is dependent on the integration step.

Example 3: Let us determine the value of the solution y of the following equa-
tion (19) at time t=10s

y' =6«t> y(0)=0. (19)

In the example we have k=5. If we use the 4th order numerical integration
method, i.e. if only the Taylor series terms up to the fourth power of h are only
taken into account, we obtain an approximate solution of equation (19). The
approximate solution y(10) of equation (19), is shown in Tab.3.

h y(10) rel.error(%) NRS
10 000000.000000000000 | 1.00E4-0002 1
1.0 999720.000000000000 | 2.80E-0002 10
0.1 999999.970179020196 | 2.98E-0006 100

0.01 1000000.000020105120 | 3.34E-0008 1000
0.001 999999.994871600780 | 1.95E-0007 10000
0.0001 | 999999.977767592815 | 2.86E-0006 | 100000

Tab.3

It can be seen in Tab.3 that we can get close to the exact solution of y(10)
by decreasing the integration step h (the exact solution is y = ¢%; for ¢ = 10s we

have y(10) = 1000000).
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In the column "NRS” the number of computation steps is given after which,
with the integration step h given, the point ¢,, = 10s has been reached.

Note: If we used the method of the corresponding order according to the exact
numerical solution by the Taylor series method

Yngl = Yn +A* 6515 FR2 1512 L A3 202 4 hU % 15 %42 + +h5 6%, + h®
we would obtain the exact solution y(10) for h=10s in one computation step.

Example 3 was chosen to stress

o the necessity of decreasing the integration step h (if the method order is
insufficient),

e the inconvenient fact of the increasing number of computation steps NRS
for y(10) ( in comparison to the exact numerical solution using the method
of the corresponding order),

e the inconvenient influence of the accumulated error when decreasing the
integration step h.

Similarly, if we use the 5th order integration method, again, we will obtain an
approximate solution y(10) of equation (19) at t = 10s. Results with a higher
accuracy ( in comparison to Tab.3) are shown in Tab.4.

h y(10) rel.error(%) NRS
10.0 000000.000000000000 | 1.00E4-0002 1
1.0 999990.000000000000 | 1.00E-0003 10
0.1 999999.999879020196 | 1.38E-0008 100

0.01 1000000.000020105120 | 3.37E-0008 1000
0.001 999999.994871600780 | 1.95E-0007 10000
0.0001 | 999999.977767592815 | 2.86E-0006 | 100000

Tab.4
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Chapter 4

HOMOGENOUS
DIFFERENTIAL EQUATIONS

Homogenous differential equations with constant coefficients are further typical
examples of technical initial problems.

Two examples of homogenous differential equations and their solutions by

the Modern Taylor Series Method will be analyzed in this chapter. The rather
detailed analysis can be applied to further types of problems.

4.1 Homogenous Equation - Example 1

Let us solve the differential equation

y' =y, y0)=1 (20)

A numerical solution of (20) by the Taylor series method (using (2)) is

yn—l—lzyn—I'h*yn—I'g_?*yn—l_—l_Z_}:*yn—l_ (21)
(y=y' =y"=....=y»),

or

Yntr = Yok (L+ 0+ 5+ 50 4 ), (22)

The numerical solution of (20) ( using (22) or (23)) will depend on the number
of Taylor series terms used.

23
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TEST3.GRP
. H i «T 1
_ORD 18
Y 2.71828182845985

“ORD :

_ORD 17
Y  2.71828182845985

oD Ok s oo

.80 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1.0 T

Figure 4.1:

Note : The analytical solution of (20) is
y = €. (23)

In Fig.4.1 the solution of (20) is shown. Fig.4.1 consists of two parts. The
part labelled TEST3 shows a calculation of the differential equation (20) for
integration step h=0.1s.

The part labelled TEST5 shows a computation with an integration step
h=0.5s. As expected, the value of ORD has automatically increased as h grows.
The value of y at time T=1s is of course the same in both parts of Fig.4.1.

Results illustrating the use of the Taylor series for applying a numerical inte-
gration method are shown in Tab.5. Tab.5 demonstrates the results of a numeri-
cal solution of the differential equation (20) after one computation step (with the
integration step h=1s).

In each line of Tab.5 the "Reduced value y(1)” of the numerical solution of
the differential equation (20) and the corresponding value of the ” Absolute error”
- for the method order ORD used are printed.

In the column ”Absolute error” we can read the difference between the ex-
act and numerical solutions. For the exact solution of the equation (20) for
t1 = h = 1s, in view of the equation (23), we have

y(1) = e' = 2.718281828459045235.....
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Absolute error

Reduced value y(1)

O
=
-

2. -0.718281828459045235
2. -0.218281828459045235
2. -0.051615161792378683
2.7 -0.009948495125712053
2.71 -0.001615161792378750
2.718 -0.000226272903489866
2.7182 -0.000027860205077168
2.7182 -0.000003058417775609
2.718281 -0.000000302885853176
2.7182818 -0.000000027312660911
2.71828182 -0.000000002260552523

2.718281828
2.7182818284
2.71828182845
2.71828182845
2.71828182845904
2.71828182845904
2.71828182845904
2.71828182845904
2.71828182845904

-0.0000000001 72876824
-0.000000000012286394
-0.000000000000815681
-0.000000000000050959
-0.000000000000003220
-0.000000000000000444
-0.000000000000000333
-0.000000000000000333
-0.000000000000000333

— o b b e e
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Do
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Tab.5: Long real arithmetic

In order to make the results of the numerical solution more clear and illustra-
tive only the digits tallying the digits of the exact solution are shown.

It follows from Tab.5 that the requirement of a higher method order is justi-
fiable - with the same integration step h a higher method order (i. e. with more
terms of the Taylor series) can yield a higher accuracy (it approximates better
the exact solution).

However, the increase in the accuracy of the result is not unlimited. In Tab.5
the accuracy stops increasing when the ORD reaches the value of 18. This is
caused by an underflow during the computation of the higher order Taylor series
terms. The addition of these terms changes neither the resulting value of 1,4
nor the absolute error - the absolute error has reached its saturated value ESAT
(the value of ESAT depends on the word width of the arithmetic of the computer
used).

4.1.1 Accuracy and Word Width

The accuracy of the result can be influenced in a considerable way by the word
width. For instance when the word width is 32 bits and the integration step
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h=1s, only the accuracy of computation of the equation (20) shown in Tab.6 can

be reached.

HOMOGENOUS DIFFERENTIAL EQUATIONS

Reduced value y(1) | ORD | Absolute error
2. 1 -7.183E-0001
2. 2 -2.183E-0001
2.7 3 -5.162E-0002
2.71 4 -9.948E-0003
2.718 ) -1.615E-0003
2.7182 6 -2.263E-0004
2.7182 7 -2.785E-0005
2.718281 8 -3.053E-0006
2.718281 9 -2.980E-0007
2.7182818 10 -2.421E-0008
2.71828182 11 1.863E-0009
2.71828182 12 1.863E-0009
2.71828182 13 1.863E-0009

Tab.6: 32 bit arithmetic

With a specially constructed 128-bit arithmetic a very high computation ac-
curacy for the equation (20) can be reached even with the integration step h=1s

(Tab.7).

Given an integration step h, it is very important

e for the absolute error to decrease with an increasing word width.,

e for the absolute error of the solution to decrease with an increasing method

order ORD.
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Reduced value y(1) ORD Abs err
2. 1 -7.183E-0001
2. 2 -2.183E-0001
2.7 3 -5.162E-0002
2.71 4 -9.948E-0003
2.718 5 -1.615E-0003
2.7182 6 -2.663E-0004
2.7182 7 -2.786E-0005
2.718281 8 -3.059E-0006
2.7182818 9 -3.029E-0007
2.71828182 10 | -2.731E-0008
2.718281828 11 -2.261E-0009
2.7182818284 12 -1.729E-0010
2.71828182845 13 -1.229E-0011
2.71828182845 14 | -8.155E-0013
2.71828182845904 15 | -5.077E-0014
2.718281828459045 16 | -2.976E-0015
2.7182818284590452 17 | -1.648E-0016
2.71828182845904523 18 | -8.652E-0018
2.7182818284590452353 19 | -4.315E-0019
2.7182818284590452353 20 | -2.050E-0020
2.7182818284590452353602 21 -9.300E-0022
2.71828182845904523536028 22 | -4.036E-0023
2.7182818284590452353602874 23 | -1.679E-0024
2.7182818284590452353602874 24 | -6.704E-0026
2.718281828459045235360287471 25 | -2.575E-0027
2.7182818284590452353602874713 26 | -9.523E-0029
2.718281828459045235360287471352 27 | -3.397E-0030
2.7182818284590452353602874713526 28 | -1.170E-0031
2.718281828459045235360287471352662 29 | -3.896E-0033
2.71828182845904523536028747135266249 30 | -1.255E-0034
2.718281828459045235360287471352662497 31 -3.910E-0036
2.7182818284590452353602874713526624977 32 | -1.102E-0037
2.7182818284590452353602874713526624977 33 4.408E-0039
2.7182818284590452353602874713526624977 34 4.408E-0039
2.7182818284590452353602874713526624977 35 4.408E-0039

Tab.7: 128 bit arithmetic

27
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4.1.2 Evaluation of the Computation Speed

Further important results can be achieved by experimental calculations in solving
numerically the differential equation (20) with an explicit use of the Taylor series.

