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Abstract. Protocol analysis involve several parameters in model speci-
fication, for instance, transmission delay or the length of the transmitting
window. Verification of the model with parameters is semi-decision pro-
cess that depends on number of clocks, parameters and counters in the
model. Using combination of different verification tools for timed models
as HYTEcH, TREX and UPPAAL we are able to find relation between
parameters satisfying desired property. The paper gives a report on syn-
thesis of parameters of PGM protocol [SFCT01]. We built a formal model
based on extended time automata with parameters and verified the reli-
ability property. Our results automatically obtained from the model are
consistent with previous results derived manually. The paper describes
our experiences with parametric verification of multicast protocol PGM.
Results mentioned in the work were made with collaboration with Mi-
haela Sighireanu' from LIAFA, Paris.

Introduction

Model-checking is a popular technique of verification of untimed as well timed
systems. In comparison with theorem proving model-checking provides an easy
way how to specify and verify a model without profound experiences of logics.
For timed systems, model checkers like UrPPAAL, KrRONOS, IF, TREX can be
used. The basic goal of model-checking is to verify a property on a specified
model using state space search. In practice, a model checker analyses (explicitly
or implicitly) all reachable configurations and tests if the model does not violate
desired property.

PGM protocol. In our work we verified a reliability property of PGM proto-
col. PGM protocol defined in [SFCT01] is a reliable multicast transport protocol
for applications that multicast data from multiple sources to multiple receivers.
It is a standard defined by Cisco for telecommunication services, for instance,
video conferencing. We studied reliability of the transmission - the full recovery
property. The property states that “PGM either receives all data packets from
transmission and repairs, or is able to detect unrecoverable data packet loss”.
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Behaviour of a protocol depends on several aspects - the rate of transmission,
the speed of packet generation, the length of the transmission window of the
source or limits of network elements. Our interest is to find dependecies among
these variables with respect to the full recovery property.

Parametric reasoning works on a model with parameters - variables whose values
are not changed during analysis. Using parametric reasoning we can either verify
that the system satisfies some property for all possible values of the parameters,
or find constraints on the parameters defining the set of all possible values for
which the system satisfies a property.

In our case study we focus on the synthesis of parameters, i.e., finding con-
straints on the parameters that ensure satisfaction of the full recovery property.
Our model was implemented and verified using different tools: UpPAAL [PLO0],
TREX [BCAS01] and HyTeEcH [HHWT97]. UPPAAL is a model checker that
does not support parameters so we instantiated variables for some values. HY TECH
provides parametric verification of hybrid systems. Timed automata are a subset
of hybrid automata so we can implement our model in HyTECcH. HYTECH had
problem with termination, so we were not able to generate full state space of
the model and verify desired property. However, using instantiation of certain
parameters and putting constraints on the others we can obtain some relations
between parameters as a result. The results were confirmed by similar analysis
using TREX. TREX - a tool for parametric verification of extended timed sys-
tem with counters - implements powerful acceleration that helps to terminate
computation. It outputs graphs of symbolic configurations and analysis traces
which we used to study system behaviour and detect configurations where the
property is satisfied.

Contribution of our work is to show how parametric verification works on a
non-trivial example of a real protocol and what kind of tools can be used for
parametric verification of timed systems. We identify possible bottlenecks of
analysis, especially the features of the system that induces non termination. Our
observation and recommendations on parametric analysis are mentioned in this
work.

Outline of the paper. In the first section, we introduce the analyzed protocol.
We describe a formal model of the protocol based on extended timed automata,
timed automata with counters [AABO00]. Then we briefly introduce tools we used
for verification - UpPAAL, TREX, HYTECH and results we achieved. The third
section of the paper summarizes our results and experiences with parametric
verification and discusses our observation on parametric verification of timed
systems.

Related work. There are several works on verification of PGM protocol. [BBP02]
verifies a simplified timed version of PGM with a linear topology and a one-
placed buffer. Two properties - lost info property and no-loss property are ver-
ified in this work. The properties are verified by instantiating parameters using
UpPAAL. [BL02] validates the sliding window mechanism for any number of data
packet sent using LASH. The model used is untimed. A more complex timed
model of PGM is considered in [BS03]. This model includes parameters. The con-
straints on parameters are obtained manually and then verified by instantiation.
In contrast to this work, we did synthesis and verification fully automatically.



