Parametric Analysis of the PGM Protocol

Petr Matoušek, Mihaela Sighireanu

matousp@fit.vutbr.cz, sighirea@liafa.jussieu.fr

Brno University of Technology, Czech republic LIAFA, Paris University 7, France

Parametetric Analysis of the PGM Protocol - p. 1/33

1. Introduction

Talk outline

- **1. Protocol PGM**
- 2. Modeling PGM
- 3. Parametric Analysis
- 4. Verification
- 5. Conclusion

1. Protocol PGM

General Overview

- PGM (Pragmatic General Multicast) defined by RFC 3208.
- Reliable multicast transport protocol for application, that require ordered or unordered, duplicate-free, multicast data delivery from multiple sources to multiple receivers .
- Members may join and leave the group at any time.
- Many different types of data packets (ODATA, RDATA, SPMs, NAKs etc).

1. Protocol PGM - Introduction

Protocol Architecture

1. Protocol PGM - Introduction

Data Transmission

- Data (ODATA, RDATA),
- SPM (Source Path Message),
- NAK (Repair request), NCF (NAK confirmation)

2. Protocol PGM - Verification

 PGM guarantees that "a receiver either receives all data packets from transmissions and repairs, or is able to detect unrecoverable data packet loss".

***** Several verification studies on PGM has been done.

*** B.Bérard, P.Bouyer, and A. Petit: Analysis the PGM protocol with** UPPAAL. **RT-TOOLS, August 2002.**

- Verification of a simplified timed version of PGM with linear topology and one-placed buffer.
- The reliability property of the protocol is verified by instantiating the parameters and calling the UPPAAL tool.
- Verification of two properties:

2. Protocol PGM - Verification [BBP]

***** Lost info property - "For each data, each receiver knows if it did receive the data or if it will never receive it".

- 960 control states, 5 clocks, 25 bounded variables
- **Property** E<> (obs.Error) is **True means the receiver may make** mistake to estimate restoration of a data.

*** No-loss property - "Each data which is detected as lost is eventually repaired".**

- 17280 control states, 5 clocks, 35 bounded variables
- Property E<> (receiver1.test==1 ro receiver2.test==2) is True, that means it is not verified.

1.Protocol PGM - Verification [BS]

* M.Boyer, M.Sighireanu: Synthesis and verification of constraints in the PGM protocol. FME, September 2003. (ADVANCE, 2nd year)

- Verification of the PGM using classical tools (IF, CADP).
- Manual synthesis of the constraints between parameters.
- Verification of full reliability property using TREX .
- Property verified by instantiation of parameters.
- Analysis of complexity addressing of sources of complexity.

***** Our goal: To obtain the constraint deduced in this work automatically.

1.Protocol PGM - Verification [BS]

***** Losses-signaled property - "a receiver either receives all data packets and repairs, or is able to detect unrecoverable data packet loss".

- The property was verified for all messages, except for those of the last transmission window a problem of closing window.
- The problem can be solved using "closing SPM".

Parametric analysis of full reliability property - finding a relation between parameters of the system that satisfies the property.

- The relation (a constraint with parameters) was manually derived.
- The property was successfully verified using instantiation of the parameters the result confirmed the property.

1.Protocol PGM - Verification [others]

P.Boigelot, L.Latour: Verifying PGM with infinitely many packets.
LIAFA 2002.

- Validation using LASH of the sliding window mechanism of the protocol for any number of data packets sent.
- Different model based on finite state automate no time model.
- Study the relation between the LEAD and TRAIL values of the Transmit Window and Receive Window.

***** J.Esparza, M.Maidl: Simple representative instantiations for multicast protocols. TACAS, 2003.

• Mathematical framework for multicast protocol that allows to generalize the results obtained for linear topologies to tree topologies.

2. Modeling PGM

Analysing the full PGM protocol is beyond limits of current verification tools because of

- dynamic topology joining/leaving a node,
- multiple senders,
- a lot of different packet types (SPMs, NCF, NAKs),
- a lot of processes, counters and clocks.
- Sources of complexity:
 - many variables,
 - non-linear constraints.
- **We need a new abstract model.**

2. Modeling PGM - An abstract model

* The abstract model is based on a global view of the protocol running between the sender and one of the receivers

- Linear topology a sender, network, a receiver.
- Network is abstracted into unreliable, unbounded FIFO queue implemented by a counter automaton.
- Only data packets (ODATA) are transmitted.

2.Modeling PGM - The abstract model

***** Global view abstraction reduces number of counters and variables.

- **Clocks, counters, variables:**
 - two clocks x, y, two counters L, def_lost,
 - one finite variables *lp*,
 - six parameters RATE, NLOSS, TXW_SIZE, BUFFER_LENGTH, SND_PERIOD, CH_PERIOD.