The exact solution y(1) = €' can also be approximated by solving the equa-

tion (20) with the integration step h = 0.5s ( Tab.8 - two computation steps
are necessary in this case) or with the integration step h = 0.1s ( Tab.9 - ten
computation steps are necessary).

Only those digits ( in the result of the numerical solution of (20)) are printed
which tally the exact value.

Reduced value y(1) | ORD Absolute error
2. -0.468281828459045310
2. -0.077656828459045312
2.71 -0.009514467347934263
2.7182 -0.000935637052795313
2.7182 -0.000077008038038451
2.718281 -0.000005449497788135
2.7182818 -0.000000338137442601
2.71828182 -0.000000018677261404

-0.000000000929473165
-0.000000000042083559
-0.000000000001747935
-0.000000000000067057
-0.000000000000002442
-0.000000000000000222
-0.000000000000000222
-0.000000000000000222

2.7182818284
2.71828182845
2.71828182845
2.71828182845904
2.718281828459045
2.718281828459045
2.718281828459045
2.718281828459045

I T T Gy Sy
S AR e LD © 0O T WD

Tab.8: Long real arithmetic



4.1. HOMOGENOUS EQUATION - EXAMPLE 1

Reduced value y(1) | ORD Absolute error
2. 1 -0.124539368359045440
2.71 2 -0.004200981850820962
2.718 3 -0.000104565977435356
2.7182 4 -0.000002084323879603
2.718281 5 -0.000000034655339265
2.71828182 6 -0.000000000494185248
2.71828182845 7 -0.000000000006168954
2.71828182845 8 -0.000000000000068612
2.71828182845904 9 -0.000000000000000555
2.718281828459045 10 0.000000000000000222
2.718281828459045 11 0.000000000000000222
2.718281828459045 12 0.000000000000000222

Tab.9: Long real arithmetic
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The results in Tab.8 and Tab.9 are again characterized by the saturated abso-
lute errors ESAT ( the computation is terminated when three consecutive absolute
error values have not changed). However, the saturated absolute error ESAT is
reached using a lower ORD (as compared with Tab.5). This is due to the fact
that with the same type of arithmetic higher order Taylor series terms will have

no effect when the integration step h is shortened. Up from a certain method or-
der a shorter integration step h causes an underflow so that the adding of further
Taylor series terms does not change the result.

Similarly, the results for the integration step h= 0.01s are in Tab.10 and the

results for the integration step h= 0.001s are shown in Tab.11.

Reduced value y(1) | ORD Absolute error
2.7 1 -0.013467999037519162
2.7182 2 -0.000044965899087201
2.718281 3 -0.000000112359411108
2.718281828 4 -0.000000000224644081
2.71828182845 5 -0.000000000000374145
2.71828182845904 6 -0.000000000000001332
2.71828182845904 7 -0.000000000000001332
2.71828182845904 8 -0.000000000000001332

Tab.10: Long real arithmetic
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Reduced value y(1) | ORD Absolute error
2.71 1 -0.001357896223154187
2.718281 2 -0.000000452707280774
2.718281828 3 -0.000000000113170251
2.7182818284590 4 -0.000000000000022982
2.7182818284590 5 -0.000000000000022982
2.7182818284590 6 -0.000000000000022982

Tab.11: Long real arithmetic

It follows from Tab.5, Tab.8 to Tab.11 that the saturated absolute error ESAT
is reached with different numbers of Taylor series terms.

A different question is, of course, with what speed can the result be obtained if
a shortened integration step h is used (with the corresponding saturated absolute
error ESAT).

This speed evidently depends on the technical construction and on the num-
ber of operations required. For evaluation of the computation speed the equation
(22) was rewritten into the form

Ynit = Yo + DY 1, + DY 2, + ... + DY P,, (24)
where
DY1l, =hxy,

DY?2, =LxDyl,

DY P, =L« DY (P —1),.

The relation between the number of operations ( required for reaching the
saturated absolute error ESAT) and the integration step h is given in Tab.12.

h ORD | NRCS | Addition | Multipl. | DIV
1 18 1 18 18 17
0.5 14 2 28 28 26
0.1 10 10 100 100 90
0.01 6 100 600 600 500
0.001 4 1000 4000 4000 3000

Tab.12

In the column ”DIV” ve have the number of division operations, in the column
"Multipl.” we have the number of product operations and in the column ”Ad-
dition” the number of addition operations necessary for computing the results
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according to Tab.5, Tab.8, Tab.9, Tab.10 and Tab.11. In the column "ORD” in
Tab.12 there is always the value of the method order with which the absolute
error (according to Tab.5, Tab.8, Tab.9, Tab.10, Tab.11) reached its saturated
value ESAT.

In the column "NRCS” | to complete the picture, the number of computation
steps is shown after which, given the integration step h, the point ¢, = 1s has
been reached (i. e. the point at which the exact solution is y, = e').

Regardless of the practical construction of addition, multiplication and divi-
sion it is clear from Tab.12 that the number of operations ( required for reaching
the highest accuracy - with the corresponding integration step h) increases as the
integration step h shortens.

Shortening the integration step h does not mean, however, only an increase
in the number of operations. It is also characterized by an existence of the
accumulated error - the error from one step is carried to the following steps.

This fact can be clearly demonstrated by studying the absolute errors in Tab.5,
Tab.8 to Tab.11. It is obvious that the optimal integration step h producing the
least saturated absolute error ESAT of the computation exists.

It is certainly very advantageous to do the computation with the optimal
integration step h if we want to reach a high accuracy. Using the same arithmetic,
the accuracy reached with the integration step h = 1s is by two orders better than
with the integration step h = 0.001s.

Futhermore, a very important conclusion can be drawn from Tab.12 - the
number of operations (addition, division, and multiplication) with the integra-
tion step h = 1s is less than the corresponding number of operations with the
integration step h = 0.001s.

Briefly, it means that the computation is done most precisely and at the same
time most quickly with the optimal integration step h (and the corresponding
optimal method order). A computation done with other than optimal integration
step h is always slower and less accurate.

4.1.3 Experimental Time Evaluations

The following tables (Tab.13,Tab.14,Tab.15) are of great importance.
Tab.13 is the same as Tab.5 (with "Reduced value y(1)” and "ORD”) but

brings time evaluation of the computation. For instance, using the 17th method
order requires 0.983 ms.
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Reduced value y(1) | ORD | Time (ms)
2. 1 0.084
2. 2 0.140
2. 3 0.195
2.7 4 0.248
2.71 ) 0.307
2.718 6 0.365
2.7182 7 0.422
2.7182 8 0.468
2.718281 9 0.531
2.7182818 10 0.589
2.71828182 11 0.649
2.718281828 12 0.693
2.7182818284 13 0.757
2.71828182845 14 0.828
2.71828182845 15 0.861
2.71828182845904 16 0.911
2.71828182845904 17 0.983
2.71828182845904 18 1.033

Tab.13

If we wanted to reach the same accuracy by the 4th order Runge-Kutta
method, we would have to use a substantially shorter integration step and the
computation time would be 271.229 ms ( Tab.14).

h(s) | Reduced value y(1) | Time (ms)

1 2.7 0.299

0.1 2.7182 2.691

0.01 | 2.718281828 27.500

0.001 | 2.71828182845904 271.229
Tab.14

Tab.15 shows that it is possible to calculate the differential equation (20) with
the integration step as great as 400s, which requires the use of 575 Taylor series
terms. The computation takes 31.999 ms.
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h(s) | ORD | Time (ms)
1 18 1.033
10 43 2.504
20 64 3.560
30 82 4.642
40 99 5.551
50 115 6.487
100 200 11.282
400 575 31.999

Tab.15

Note: All time evaluations were obtained on the ACA 32000 computer (based
on National Semiconductor 32000 processor).