1 Modelling PGM

PGM protocol works on a network of nodes with multiple senders and multiple
receivers. In our approach we abstract the model to a simple one-sender and
one-receiver system. Joining and leaving multiple nodes during session can be
abstracted like nodes missing data [BS03].

PGM Model. Our PGM model is composed from three automata — a sender,
a network and a receiver with six parameters, one finite variable, two clocks, two
counters and two communication channels, see Figure 1.

Automata in our model communicate by rendez-vous on gates SN and NR
and by shared variables L and [p. The states labelled by C' are urgent states,
i.e., states where the time is not allowed to advance.
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Fig. 1. PGM model - sender, network and receiver

The sender generates a new data each period SND_PERIOD. Sent data are
stored in the transmitting window that advances each time a new data is sent.
The transmitting window is fully opened during the session to recover as many
data packets as possible. If data loss is detected, we test if an original appropriate
data packet is in the transmitting window. If not, a non-recoverable data loss
has happened and the full recovery property is violated.



The network automaton models the transmission channel between the sender
and the receiver with transmission delays and non-deterministic losses. The net-
work receives data from the sender and increments the length of a buffer L. The
buffer is unbounded, it can grow without limitation. The network element either
delivers data to the receiver with the speed defined by parameter CH_PERIOD or
multiple data are discarded in order to model losses during transmission. The
model allow NLOSS data packets to be lost, NLOSS is a parameter. The initial
buffer length is set to BUFFER_LENGTH, which means the system is in process of
communication - we don’t model opening and closing stages of communication.

The receiver is informed about losses using a global variable Ip. When a
loss occurs the receiver calculates possibility of recovery. The result depends on
TXW_SIZE, BUFFER_LENGTH, RATE and the current length of the buffer L’.

By reasoning about the recovery of transmitted data we distinguish three
possible cases - every lost packet can be recover, some lost packets can be recover
or nothing can be recover. This depends on the size of the sender’s transmitting
window, the speed of transmission, the delay on network etc. These cases can be
described by following manually obtained results:

VR All lost packets may be recovered (full recovery) if TXW_SIZE > RATE + L’ +
NLOSS, state R_AR,

VL None of the NLOSS lost packets may be recovered (no recovery) if TXW_SIZE <
RATE + L’ + 1, state R_AL, or

IR Some of the lost packets may be recovered (partial recovery) if TXW_SIZE >
RATE + L' + 1 and TXW_SIZE < RATE + L/ + NLOSS (state R_EL) .

The full recovery may be done for the first case if the parameters satisfy
constraint SND_PERIOD > CH_PERIOD A TXW_SIZE > RATE + BUFFER_LENGTH. This
constraint on parameters was obtained manually in [BS03] and [MS04]. In this
paper we focus on automatical synthesis of parameters. However, it is interesting
to compare the manually obtained results with output of verification tools listed
in the following section. It is seen that the results are consistent.

2 Tools for parametric verfication

For parametric verification we used three tools - HYTECH, TREX and UPPAAL.
In this part we introduce the tools and our results. As mentioned in [AHV93],
a large class of parametric verification problems is undecidable. In [AABOO] the
authors introduce a semi-logaritmic approach based on an expressive symbolic
representation, parametric DBMs, and extrapolation techniques that allows one
to speed up reachability analysis and helps its termination. We will see how
important is an effective extrapolation technique in comparison of TREX and
HyTECH.

2.1 HvyTEcH

HyTEcH [HHWT95] is a tool for analysis of linear hybrid automata [ACHH93].
A hybrid automaton is a mathematical model for hybrid systems that models



both their discrete and continuous behaviour. Hybrid automata can be consid-
ered a generalization of timed automata where continuous variables are used for
modelling any continuous variable. Timed automata have one type of contin-
uous variables - clocks. Generally, hybrid systems are undecidable [HHWT95].
Linear hybrid systems form a subclass of hybrid systems which can be analysed
semi-automatically [ACHH93]. Invariants, guards and actions in linear hybrid
systems depend linearly on time and other variables.

HYTECH is a symbolic model checker for linear hybrid automata. An impor-
tant feature of HYTECH is its ability to perform parametric analysis. It is able
to synthetize parameter values, i.e., find the correct values for the parameters so
that the system will satisfy a specified property.