2. Modeling PGM - The sender

The sender

- generates ODATA packets each SND_PERIOD,
- advances trasmitting window by one after each data packet is sent.
- The transmit window is fixed in order to save data as long as possible.

2. Modeling PGM - The network

The network

- receives data from the sender,
- delivers data to the receiver each CH_PERIOD,
- non-deterministically generates losses of NLOSS packets (variable lp)

2. Modeling PGM - The receiver

The receiver

- accepts data from the network,
- detects losses computes if lost packets can be recovered.
- **RATE** is ratio between the transmission speed and **SND_PERIOD**.

2. Modeling PGM - Detection of losses

Global view abstraction

VR All lost packets may be recovered if

TXW_SIZE > **RATE** + L' + **NLOSS**

 $\forall L$ None of the NLOSS lost packets may be recovered if

TXW_SIZE \leq RATE + L' + 1

Parametetric Analysis of the PGM Protocol – p. 17/33

2. Modeling PGM - Detection of losses

Global view abstraction

∃R Some of the lost packets may be recovered if

TXW_SIZE > RATE + L' + 1TXW_SIZE \leq RATE + L' + NLOSS

***** Only first relation satisfies the full reliability property.

3. Parametric Analysis

* All lost packet may be recovered if

TXW_SIZE > **RATE** + L' + **NLOSS**

where L' (the current value of L) is a variable, where L' = L - NLOSS - 1.

 \Rightarrow This constraint must be satisfied by the parameters in order to obtain full reliability.

***** But L is a variable - we need a relation depending only on time and **parameters.**

***** L can be computed as follows

 $L = f(t, \texttt{BUFFER_LENGTH}, \texttt{SND_PERIOD}, \texttt{CH_PERIOD}, \texttt{NLOSS})$

3. Parametric Analysis

***** To compute L, we distinguish four cases:

- $Case \ 1 \ \ \texttt{SND_PERIOD} > \texttt{CH_PERIOD}$
 - The rate of arrivals is less than departures.
 - The size of the queue converges to zero by time.

 $0 \leq L \leq \text{BUFFER_LENGTH}$

- Case 2 SND_PERIOD = CH_PERIOD
 - Arrivals are the same speed as departures.
 - The size of the queue decreases to a value less then NLOSS because of losses.

 $0 \leq L \leq \text{BUFFER_LENGTH}$

3. Parametric Analysis

 $Case \ 3 \ \ \text{CH_PERIOD}/\text{SND_PERIOD} > \text{NLOSS}$

- Arrivals are faster than the sum of departures and losses.
- The queue grows beyond any limits by time.

BUFFER_LENGTH $\leq L < \infty$

Case 4 $nloss > ch_period/snd_period > 1$

- Arrivals are faster than departures, but not enough to fill the losses between two delivery.
- The queue is alternating depending on non-deterministic losses.

 $0 \leq L < \infty$

3. Parametric Analysis - Constraints

* After substitution of L' and using limits on L we get following constraints:

***** The constraint for full recovery is

 $\texttt{SND_PERIOD} \ge \texttt{CH_PERIOD} \land \texttt{TXW_SIZE} \ge \texttt{RATE} + \texttt{BUFFER_LENGTH}$

***** Partial recovery of losses is possible if

 $\texttt{TXW_SIZE} > \texttt{RATE} + \texttt{BUFFER_LENGTH} - \texttt{NLOSS}$

***** None of losses may be recovered if

$\texttt{TXW_SIZE} \leq \texttt{RATE} + \texttt{BUFFER_LENGTH} - \texttt{NLOSS}$

3. Parametric Analysis - Conclusion

***** The constraints between parameters and the law of evolution of L are non-linear relations on reals and integers.

• For instance, exact value of L for case 3 is

$$L = \texttt{BUFFER_LENGTH} + \left[\frac{t}{\texttt{CH_PERIOD}}\right] \left[\frac{\texttt{CH_PERIOD}}{\texttt{SND_PERIOD}} - 1 - \texttt{NLOSS}\right]$$

***** Verification can be done

- by instantiating some of parameters to avoid non-linear constraints,
- by applying acceleration,
- by applying approximation.

4. Verification - One Time Loss Model

*** Full reliability property - "**a receiver either receives all data packets or it is able to recover all lost data packets."

- * "One Time Loss" Model
 - Modified model where a loss appeared just once per session.
 - Non-linearities reduced using instantiation of some parameters.
 - To speed up analysis we carefully set initial conditions.

***** For parametric verification of the model we use HYTECH and TREX

4. Verification - One Time Loss Model

- Three extended TA communicating via synchronization the sender, the network, the modified receiver.
- One finite variable (lp), two clocks (x,y), two counters (def_lost, L).
- Six parameters.