4.2 Homogenous Equation - Example 2

Let us solve the differential equation

The numerical solution of (25) by the Taylor series method is
Topr = T # (L —h 48 -2 ), (26)

Note : The exact solution of (25) is
z =€ (27)

In combination with (20) the equation (25) can be called a ”check function”.
The reason for this is that for the product of the analytical solution of equations

(20) and (25) we have
z=yxx =€ xe =1 (28)

and thus we can use (28) for testing the accuracy of the numerical solution.
The system of equations (20),(25),(28) has been selected in such a way that the
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high accuracy of the computation is again shown. The function z is constantly
equal to 1 ( Fig.4.2).

[e1
oT 1 1

X 8.367879441171442 ¢

Y 2.71828182845985 |

z 1 0

"

o

o

"

"

"

i

"

i

DIS.DD - U;ZD ‘ 0;40 : 0;60 ‘ D.‘BD ‘ l;DD «T ‘

Figure 4.2:

The computation in Fig.4.2 starts at time point zero and terminates at time
t=1s. Corresponding values of the variables at time point t=1s are shown in the
upper right-hand corner of the Fig.4.2.

Note:
Similarly, a check function of a homogenous equation
y'+y=0 y(0)=0, y(0)=1

(or equivalent system

can be written in a form
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Time functions of x, y and ERR ( ERR = z — 1) are in Fig.4.3.

[t]
T 18
ERR 5.96311194867E-801
X  -8.839871529876452 |
Y 0.54482111888937

A
.
:
:
:

Figure 4.3:

Conclusion: The solution of homogenous differential equations is one of the
most important applications of the Modern Taylor Series Method.
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Chapter 5

VAN-DER-POL’S EQUATION

As an application of the Modern Taylor Series Method the solution of the well
known Van-der-Pol’s equation

2
E - D)% 4y =0
is described.

et

dy __
2 — Ui

Then

dyi __

D=y =yt = Dy

The corresponding source text in TKSL/386 is

var
y.y1;
const
mi = 3,

pl =0, p2 =1,
tmax 0,

1 eps = 1E-20;
system
y’ =yl & pl;
y1’= mi*xyl*x(1-y*y)-y & p2;
sysend.

37
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Time functions ORD, y and y1 are in Fig.5.1. The aim of Fig.5.1 is to point
out two things. First, the values of ORD are high and second, these values vary
considerably during the computation.

r[l] VUAN_DER.GR! [t]
54 ;- : e : PR LR : g ; “T ].B

: _ORD 17

Y 1.74645298681621
Y1 -8.272153585859185

10| : S IR O : : S

a 1 2 3 4 s 3 7 8 9 10 «T

Figure 5.1:

Fig.5.2 shows the solution in a better scale. The solution of the Van-der-Pol
equation is shown using phase-plain in Fig.5.3.



mLl VUAN_DER1.GRP [$]

18
1.74645298681621
-8.272153585859185
Figure 5.2:
=[] UAN_DERZ .GR [t

¥y — s e g e R e oo i :

Y 1.64786421996474
Y1 3.33818914989862

5 : . : : : : : : : .
-2.5-2.0-1.%-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 +Y

Figure 5.3:
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Chapter 6

TRAJECTORY OF AN
ELECTRON

When analyzing the trajectory of an electron we use the equation for the force F
acting on an electron in an electromagnetic and electrostatic field

F=q(E+7xB).
By substituting
| = md,

defining a particular electromagnetic and electrostatic field ( and the direction
of the velocity vector )

B, =B,=0, E. =0, v, =0,
decomposing into the directions of the x and y axes
b =q(E; + v, B.)

Fy=q(E, — v, B.),

or

m%E = q(E. + %B.)

di?
2
mil = Q(Ey - %BZ)

di?

and supposing

41
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4= 176 % 10" [m2V 1572

.

we get the corresponding source text in TKSL/386 :

var
X,y,VX,Vy,eX,ey;
const
tmax=8e-11,
dt=1e-12,
eps=1e-20,
bz=0.5;
system
ex=0;
ey=0;
x’=vx &0;
y’'=vy &0;
vx’=-1.76ell*(ex-vy*bz) &-8e7;
vy’=-1.76ell*(ey+vx*bz) &O0;
sysend.

Fig.6.1 supports the well-known fact that an electron moves in a circle in a

magnetic field (B,=0.5T, E,=FE,=0, v,(0)= -8 * 107ms~1).

—[a1 ELEM.GRP ::]1
¥ e o B I I I st . :

: : : : : : : i X -6.21199117086E-8084
1.8} ERUOROS U O e —— i ¥ z.48157494273E-0004
E-3 H : : H H : o H H F o

b
s
wn
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i
Wb

Folad
i
PATS]

mE mE e
0h  wa e

[
i
Wb

o]
i
W

—0.0008 —0.0009 o 0.00049 o.0o008 X

Figure 6.1:
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Figure 6.2:

Fig.6.2, in turn, shows that in an electrostatic field an electron moves along

a parabola (E, = —10"Vm™ E, = 0, B, = 0,v,(0) = 6 * 107ms™1).

In a constant electrostatic (£, = 0, £, = 10"Vm™") and at the same time in
a constant electromagnetic field (B, = 0.57"), an electron follows the trajectory

shown in Fig.6.3.

In the part denoted by ELEME the initial velocity of the electron is v,(0) =
6x10"ms~! | in the part denoted by ELEMEI1 the velocity is v,(0) = —6%107ms™!
( the velocity vector has the opposite direction).

In a constant magnetic field (B, = 0.57") where the electrostatic field is at
the same time defined by the expressions

E, = —107 - sinb - 10%¢[Vm™!]

E, = —107 - cos5 - 10%[Vm™1]

the obtained trajectory is shown in Fig.6.4 (v,(0) = —3 % 107ms™1).

For completeness’ sake, the divergencies in the directions of x and y axis from
Fig.6.4 as functions of time are shown in Fig.6.5.
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ELEME.GRP

o : : . : . :
~-0.008 ~0.006 ~0.004 ~0.002 0.0 +X

«¥ -0.88714883339277364
Y 1.22658586565E-A012

—=[al ELEME1.GRP

~-0.008 ~0.006 -0.004 ~0.002 0.0

.“x

[117!
«X  -B.88713993321445273
Y —2.4531?912938E—3812§

Figure 6.3:

The aim of this chapter is to point out that physical problems can be trans-

formed to solving differential equations. As in the previous chapters, the Modern

Taylor Series Method can also be used.
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Chapter 7

ELECTRICAL CIRCUITS

Solving electrical circuits is a typical problem leading to solving differential equa-
tions and the Modern Taylor Series Method can again be used. We start from
Kirchhoff’s laws. A simple example follows.

For a serial circuit RLC connected to a voltage source u we have
ur, +Uur +uc =u

or

L&+ Ri+ & [idl = u.

By substituting

v = %(u — R — %y)

Time functions ugr, ur, uc for u = 1V, R = 1000Q, L = 1H, C = 107°F are
shown in Fig.7.1.

47
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mLl RLC.GRFP [t]
: : : ; ; : : : T a.81
uc  1.88217811673933
UL -8.8875555973553857
UR  8.8853854886168595

0.4 N N i i N N i N N
0.000 0.005 0.010 +T

Figure 7.1:

The corresponding source text in TKSL/386 is

var i,y,u,UR,UL,UC;

const R=1000,L=1,C=1E-6,tmax=0.01,dt=0.0001;
system

u=1;

i’=1/L*(u-R*i-1/C*y)  &0;

y’=1 &0;

UR=R*1;

UC=1/Cx*y;

UL=u-R*i-1/Cxy;

sysend.

Fig.7.2 ( the part labelled LVAR) shows the current [1=i and voltage V1 = u¢
of the serial circuit RLC ( R = 48.5Q, Lo = 0.054H,C' = 200x107° [") as functions
of time (for u=0, V1(0) = uc(0) = 500V) if the time function of inductivity is
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defined as
L=1"Ly+ 1000t2[H].

For completness’ sake the part labelled LVARI1 shows time functions [1N=i
and VIN =u,. for L = Lg.

LUAR.GRP

T a.82
11 8.713374787954142
IIN 8.878325644891682

[T = S =R = R = N = I = B = R =

0.00 0.01 0.02 T

[t]
T a.82

- et b - : < U1 79.9738645288294
,,,,,,,,, i VIN 54.86876838996388

0.00 0.01 0.02 «T

Figure 7.2:
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Chapter 8
MECHANICAL SYSTEMS

Analyzing mechanical systems is another typical application of a numerical method
of solution of differential equations. This time we start from Newton’s kinetic
laws. Similarly as in the electron case the force F' is substituted by the expression

F = md.
As an example, the coupled mass-spring-damper can be described by

d2y;

miGE = —kyyn + ka(ya — y1) + Co(42 — 2 — ¢y 1)

de;f%) = —ka(y2 —y1) — Cz(d% - C%l)

Let dvi — vy, dv2 — .