Model description. As input HYTECH takes a description of a model in form of
linear hybrid system and analysis commands. System description contains vari-
able of several types: discrete, clock, stopwatch, parameter and analog. Guards
and constraints are composed of linear terms and expressions. Each automaton
is composed of locations and their transitions, locations are labeled with their
invariants. Transitions contain guards with enabling conditions and the succes-
sor location. There must be provided an initial state of an automaton and an
initial value of the variables.

Model analysis. Analysis in HYTECH is specified by two parts: declaration of
regions, and a sequence of analysis commands. Analysis commands provide a
means of manipulating and outputting regions. At any time instant, the state of
a hybrid automaton is specified by a location and constraints on variables. This
is called a region. HYTECH computes the forward reachable region by finding
the limit of the infinite sequence I, post(I), post?(I), ... of regions. All timed
safety requirements including bounded-time response requirements, can be ver-
ified using the reachability set. However, the iteration scheme is a semidecision
process: there is no guarantee of termination.

In our first approach, we computed the reachability set of the system. The
property to be verified of the system was expressed in negative form using a
region that violates the property: final_reg := def_lost > 0. Term def lost >
0 defines states where the recovery property is not satisfied, i.e., number of
definitely lost packets is greater then zero. Firstly, HYTECH generates a set of all
reachable configurations of the system. Then intersetion with specified property
is applied on the set. If the property holds we get non-empty result in form of
equations between parameters that satisfies our model and specified conditions.
Declaration of analyzed region and analysis commands in HYTECH for the first
approach is following;:

-- definition of initial and final region
init_reg, final_reg: region;

—-- region inizialization

init_reg := loc[sender] = SO & x = SND_PERIOD & loc[Node] = NO & y =
0 & L = BUFFER_LENGTH & 1lp = O & loc[receiver] = RO & def_lost = 0
& RATE >= 1 & TXW_SIZE >= 1 & NLOSS >= 1 & BUFFER_LENGTH >= 1 &
CH_PERIOD >= 1 ;



-- a violation state (final_reg)

final_reg := def_lost > 0;

-- analysis

reached := reach forward from init_reg endreach;
prints "-------—---- ",

print omit all locations
hide non_parameters in reached & final_reg endhide;

For the first approach computation did not terminate. In symbolic model check-
ing are very important techniques like acceleration that help to speed up and
terminate analysis. For above written example HYTECH had problem to accel-
erate and after few hours the computation failed because of out of memory.
The second approach analyses the model on-the-fly. At first, the nearest
reachable region is computed using post() operation and then, immediately in-
tersection of the region and the undesirable property final_region is tested. If the
intersection is non empty, non-reliable state was reached. If the intersection is
empty, we continue iteration. We cannot find all states satisfying the property
but we can determine states that violate the property and synthetize parameters
for non-allowed states. In HYTECH , the second approach is written as follows:

init_reg, reached,old, final_reg: region;

init_reg := loc[sender] = SO & x = SND_PERIOD & loc[Nodel = NO & y
0 & L = BUFFER_LENGTH & 1lp = O & loc[receiver] = RO & def_lost =
& RATE >= 1 & TXW_SIZE >= 1 & NLOSS >= 1 & BUFFER_LENGTH >= 1 &
CH_PERIOD >= 1 ;

0

final_reg := def_lost > 0;

-- initialize region reached:
reached := init_reg;
prints "-------—---- ",
while empty(reached & final_reg) do
old:= reached;
reached:=post(old);
print diff(reached, old);
endwhile;

prints "reached & final_reg:";
print omit all locations hide non_parameters in reached & final_reg
endhide;

Results. During analysis of PGM we distinguish four different cases depending
on the speed of

e (ase 1: SND_PERIOD > CH_PERIOD - the rate of arrivals is less than departures,
the size of the queue converges to zero. Following constraints on parameters
were synthetized:

CH_PERIOD < SND_PERIOD & CH_PERIOD >= 1 & NLOSS >= 1 & NLOSS <= BUFFER_LENGTH
& RATE >= 1 & TXW_SIZE >= 1 & TXW_SIZE + NLOSS <= RATE + BUFFER_LENGTH + 1
|

RATE >= 1 & NLOSS <= BUFFER_LENGTH & TXW_SIZE + NLOSS >= RATE + BUFFER_LENGTH + 2
& CH_PERIOD < SND_PERIOD & CH_PERIOD >= 1 & TXW_SIZE <= RATE + BUFFER_LENGTH