4. Verification - using HYTECH

Parametric verification using HYTECH

- HYTECH is a tool for parametric verification of hybrid systems.
- HYTECH does not support acceleration generation of full reachability set does not terminate.
- To test our property we need to define a final region
 final_reg := def_lost > 0
 where the property is violated.
- We can get only results where the property is not satisfied.

HYTECH output (for partial losses, CH_PERIOD/SND_PERIOD>= 2) RATE>= 1 & SND_PERIOD>= 1 & BUFFER_LENGTH>= 1 & CH_PERIOD<= 2 SND_PERIOD& TXW_SIZE+ NLOSS>= RATE+ BUFFER_LENGTH+ 3 & SND_PERIOD< CH_PERIOD& NLOSS<= BUFFER_LENGTH+ 1 & TXW_SIZE<= RATE+ BUFFER_LENGTH+ 2</pre>

- TREX is a tool for parametric verification of timed systems.
- Model is based on extended timed automata.
- TREX generates a set of reachable configuration for the input model and finite symbolic graph.
- It uses efficient extrapolation techniques to accelerate computation:

$$\begin{array}{lll} C &=& \{2 \leq x \leq 6, 1 \leq y \leq 4\} \\ post_{\theta}(C) &=& \{2 \leq x \leq 6, 1 \leq y \leq 6\} \\ post_{\theta}^2(C) &=& \{2 \leq x \leq 6, 1 \leq y \leq 8\} \\ post_{\theta}^*(C) &=& \{2 \leq x \leq 6, 1 \leq y \leq 4+2*n\} \ using \ periodicity \end{array}$$

• Data structure in TREX are represented using Parametric DBMs (PDBMs).

Case 1: SND_PERIOD > CH_PERIOD

 R_AR txw_size ≥ rate + buffer_length and buffer_length ≥ nloss + 1

• **R_EL**

 $\begin{array}{l} txw_size \geq rate + buffer_length \ -nloss \ -n3 \ -1 \ and \\ twx_size \leq rate + buffer_length \ -n3 \ -3 \ and \\ buffer_length \geq nloss \ +n3 \ -3 \ and \\ buffer_length \geq n3 \ -2 \ and \\ n3 \geq 0 \end{array}$

• **R_AL**

 $txw_size \leq rate -nloss + buffer_length - n3 - 1 and buffer_length \geq nloss + n3 - 2 and buffer_length - n3 - 1 \leq 0 and n3 \geq 0$

Case 2: SND_PERIOD = CH_PERIOD

- R_AR txw_size ≥ rate + buffer_length
- **R_EL**

```
\begin{array}{l} txw\_size \geq rate + buffer\_length \ -nloss + 1 \ and \\ twx\_size \leq rate + buffer\_length \ - 1 \end{array}
```

```
• R_AL
```

 $txw_size \le rate - nloss + buffer_length$

No acceleration needed in this case.

 $\textbf{ Case 3: Ch_Period/snd_period > nloss}$

- New parameter $q = CH_PERIOD/SND_PERIOD$, we consider $q \ge 2$
- Constraints similar like in the first case.
- **Case 4: NLOSS > CH_PERIOD/SND_PERIOD > 1**
 - The experiments results are similar to the third case.

4. Verification - Conclusion

- ***** We successfully verified One Loss Time Model
- Analysis of the Full Abstract Model
 - There is no way to always recover losses in case 3 and case 4.
 - This can be done by searching a graph of symbolic configurations where $def_lost = 0$.
 - The problem is to generate this graph L is complex, so the automatic computation fails.
- Another interesting point the number of definitively lost packets
 - To compute that number we need a class of assignments for counters not possible for DBMs.
- ***** We need another data structure !

5. Conclusion

Future direction - parametrized intervals

- Based on Interval Diagrams extended with parameters.
- Domain is a vector (like PDBMs) with pair of bounds.
- New abstract data structure p-hcubes
 - used for representation of configurations on counters (PDBMs for clocks)
 - space representation in O(n) better than PDBMs $O(n^2)$
 - canonical representation
- ***** It will be a part of a new version of TReX.

5. Conclusion

Parametric verification of PGM protocol

- **1.** New abstract model of PGM protocol based on global view of the system.
- 2. Parametric analysis of the system
 - Synthesis of constraints on parameters that satisfies the full reliability property.
 - Detection of non-linear relations between parameters ⇒ instantiation.
 - "One time loss" model.
- **3. Full automatic verification of the model with parameters using** TREX **and** HYTECH **.**
- 4. To verify Full Abstract Model we need a new data structure we propose parametrized intervals.