For particular parameters we have the following source text in TKSL/386

var vl1,v2,yl,y2;

const tmax=2, dt=0.01;

system
v1’=-10%v1+5*xv2-1250*y1+1000*y2 &O;
v2’=5%v1-5*xv2+1000*y1-1000*y2 &0;

yil’=v1l &0;
y2’=v2 &-0.45;
sysend.
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Figure 8.1:

Fig.8.1 shows time functions of deviations Y1 and Y2 of the system. The
dead condition is Y1=0, Y2=0. Here we analyse a case when the mass my was
deflected in the initial state to a position Y2(0)=-0.45m.



Chapter 9
PHYSICAL PENDULUM

A simple physical pendulum whose analysis is a typical demonstration example

in world simulation languages ( ACSL, EASY5x, HYBSIS.. .. ) obeys the equation

2y = —zh + kysinz,.

The physical pendulum can be described (for particular parameters) by the
following source text (in TKSL/386):

var
z1,z2;
const
k1 = -31.415;
const
tmax = 5, dt=0.01;
system
z1’=-z1+kl1*sin(=z2) & 13;
z2'=z1 & 0O;
sysend.

Time functions of the angular velocity 72 and the deviation Z1 of a physical
pendulum ( for the case when the pendulum in its motion has not reached the
top dead point) are in Fig.9.1 (in the part labelled PEND). In the part labelled
PENDI1 the corresponding x-y plot is shown.

In Fig.9.2 (in the part PEND2) the time functions are plotted (for the case

when the pendulum in its motion has passed the top dead point). In the part
labelled PEND3 the corresponding x-y plot is shown.
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PHYSICAL PENDULUM
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Chapter 10
DISCONTINUITIES

A demonstration of applying the Modern Taylor Series Method to solving prob-
lems with discontinuities is in Fig.10.1.

[e] DIS.GRP [$]

—— TSR ]

: Y 0.486813812228354 %

.90 ... R %

0.80} e d Rt B &

"

0,70} R g

"

0.60 | f o g

0.50 | ftnc R %

0,80 | N ] %

0. 30 | %

0. 20 %

0. 10 [ ‘

5.00 : : : : : :

0.0 0.5 1.0 1.9 2.0 2.5 3.0 «T

Figure 10.1:
Here two separated differential equations

y'=2-y (29)
y'=—y (30)

are in fact solved according to which condition is fulfilled. The calculation
starts at the initial condition y(0)=0. In the initial state the equation (29) is
solved. After the level=1 is passed, the system is switched to a new state and

55



56 CHAPTER 10. DISCONTINUITIES

the equation (30) is solved. The point of discontinuity is determined by bisecting
the integration step.

The corresponding source text in TKSL/386 is:

var y;
const level=1,tmax=3,eps=1e-18;
system

y’=2-y &0;

case y of

>level:level=0.4; y’=-y &1;
else level=1; y’=2-y &0.4;
esac;

sysend.

To solve differential equations with discontinuties the TKSL/386 uses the
CASE construction.

Thus the absolute value is solved in the following way:

system
x=sin(t);

case x of

>0: y=sin(t);
else y=-sin(t);
esac;

sysend.

Dead zone uses the CASE construction:

x=sin(t);

case x of
>0.5: y=x-0.5;
>-0.5:y=0;
else y=x+0.5;
esac;

Step function uses the CASE construction:

x=sin(t);

case x of

>0.5: y=1;
>-0.5:y=0;
else y=-1;
esac;



Relay uses the CASE construction:

x=2*%sin(t);

case x of

<level: y=0; level=1;
else y=1; level=0;
esac;

Saturation uses the CASE construction:

x=sin(t);
case x of
>0.5: y=0.5;
>-0.5:y=x;
else y=-0.5;
esac;

Signum uses the CASE construction:

x=sin(t);
case x of
>0: y=1;
else y=-1;
esac;

Fig.10.2 and Fig.10.3 show a test of typical nonlinear functions. The part
labelled ABS shows the absolute value , the part labelled DZON shows the dead
zone , the part labelled SAT shows the saturation, the part labelled Q shows the
step function, the part labelled REL shows a relay with hysteresis and the part

labelled SIG1 shows the signum function.
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Chapter 11

STIFF SYSTEMS

In many areas of science and technology the problems of the so called stiff sys-
tems are encountered. By a stiff system of differential equations we understand
a system with considerably different time constants (i.e. a system with consider-
ably different eigenvalues of the corresponding Jacobi matrix). A stiff and stable
system has the following properties

Re); <0,
mazx | Re); |[>> mun | Re); |,

where A; denotes an eigenvalue of the Jacobi matrix of the system and Rel;
its real part.

The stability and exactness are two basic problems connected with numeri-
cal solutions of stiff systems. A number of one-step, multiple-step, explicit and
implicit methods have been developed that are more or less suitable for solving
stiff systems. Mostly they are modifications of well-known numerical methods.
It is the aim of this chapter to evaluate the possibilities of the stiff systems being
solved by the Modern Taylor Series Method.

11.0.1 Example 1

Let us focus our attention on particular problems with the integration of stiff
problems. Let us consider a system of linear differential equations

y1’'=y2, y1(0)= 1 (31)

y2°'=-1000y1-1001y2, y2(0)=-1 (32)
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with the exact solution

y1 = e, y = —e "

The general solution of the system (31),(32) is in the form
i = Aot + Bie=10001

1 =1,2 A B; are constants

and the eigenvalues of the matrix of the system are

)\1 — —17 )\2 - —1000

The corresponding time functions Y1 and Y2 of the system (31),(32) are in
Fig.11.1.

mLy STIFEX.GRP [t]
: ; ; ; : T 3

Y1 8.8497878683678639

Y2 -8.8497878683678639

0.0 0.5 1.0 1.5 2.0 2.9 3.0 «T

Figure 11.1:

Fig.11.2 illustrates problems of stiff systems. The part labelled STIFEX1
shows the solution and the function ORD for the system

y1’'=y2, y1(0)= 1 (33)

y27=-100y1-101y2, y2(0)=-1. (34)
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This is a case when the difference of eigenvalues is small.

STIFEX1.GRP
B H H H H H «T 2.999
2l ORD i@ TR TR _ORD 8

: : : Y1  0.84983686803380659
Y2 -0.84983686803380659

[t]

&0 ;- PPN S RPN x P E oT Z.999
_ORD 51

Y1  B8.8498368803380659
Y2 -B.8498368803380659

Ty
o : )
vz
-1
. .

Figure 11.2:

If the difference of eigenvalues of the system is large (system (31),(32)), there
is a significant increase in the value of ORD ( in the part labelled STIFEX2).

11.0.2 Example 2

The situation is similar when solving the next system:

y1°=-0.0001%y1-499.9999*y2, y1(0)=2 (35)
y2'= -500%y2, y2(0)=1 (36)
y3'= 19500%y2  -20000%y3, y3(0)=2 (37)

It is typical of stiff systems that their solutions have to be found on long intervals.

Even though the solution components Y2,Y3 at time T=0.099999s are neg-
ligible, the computation must still be carried out with a small integration step
and a high method order ORD ( Fig.11.3). A detail of the origin of a solution
of the system (35),(36),(37) is illustrated in the Fig.11.4 ( Tmax=0.001s for the
part labelled STIF_L1 and Tmax=0.1s for the part labelled STIF_1.2).
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11.0.3 Example 3

The following example of a stiff system tests the ability of the numerical method
to handle discontinuities. The problem is as follows

/

Yy = c1* (y2 + 2 — y1)

Yy = c3 % (c4 — y2).

The task is to find the position of discontinuities for te < 0, 5s >.
Parameters ¢; and ¢3 remain unchanged during the simulation:

c1 = 2.7%10%, c3 = 3.5651205.

The system operates in two states:

e ¢ = 0.4 and ¢4 = 5.5 when the system is in state 1 (y1(0) = 4.2 and
y2(0) = 0.3). The system remains in state 1 as long as y; < 5.8.

o When the system switches to state 2, parameters ¢; and ¢4 change to ¢; =
—0.3 and ¢4 = 2.73. The system remains in state 2 as long as y; > 2.5.
When passing this instance the system switches back to state 1.