The result shows that for TXW_SIZE < RATE + BUFFER_LENGTH — NLOSS (first
part of the formula) nothing can be recovered and for TXW_SIZE > RATE +



BUFFER_LENGTH — NLOSS (second part of the formula) some losses can be
recovered. This corresponds with results obtained by TREX - see later.

e (lase 2: SND_PERIOD = CH_PERIOD - arrivals are the same speed as departures,
the size of the queue decreases to zero by number of losses NLOSS that occurs
non-deterministic losses in the queue. The constrained obtained are the same
as in the previous case.

e Case 3: CH.PERIOD/SND_PERIOD > NLOSS - arrivals are faster then departures
and losses, the queue grows beyond any limits.

For this case and case 4, we introduce a new parameter ¢ = CH_.PERI0D/SND_PERIOD,

and we consider that ¢ > 2. Parameter synthesis obtained by HYTECH for
qg=2is:
q >= NLOSS + 1 & SND_PERIOD > 1 & BUFFER_LENGTH >= 1 & NLOSS <= BUFFER_LENGTH + 1
& RATE >= 1 & TXW_SIZE + NLOSS <= RATE + BUFFER_LENGTH + 2 &TXW_SIZE>= 1 & NLOSS >= 1
|

q >= NLOSS + 1 & NLOSS <= BUFFER_LENGTH + 1 & RATE >= 1 & TXW_SIZE + NLOSS >= RATE
+ BUFFER_LENGTH + 3 & SND_PERIOD > 1 & TXW_SIZE <= RATE + BUFFER_LENGTH + 1

This is for ¢ = 2. If we set g equal to {3,4,...} we obtain similar results that
differ by constants in relation with TXW_SIZE.

e Case 4: NLOSS > CH_PERIOD/SND_PERIOD > 1 - arrivals are faster than de-
partures but not enough to fill the losses between two delivery, the size of
the buffer does not grow to fast because of losses.

The experiments and the results are similar to the third case.

2.2 TReX

TREX [BCASO01] is a tool that allows one to analyse automatically automata-
based models equipped with variables of different kinds of infinite domain and
with parameters. The models are parametric timed automata extended with
integer counters and communicating through unbounded FIFO queues.

The verification techniques is improved by efficient extrapolation technique.
TREX allows on-the-fly model checking as well as generation of the set of reach-
able configuration and of a finite symbolic graph.

Model description and analysis. A model of the system is specified using an in-
put language that is a subset of language IF [BFGT00]. A model contains timed
automata with counters, parameters and gates for synchronization. In .cnd file
we specify initial constraints on parameters to help its termination. The output
of verification is a resulting finite graph (.sg), a set of symbolic configurations
(.res) and a list of traces/runs (.tr) over a symbolic configuration graph.

Using a set of traces and a graph of symbolic configuration we can observe
behaviour of the system and find a relation between parameters satisfying desired
property. In our case we search for configurations where number of definitively
lost packet is zero. This configuration satisfies the full recovery property.

In HYTECH we were able to verify only counter-examples, i.e., configurations
where the property was violated. We did not succeed to generate a full set of
reachable configuration. In contrary, TREX generate successfully a full graph



of all reachable configurations. From this graph we can synthetize parameters
satisfying desired property. For instance, in Figure 2 we can see all possible
traces (runs) of the model for which the desired property def_lost = 0 holds.
The graph was generated from TREX (.tr file) for the full recovery property
(deflost = 0) and CH_.PERIOD= SND_PERIOD. We can observe dependency of an
initial value of the buffer BUFFER_LENGTH on current length L of the buffer for
all recovery property.
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Fig.2. TREX - symbolic reachability graph

Results obtained from a set of symbolic configurations cover all the three cases
for recovering losses. We can see that relations for case no recovery and par-
tial recovery correspond with HYTECH results and full recovery with manually
obtained relation. The example is for SND_PERIOD > CH_PERIOD:

e R_AR - full recovery
txw_size > rate + buffer_length and buffer_length > nloss + 1

e R_EL - partial recovery
txw_size > rate + buffer_length -nloss - n3 - 1 and twx_size < rate + buffer_length - n3 - 3 and
buffer_length > nloss + n3 - 3 and buffer_length > n3 - 2 and n3 > 0

e R_AL - no recovery
txw_size < rate -nloss + buffer_length - n3 - 1 and buffer_length > nloss + n3 - 2 and buffer_length
-n3-1<0andn3 >0