The corresponding source text in TKSL/386 is:

var vi,y2;
const level=5.8,tmax=5,eps=1e-18,
c2=0.4,c4=5.5;
system y1’=2.7e6*(y2+c2-y1) &4.2;
y2’=3.5651205%(c4-y2) &0.3;
case yl of
>level: level=2.5;
c2=-0.3;c4=2.73; { first task}
{ c2=1.3;¢c4=4.33;..second task ) }
else level=5.8;
c2=0.4;c4=5.5;
esac;
sysend.
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The time function of the solution Y1 (first task) is plotted in Fig.11.5 - in the
part labelled DIS_STT1.

DIS_ST1.GRP

«T 4.99584632815481
Y1  5.79821839798854

a : : : : : : . : : :
6.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 «T

[a] DIS_STZ.GRP [T]
|E : ; ; : : : i : : «T 4.99568841323578
Y1l 5.63800182477157

o : : : : . : : : :
¢.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 T

Figure 11.5:

The positions of each of the five discontinuities obtained from solving the first
task are in Table 16. The results of the computation shown in the table are of
course produced with the full accuracy, as it is characteristic of TKSL.

1.1083061677721695
2.12968535515772928
3.0541529070076332
4.07553209439319275
4,99999964623928239

Tab.16

The time function of the solution Y1 ( second task - when we change the
state 2 parameter values to ¢; = 1.3,¢4 = 4.33 ) is plotted in Fig.11.5 - in the
part labelled DIS_ST2.



11.0.4 Example 4
The following nonlinear stiff system has also been solved by the TKSL/386:

Yy = —0.04 % y; + 10000 * y5 * ys y1(0) =1 (38)
yh = 0.04 % y; — 10000 * ys * y5 — 30000000 * ys y2(0) =0 (39)
yh = 30000000 * 115 * 1 y3(0) =0 (40)

For a nonlinear system of differential equations the eigenvalues are given by
the Jacobi matrix J . In nonlinear systems of differential equations the eigenval-
ues of the matrix J depend on the time t and they change during the integration.
The system above describes fast chemical reactions.

The results are in Fig.11.6. It is typical of the system (38),(39),(40) that
SUMA =1 in the entire time interval (SUMA = y; + y2 + y3).

[a] STIF_N1.GRP
' ©osumA Lo

[t]
T 498 5488398625
SuMA 1
Y1 8.423835341322523
Y2  2.88943772940E-8606
Y3  8.576961769239748

L¥zZ

0 50 100 150 200 250 200 350 400 450 So00

Figure 11.6:
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11.0.5 Example 5

The following example shows that a special class of stiff systems can suitably be
approximated by a time delay.

Let us analyze the system

y = —ay+ az, y(0) = 0;
=

sint.

The corresponding source text in TKSL /386 ( for particular values of param-
eters) is

var y,zZ,w;
const a=5,tmax=10,eps=1e-20;
system

y’=-aky+a*z &O0;

z=sin(t);

sysend.

The time delay of the solution Y with respect to the input function z can be
seen clearly in Fig.11.7 for « = 5 and in Fig.11.8 (in the part labelled STIFSIN2
for a = 8 and in the part labelled STIFSIN2 for a« = 100).

=11 STIFSIN1.GRP [
1.0 : 4 ; : : E : g ; «T 18
N\ ; © 1Y -8.36173731257123
0.8 Mo N 2 -8.54482111888937

1] 1 2 E] 4 5 3 7 8 g 10«7

Figure 11.7:
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STIFSINZ .GRP
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[t]

—[m]
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e -8.535576837914814 ||
-8.54482111888937

Figure 11.8:

Let us define the error ERR as the difference between the numerical solution
y and the input function with time delay

ERR =y — sin(t — 1).

The time function of the absolute error ERR (resulting from approximating
the solution by the time delay) is shown in Fig.11.9. The part labelled APPSI1
shows the function ERR for a=100, the part labelled APPSI2 for a=1000.

It is clear that for @ — oo the absolute value of ERR in a stable state converges
to 0.

Note:

The time delay of the input function z (Fig.11.10) can be produced by the
Taylor series expansion or by the so called Pade expansion.
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STIFF SYSTEMS
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Chapter 12

DEFINITE INTEGRALS AND
INTEGRAL EQUATIONS

Definite integrals and integral equations, due to the number of applications, are
very important mathematical tools. Their solution using the Modern Taylor
Series Method is the subject of this chapter.

The problem of solving a definite one-dimensional integral taken as a func-
tion of the upper boundary can be transformed to solving a system of differential
equations.

Let a definite integral

9.853

y= [ e*"midt (41)
0

be given.

The definite integral can be rewritten in the form:

The initial conditions can be obtained by substituting the value of the lower
boundary for the variable t of the function z.

The numerical solution of the integral is obtained at the point corresponding
to the upper boundary of the integral (¢,,,, = 9.853s).
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The corresponding source text in TKSL/386 is

var y,z;

const tmax=9.853,
eps=1e-20;

system

y’=z &0;

z=exp(2*sin(t));

sysend.

The time functions of the value of the integral y and the function z being
integrated are in Fig.12.1. A particular calculation of the integral for T=9.853s
is in the right-hand part of Fig.12.1.

Ll DEF_INT.GR! [$]
5340 - . ......... . FRRE s : : ......... : T 9.853
: : Y 27 .8603067668867
2 B.435827795594169
25 | ﬁ ......... ;m : }“mg ........ : : .g ......... ;
N N N Y N M
20 |- H e TR e forerens ; TR SO !
L 57 TR S ......... ........ Seiinaan 4 ....... .........
101- H ........ B ........ 3 : .........
Sl F iR R
o i N N 2 M i N N M
a 1 2 3 4 s 3 7 8 9 10 «T

Figure 12.1:

Applying the Modern Taylor Series Method to solving the Volterra integral
equation, we get a following computation scheme.

Let an integral equation
1

y(t) = sint 4+ [y(s)ds (42)
0

be given.
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The integral equation can be rewritten in the form
y' = cost +y. (43)
Note:

The exact solution of (43) is

(et +sint—cost)

y= 2
The source text in TKSL/386 is

var y,X;

const tmax=10,eps=1e-20,dt=0.1;
system

y’=cos(t)+y &0;
x=(exp(t)+sin(t)-cos(t))*1/2;
sysend.

The corresponding time functions of X and Y are shown in Fig.12.2. X is the
exact solution. Y is the numerical solution of (43). It is very illustrative to
compare both results.

[t]
18
11813.3884226125
11813.3884226125

[e]
Fz. S
E3 : : :

10
E3 : :

Figure 12.2:
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Chapter 13

SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

Systems of linear algebraic equations ( SLAE) can also be solved by the Modern
Taylor Series Method. In this case the system of linear algebraic equations

Ax-b=0 (44)

must be transformed to a system of differential equations ( SDE )

Ax - b =-x". (45)

Supposing that the real parts of roots of the characteristic equation

|A+AI|=0 (46)

where I is the unit matrix, are negative, the derivatives on the right-hand side
of the system (45) will be equal to zero in a stable state and the solution of the
SLAE will be identical with the solution of the system of differential equations
(SDE).

Since not every matrix A satisfies the condition (46), sometimes the system
of differential equations (44) has to be transformed to a stable system. One of

the ways to do this is to multiply the whole system of algebraic equations by
transposed matrix AT from left, so that the actual system to be solved is

ATAx — ATb = —x'. (47)

If the matrix A is non-singular, which is a general condition for a SLAE to
have a solution, the resulting matrix AT A is positively definite.
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The matrix A is real, thus AT A is positively stable and so is the system
(47). A transformation performed by multiplying A by the transposed matrix
AT has a special property - the resulting functions resemble a strong attenuation.

The time function of the solution of SLAE can only take on one of the forms
shown in Fig.13.1.

1
8.79996368085619
1.88884539992958
8.499496806858146

[t]

1
-8.79996368085619
-1.88884539992958
-8.499496806858146

-1.4 . : : : : : : : .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.2 0.9 1.0T

Figure 13.1:

As a demonstration Fig.13.2 shows a numerical solution of the Example
SLAEL (including ORD - in the part labelled SLAE_ORD) and, in a better scale,
in the part labelled SLAE.

Example SLAEL:

System of linear algebraic equations

-1
4

x1 - 2%x2
-b*xx1 + 3*x2

has been transformed to

2l = =26%2x1 + 17+ 22 —21

22/ =17+ 21 — 13 % 22 4+ 14.
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Note: The computation process finds automatically the roots of the given
system of linear algebraic equations. The roots are found when

SLAE_ORD .GRP
- ' . oT 15

_ORD 5

X1 -8.714285713729933

X2  8.142857143664669

[t]
T 3
X1 -8.718986878956895
XZ  8.147651372217613

8 . : : : : :
0.0 0.3 1.0 1.5 2.0 2.5 3.0 «T

Figure 13.2:
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Chapter 14

PARTIAL DIFFERENTIAL
EQUATIONS

In practical applications, the second order partial differential equations ( PDE )
and in particular the linear ones (elliptic, hyperbolic and parabolic) are of special
importance. In second order linear partial differential equations with constant
coefficients, it is quite easy to obtain the exact solution for some special initial
and boundary problems, which makes it easier to compare the methods used and
asses their practical value for solving problems with other initial and boundary
values, problems with non-constant coefficients or nonlinear problems.

Numerical methods of solving PDE’s based on approximations of the deriva-
tives by differences are among basic methods. Let us mention the method of grids
and the method of lines. If we cover the space of independent variables with a
grid of a finite number of nodes and replace the derivatives by differences using
only values in chosen nodes, we will get the method of grids and the solution
of a PDE is transformed into the solution of a system of algebraic equations. If
we leave the derivatives of one variable continuous and replace the derivatives of
other independent variables by differences, we will get the method of lines. Thus
the solution of a PDE is transformed into the solution of a system of ordinary dif-
ferential equations and the system can be solved by means of the Modern Taylor

Series Method.

After expressing the second derivative, it is possible, in the simplest case, to
use the symmetric formula for the three-point approximation

U(xt) _ yr—1—2Ur+yr41
ox2 T (Ax)?

7
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14.1 Parabolic PDE

A typical parabolic equation is the equation for heat conductivity. It is usually
written in the form

92U (z,t) _ baU(x,t)‘ (48)

A2 at

The above equation is closely connected with the diffusion of gases and there-
fore it is called a diffusion equation.

The solution of the equation (48)
with initial conditions
U(x,0) = sin(2mx) re < 0,1 >

at points x5, x5 selected out of the points dividing the interval into 20 seg-
ments together with the ORD function is plotted in Fig.14.1 (three-point approx-
imation was used).
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"
15 : ......... : e ...... : e ......... %
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Bl e “
8
i
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Figure 14.1:

Fig.14.2 shows the solutions ( U1, U2, ..., U19 ) in a better scale.
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Figure 14.2:
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The corresponding source text in TKSL/386 for particular values of parame-

ters is

var

ul0,ul,u2,u3,ud,ub5,u6,u7,u8,u9,ulo,
ull,ul12,u13,ul4,ul5,ul6,ul7,ul8,ul19,u20;

const
a=400, k=20, tmax=0.1,eps=1e-20, c=2;

system

ul’=a*(u0-2*xul+u?) &sin(c*3.14159%1/k) ;
u2’=a*(ul-2*xu2+u3) &sin(c*3.14159%2/k) ;
u3’=a*(u2-2*xu3+u4d) &sin(c*3.14159%3/k) ;
ud’=a* (u3-2*xud+ub) &sin(c*3.14159%4/k) ;
ub’=a* (ud-2*xub+ub) &sin(c*3.14159%5/k) ;
u6’=a* (ub-2*xu6+u’7) &sin(c*3.14159%6/k) ;
u7’=a*(u6-2*xu7+u8) &sin(c*3.14159%7/k) ;
u8’=a*(u7-2*u8+u9) &sin(c*3.14159%8/k) ;
u9’=a*(u8-2*u9+u10) &sin(c*3.14159%9/k) ;
u10’=a* (u9-2*ul10+ull) &sin(c*3.14159%10/k);
ull’=a*(u10-2*ull+ul2) &sin(c*3.14159%11/k);
ul2’=a*(ul1-2*ul2+ul3) &sin(c*3.14159%12/k);
ul3’=a*x(u12-2*ul3+uld) &sin(c*3.14159%13/k);
uld’=a*x(u13-2*uld+ulb) &sin(c*3.14159%14/k);
ul5’=a*(u14-2*ulb5+ul6) &sin(c*3.14159%15/k);
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ul6’=a*x(u15-2*ul6+ul7) &sin(c*3.14159%16/k);
ul7’=a*x(u16-2*%ul7+ul8) &sin(c*3.14159*%17/k);
ul8’=a*x(ul7-2*ul8+ul9) &sin(c*3.14159%18/k);
119’=a*(u18-2*%ul19+u20) &sin(c*3.14159%19/k);
sysend.

14.2 Hyperbolic PDE

One of the commonest hyperbolic PDE is the wave equation, which can be ex-
pressed in the basic form

682‘/(1’,1‘) _ 9%V (=,t) (49)

Ar? - A2

with initial conditions

V(x,0) = sin(mx) re<0,1>

aV(z,0
ét) =0

The equation (49) may describe the swings of an ideal string of unit length,
fixed at the extremal points to the x-axis which satisfies the boundary values and
is released at time zero (thus having a zero velocity at time zero).

Fig.14.3 shows the solutions V1, V2, ..., V5 of the equation(49) ( swing is
divided into 10 segments).

Fig.14.4 shows the function V5 ( at the midpoint of the string ) together with
the function ORD.

Note: The analytical solution ( at the midpoint of the string ) is

Vs = cosi.

The corresponding source text in TKSL/386 for particular values of parameters
is

Var err,z,
U1, U2, U3, U4, U5, Ue, U7, U8, U9,
vo, vi, v2, V3, v4, V5, V6, V7, V8, V9, V10;
Const
PR= 10,eps=1e-20,
A= PR*PR,tmax=10,dt=0.1,



14.2. HYPERBOLIC PDE

-
had
—

T a

VUl  8.389916994374947
VZ  8.587785252292473
VU3  8.8890916994374947
U4 8.951856516295154
U 1

U6 8.951856516295154
U?  8.8890916994374947
Ug  8.587785252292473
U9  8.3890816994374947

0.0 0.5 1.0 1.5 2.0 2.5 3.0 «T

Figure 14.3:

PI= 3.1415926535897932385;

System

Vo= 0;

V10= 0;

Ul’= A*x (VO-2*%V1i+V2 ) &0;

U2’= A*x (V1-2%V2+V3 ) &0;

U3’= A*x (V2-2%V3+V4 ) &0;

U4’= A*x (V3-2*%V4+V5 ) &0;

U5’= A*x (V4-2%V5+V6 ) &0;

U6’= A*x (V5-2%V6+V7 ) &0;

U7’= A*x (V6-2%V7+V8 ) &0;

U8’= A*x (V7-2%V8+V9 ) &0;

U9’= A*x (V8-2%V9+V10) &0;

Vi’= U1 &Sin(PI*1/PR);
V2’= U2 &Sin(PI*2/PR) ;
V3’= U3 &Sin(PI*3/PR) ;
V4’= U4 &Sin(PI*4/PR) ;
V5’= Ub &Sin(PI*5/PR) ;
V6’= U6 &Sin(PI*6/PR) ;
V7 = U7 &Sin(PI*7/PR) ;
V8’= U8 &Sin(PI*8/PR) ;
V9’= U9 &Sin(PI*9/PR) ;

SysEnd.
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Figure 14.4:

The ERR function (the difference between numerical and analytical solution)
of the solution V5 ( at the midpoint of the string which is divided into 10 seg-
ments) using a three-point approximation is plotted in Fig.14.5 - in the part
labelled ER_10_3.  The part labelled ER_100_3 plots the ERR function of the
deviation (again at the midpoint of the string divided in this case into 100 seg-
ments). It follows from Fig.14.5 that the ERR can be decreased by an increase
in the number of segments.

The main part of the corresponding source text of ER_100_3 in TKSL /386 is

System
z=cos (PIx*t);
VO = 0;
V100= 0;
U1’ Ax (VO-2%V1+V2) &0 ;
U2’ Ax (V1-2%V2+V3) &0 ;

U50°= Ax (V49-2%V50+V51) &0;

U98’= Ax (V97-2%V98+V99) &0;
U99’= Ax (V98-2%V99+V100) &0;
Vi’'= U1 &Sin(PI*1/PR);
V2’'= U2 &Sin(PI*2/PR);
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Figure 14.5:
V50’= U50 &Sin(PI*50/PR) ;
V98'= U98 &Sin(PI*98/PR) ;
V99'= U99 &Sin(PI*99/PR) ;
err=z-V50;

SysEnd.

The ERR can more effectively be decreased by an increase in the order of the
difference formula. The part labelled ER_12_5 of Fig.14.6 plots the ERR function
( again at the midpoint of the string divided into 12 segments supposing that
a five-point approximation has been used). Further decrease in the ERR ( at
the midpoint of the string divided into 100 segments supposing that a five-point
approximation has been used) is shown in the part labelled ERR_100_5.

The main part of the corresponding source text of ER_100_5 in TKSL /386 is

System
z=cos (PIx*t);
Vo= 0;
V100= 0;
Ul’= A*x (11*V0-20*V1+6*V2+4*xV3-V4) &0 ;
U2’= A*x (-VO+16*V1-30*V2+16*V3-V4) &0 ;
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Figure 14.6:

U3’= A*x (-V1+16%V2-30*V3+16*V4-V5) &0;
U50°= A*x (-V48+16*V49-30%V50+16*V51-V52) &0;

U97°= Ax (-V95+16*V96-30%V97+16*V98-V99) &0;
U98°= Ax (-V96+16*V97-30%V98+16xV99-V100) &0;
U99°= Ax (-V96+4*VI7+6%V98-20*%V99+11xV100) &O0;

Vi’= Ul &0; &3in(PI*1/PR);
V2’'= U2 &0; &3in (PI*2/PR) ;
V3’'= U3 &0; &3in (PI*3/PR) ;
V50’= U50 &0; &Sin(PI*50/PR) ;
V97’= U97 &0; &Sin(PI*97/PR) ;
V98’= U98 &0; &Sin(PI*98/PR) ;
V99’= U99 &0; &Sin(PI*99/PR) ;

err=z-V50;

SysEnd.

Note: The error of solution is given only by the method of lines.



Chapter 15

ALGEBRAIC AND
TRANSCENDENTAL
EQUATIONS

In this chapter a special method to find the real roots of an explicit set of algebraic
( or transcendental ) equations is described.
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Figure 15.1:

When applicable, the simplest method to obtain solutions to f(z) = 0 is to
draw a graph of f(x) and read the roots.
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As an example the Chebyshev polynom
f(x) = 2562% — 57627 + 4322° — 12023 + 9z
is analyzed for ze¢ < 0,1 > (Fig.15.1).

The first equation root is obviously x;=0.

Computation with an automatic stop at finding the root can be used with
advantage. The following nonlinear equation of movement pertaining to the so-
lution x is defined

e — Nf(x). (50)

dt

dx

A is a suitable positive or negative number. The root is found when %% = 0.

The folowing computation scheme is used:

e Aisset at A = + 1. The system (50) is displaced from the initial stable state
( from the first equation root x; = 0 ) to a new "non-stable” state such as
x(0)=0.005. Fig.15.2 plots the substitute solution x (for x(0)=0.005). The
new stable state x4 = 0.342020143325669 is found.

o )isset at A = - 1. The system (77) is displaced from the previous stable
state ( from the equation root xy = 0.342020143325669 ) to a new "non-
stable” state such as x(0)=0.36. Fig.15.3 labelled CHEB2 plots the substi-
tute solution x (for x(0)=0.36). The new stable state 5 = 0.642787609686539

is found.

The substitute solution x (for x(0)=0.005) and the ORD function is plotted
in Fig.15.3 - in the part labelled CHEB1. The stable state is characterized by
the value of ORD=1. Similarly, the part labelled CHEB2 of Fig.15.3 plots the
substitute solution x (for x(0)=0.36, A =-1 ) together with ORD and the root
x5 = 0.642787609686539.
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Figure 15.2:

87

Similarly 24=0.866025403784439 and x5=0.984807753012208 were obtained.

Note:

Similarly also one of the real roots of the quadratic equation

22—-1=0

can be found (Fig.15.4).

Conclusion:

The computation process finds automatically one root of the given nonlinear al-

gebraic equation. The root is found when

e =0.

ar

A controls the computation process.
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Chapter 16

REPEATED COMPUTATIONS

The repeated computations for different values of the parameter have all been
plotted in a common graph, which is very illustrative.
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Figure 16.1:

Fig.16.1 shows a numerical solution of equation (51)

vi=-—ayi  5(0)=1 (51)
for a=0 (curve 1), a=0.2 (curve 2), a=0.4 (curve 3), ...a=2.4 (curve 13).
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Figure 16.2:

Analogously Fig.16.2 shows a numerical solution of the system
Yy = —axy— 100 * z; y(0)=1
=y z1(0) =0

for a=0 (curve 1), a=0.5 (curve 2), a=1 (curve 3).

The method of obtaining the numerical solution plotted in Fig.16.2 is shown
in Fig.16.3.

The plotting of two solutions of a physical pendulum in the phase plain for
two values of the initial conditions for the angular velocity is also very illustrative
- Fig.16.4 ( 21(0)=13 rad s™'...curve 1; z;(0)=14 rad s~'...curve 2).

The same is true for the plotting of the solution of Van-der-Pol equation for
=0 (curve 1), pg = 0.5 (curve 2), u =1 (curve 3) - Fig.16.5.
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Chapter 17
ITERATIVE COMPUTATIONS

As an example of an iterative computation, the computation of an equivalent
initial condition of the differential equation (52)

Y1 =~ yi(1) = 0.273 (52)

has been chosen.
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Figure 17.1:

A new value of the equivalent initial condition IC (in the cycle (i41)) is de-
termined by the following formula

[CHY = 107+ By (1) — 0.273).
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In each cycle of the computation the initial condition y;(0) is determined,
the corresponding calculation is carried out and the deviation at the end-point is
evaluated (Fig.17.1). Curve 1 is for y;(0) = 0, curves 2,3, ...50 show the step-wise
improving of the accuracy of the solution (5 = 0.5).

The time functions of the equivalent initial condition IC to be found and
corresponding deviation ER (at the end-point) during the iteration process are

plotted in Fig.17.2 ( for 8 = 0.5).
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Figure 17.2:

The influence of 3 on the solution of the given iteration scheme is shown in
Fig.17.3 - for § = 3 (diagram labelled ITERC), for § = 4.8 (diagram labelled
ITERD) and for 8 = 5.5 ( diagram labelled ITERE).
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Chapter 18

SIMULATION LANGUAGE
TKSL/ORCAD

The created simulation language TKSL/386 is a very powerful computing tool
for finding accurate numerical solutions of differential equations. The next ver-
sion of the simulation language TKSL/ORCAD is based on a graphic interface.
The graphic interface transforms a graphic representation (graphic symbols for
describing real-existing systems) into an equivalent textual representation. The
graphic editor that has been chosen is a part of a system ORCAD .

pl1] plO]

o o

@ [NC o N W)
/ 1% 4

Figure 18.1: Analogue diagram

The analogue diagram (Fig.18.1) solving the system of equations (53),(54),(55)
is well-known in the theory of analogue and hybrid computers.
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yi'= z y1(0)=0 (53)
z’ = y2 z(0)=2 (54)
y2 =-y1. (55)

The analogue diagram (Fig.18.1) consists of two integrators (with prede-
fined initial conditions) and one invertor. The integrators and invertor are
among the basic elements of a specially created library of the simulation language
TKSL/ORCAD ( the library consists of integrators, invertors, summers, function
generators, multipliers, dividers, blocks of transfer functions, nonlinear blocks
and blocks defined by users). When the simulation language TKSL/ORCAD is
used, the diagram (Fig.18.1) must be plotted on the screen (according to the rules
of the system ORCAD). After the program is started, a source code identical with
the source code of the language TKSL /386 is automatically generated.



Chapter 19

SIMULATION LANGUAGE
TKSL/TRANSP

The block notation and block diagram (used in analogue and hybrid computers
and analyzed in TKSL/ORCAD) is the underlying feature of the newly completed
simulation language TKSL/TRANSP. It is known that the Taylor series method
is a parallel one and therefore attempts at a parallel interpretation in a transputer
network can be expected.

Transputers are high performance microprocessors that support parallel pro-
cessing. They can be connected together in any configuration and they can form
a building block for complex parallel processing systems.

19.1 OCCAM Programs and Procedures

Analogue diagrams represent a very convenient tool for describing parallel tasks.
To show this the system of equations (53),(54),(55) and the analogue diagram
(Fig.18.1) are analyzed again in this chapter.

The software products of INMOS are described by means of the so called
folds. They are program parts preceded by three dots (... fold identification)
which cannot be seen while editting but when the program is processed, these
parts expand into the source text. We will use this method for the subsequent
description of programs solving model problems.

OCCAM programs solving a system of differential equations expressed in the
form of an analogue diagram, implemented on one transputer have the following
structure (in the fold notation):

. program header
. block of declarations of variables and constants
procedures for inputting parametres and printing out
values
SEQ -- main program
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. initialization
SEQ k=1 FOR n -- for n solution steps

. declarations of procedures of analogue elements
. declarations of communication channels

PAR

. interconnecting analogue elements
. printing out values
: -- end of program

The program header defines the SP protocol - a communication protocol be-
tween the host computer IBM PC and a transputer: further it defines the name
of the program, communication channels between the program process and the
environment and the input/output of the library

In the declaration fold the declarations of method order, integration step,
solution time, model time, computing time, initial conditions etc. are placed.

The procedure inputting the parameters of the computation is inserted in the
program using the directive

#INCLUDE,

in the same way as the procedure for the print-out and procedures describing the
elements of the analougue diagram.

In the initialization fold parameters are inputted, number of computation
steps 1s calculated, model time is initialized, initial conditions are set, result
table header and initial conditions are printed out etc.

The fold describing the interconnection of the elements of the analogue dia-
gram defines the interconnection of the elements according to the analogue dia-
gram using communication channels.

In the following text the most important part of the OCCAM program - the
interconnection of the elements ( for the example given in Fig.18.1 ) is described.

-- interconnecting analogue elements
integrator.1(p[0],z,y1)
integrator.1(p[1],y2,z)
invertor(yl,y2)

Note: p[0] means the initial condition, z means the input and yl means the
output of the first integrator. Similarly, p[l] is the initial condition, y2 is the
input and z is the output of the second integrator; y1 is the input and y2 is the
output of the invertor.
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The integrators and the invertor are taken as procedures, the corresponding
calculations are viewed as processes. The integrators and invertor are intercon-
nected by channels (for the definition of the channels the symbols (y1), (y2), (2z)
from Fig.18.1 are used).

The procedure for an invertor in OCCAM is in the form:

--invertor.occ
PROC invertor (CHAN OF REAL64 vstup, vystup)
REAL64 a,b:
SEQ
vstup”a
b:=-a
vystup!b
: -- end

The procedure for an integrator in OCCAM is in the form:

--integrl.occ
PROC integrator.l (REAL64 p,CHAN OF REAL64 vstup,
CHAN OF REAL64 vystup)
REAL64 a,b:
SEQ
a:=p
SEQ
PAR
vystup'a
vstup 7b
a:=h * b
p:=pta
--end

Note: For clearness’ sake, the numerical method shown in the above procedure
uses only the first term of the Taylor series (the method order is defined as
ORD=1). Obviously, the quality of the computation is significantly enhanced by
using a higher order method.

The complete program for calculating the system of equations (53),(54),(55)
follows:

--program sin
#INCLUDE '"hostio.inc'" ---- contains SP protocol
PROC sin (CHAN OF SP fs, ts, [JINT memory)

#USE "hostio.lib" -- iserver libraries
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-- declarations of variables, constants and initial conditions
INT n,t,tb,te:

REAL64 T,h,tp:

VAL [] REAL64 yO IS [2.0(REAL64),0.0(REAL64)]:

[2] REAL64 p:

-- procedures for inputting parameters and printing out values
#INCLUDE "in.occ"
#INCLUDE "out.occ"

-- maln program

SEQ
inp(T,h)
--initialization
tp:=0.0(REAL64)
t:=0(INT)
n := INT ROUND (T/h)
plLo]:=yo0[0]
pl1]:=y0[1]
so.write.nl(fs,ts)
so.write.string.nl(fs,ts," tp t z y(1m")
so.write.string.nl(fs,ts," [s] [us]l ™)
outp(p,tp,t)
TIMER ti:
SEQ k=1 FOR n -- for n steps
PRI PAR
SEQ
ti7tb
tp:=(tp+h)

-- declarations of procedures of analogue elements
#INCLUDE "integril.occ"
#INCLUDE "invertor.occ"

-- interconnecting analogue elements

CHAN OF REAL64 z,y1,y2:

PAR
integrator.1(pl0],y2,z)
integrator.1(p[1],z,y1)
invertor(yl,y2)

--printing results
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ti7te
t:= te MINUS tb
outp(p,tp,t)
SKIP
so.exit(fs,ts,sps.success)
-- end

The following procedures for reading and printing were used:

--in.occ
PROC inp (REAL64 T,h)
BOOL error:
SEQ
error:=TRUE
WHILE error
SEQ
so.write.string(fs,ts,"Tmax D
so.read.echo.real64(fs,ts,T,error)
so.write.nl(fs,ts)

IF
error
so.write.string.nl(fs,ts,"err")
TRUE
SKIP
error:=TRUE
WHILE error
SEQ
so.write.string(fs,ts,"Integration step h )

so.read.echo.real64(fs,ts,h,error)
so.write.nl(fs,ts)
IF
error
so.write.string.nl(fs,ts,"err")
TRUE
SKIP
-- end
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--out.occ
PROC outp (VAL [] REAL64 y,VAL REAL64 tp,VAL INT t)
SEQ
so.write.real64(fs,ts,tp,3,3)
so.write.int(fs,ts,t,6)
so.write.string(fs,ts," ")
SEQ i1=0 FOR SIZE y
so.write.real64(fs,ts,y[i],3,10)

so.write.nl(fs,ts)

In the text which follows, for clearness’ sake, the computation of the system
(53),(54),(55) is shown for h=0.1s, T=1s. Deviations from the analytical solution
are of course influenced by the quality of the numerical integration method used.

Booting root transputer...ok

Tmax : 1.0

Integration step h : 0.1
tp t z y(1)
[s] [us]
0.0 0 2.0 0.0
0.1 31 2.0 0.2
0.2 31 1.98 0.4
0.3 32 1.94 0.598
0.4 32 1.8802 0.792
0.5 32 1.801 0.98002
0.6 31 1.702998 1.16012
0.7 32 1.586986 1.3304198
0.8 31 1.45394402 1.4891184
0.9 32 1.30503218 1.634512802
1.0 31 1.1415808998 1.76501602

Note: For completeness’ sake the column ” t[us]” gives the time of computa-
tion of one integration step (in microseconds)

A program designed in this way is set up for exactly one particular dynamic
system. After the program has been started, it requires the time of program
termination and the integration step.

As in the program in its present form only very simple communication with
the operator in the form of a "running column of numbers” is possible, the
TKSL/TRANSP has been created so that a repeated start of the calculation
is possible without having to load a new program in the transputer.
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19.2 TKSL/TRANSP

The source code of the computation of the system (53),(54),(55) (based on
Fig.18.1) in the simulation language TKSL/TRANSP is in the form:

int2(invl), (0),t1,"=z";
invi(int1),(),t1,"y2";
int1(int2),(2),t1,"y1";
#sin;

Note: t1 means that all elements are placed in the transputer 1. The meaning
of the first line of the source code is as follows:

Invertor 1 (invl) represents the input of the integrator 2 (int2); initial condi-
tion of integrator 2 is set to 0; the integrator 2 is placed in the transputer 1 (t1);
7 is the name of the variable.

From the above analysis, it is clear that the TKSL/TRANSP created for
simulating dynamic systems makes it possible to automatically write a program
for a transputer or a network of transputers from a textual description. Thus,
when simulating, it is no longer necessary to debug a program in OCCAM.

19.3 Results

Almost all the work with OCCAM is done automatically. This eliminates one of
the main problems of using the transputers for practical computing.

When using a transputer network, any element of the state diagram can be
placed practically in any transputer of the network. The problem is, however.
the serial communication. The reason is that the serial communication may be
almost as time consuming as the calculation itself.

The system elements must then be placed in the network in such a way that
the transputers communicate with one another as little as possible.

For further development in this area it will be necessary to construct a tool
for optimizing the layout of the elements of a particular dynamic system in the
transputer network used. The number of communication channels among the
transputers may be the optimization criterion.
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Chapter 20
CONCLUSION

The principal idea of an extremely accurate and fast method for numerical so-
lutions of technical initial problems is presented in the paper. The number of
Taylor series terms and word width are of great importance during computation
process.

The numerical solutions of technical initial problems are most exact when the
method order ORD is accordingly high for the given integration step h. The
accuracy of the result can be influenced in a considerable way by the word width.

Typical technical initial problems and their solutions are shown in the paper.
All solutions were obtained by means of the simulation language TKSL.

The greatest contribution of the method is that it facilitates the detections
and solutions of stiff systems and systems with discontinuities.

In a very straightforward way it is possible to solve partial differential equa-
tions by the method of lines.

Linear and nonlinear algebraic equations can also be solved by the correspond-
ing differential equations.

It is known that the Taylor series method is a parallel one and therefore at-
tempts at a parallel interpretation in a transputer network have been analyzed
and new simulation language TKSL/TRANSP based on TKSL/ORCAD has been
created. TKSL/TRANSP created for simulating dynamic systems makes it possi-
ble to automatically write a program for a transputer or a network of transputers
from a textual description. Thus, when simulating, it is no longer necessary to

debug a program in OCCAM.
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