2.3 UprrPAAL

UPPAAL is a tool for validation and verification of RT systems developed by co-
laboration of Uppsala University in Sweden and Aalborg University in Denmark
[PLOO]. A model is described using timed automata. Verifier checks specified
properties that are expressed using simple temporal logic with operators E<>,
A[l, E[1, A<>. UppAAL verifies existence of deadlock using special property
A[] not deadlock.

Model description. A part of UPPAAL tool is a simulator that performs simu-
lation on a specified model. We used the simulator especially in the first stage
of the model specification where we tuned our model and compared it with the
given protocol. A model wass decribed graphically using a build-in editor. The
specification is visual and enables the first check of the consistency of the model.
Specification of our model in UPPAAL is in Figure 1.

Model analysis. In our project we verified using UPPAAL states where def lost
> 0 and def_lost = 0. UPPAAL does not support parametric verification, so we
instantiated parameters. Using UPPAAL we were able to prove that our results
obtained by HYTECH and TREX are consistent and that our model is deadlock-
free.

Results. In this part we briefly show obtained results.

e Result 1: relation between current length of the buffer and number of defini-
tively lost packets for different values of parameters.
constants: CH_.PERIOD: 10, SND_PERIOD: 15, RATE: O

TXW_SIZE 10{10]10|10(10{12{11|10|10|12(12(13|14|10{10|2
NLOSS 3131313333333 |4|4]|4(4|5/5
BUFFER_LENGTH| 0 | 5| 8| 9 |10{10{10{11{12{12(12|12]|12|5 | 5 |4
max L 11619|10/11|11{11(12(13|13|13|13|13|6 |6 |5
def_lost 0(0|0]|1]|2]{0(|1(3(3|2|2|1]|0]{0]0]|0

From the above table we see that:
1. max L = BUFFER_LENGTH+ 1
Because of CH.PERIOD < SND_PERIOD the buffer cannot grow except in
the initial phase of transmission.
2. L >NLOSS+1
We can produce losses only if the queue is greater then NLOSS+1 packets.
o Result 2: relation between TXW_SIZE and BUFFER _LENGTH.

TXW_SIZE 10|7|7\7|7
NLOSS 313|4|5(5
BUFFER_LENGTH| 5 |5|5[5|6
def_lost | 0 |0|0|0|1|




The second table shows that we have a definitively lost packets if L >=
NLOSS + 1 and if TXW_SIZE > BUFFER_LENGTH + 1. Losses occur only if we
reach L > NLOSS + 1, so BUFFER_LENGTH > NLOSS + 1.

e Result 3: relation for CH_.PERIOD > SND_PERIOD.
If we test our model for CHPERIOD > SND_PERIOD, i.e, (CH.PERIOD= 2
SND_PERIOD, SND_PER,IOD:10,CH_PERIOD:20), than we obtain following re-
sults:

1. queue L grows beyond every limit,
2. def_lost is at most NLOSS.

3 Conclusion

Analysis and verification of parametrized models is difficult because verification
problem is, in general, undecidable. In this paper, we showed our experiences
and results of synthesis of the parameters for PGM protocol. We worked with
three different tools - UPPAAL, HYTECH and TREX. By combined analysis using
these tools we were able to find constraints on the parameters that satisfied
desired property - the full recovery property. We proved that for SND_PERIOD >
CH_PERIOD A TXW_SIZE > RATE + BUFFER_LENGTH the property is satisfied. In
comparison with previous work [BS03] our result was obtained automatically.

Analysis using UPPAAL helped us to visually describe our model and simulate
its behaviour. We used its verifier to prove a the full recovery property for a
model with instantiating parameters. Verification of dead-lock detection proved
consistancy of the model. For parametric analysis we used HYTECH and TREX.
HYTECH had problems with termination so we verified only negation of the
property and detected configurations that violates that property, that covered
two cases - partial recovery and no recovery. Using TREX we obtained a full
graph of symbolic configurations and observed relations between parameters.
We syntetized parameters for all three cases - full recovery, partial recovery and
no recovery. The results were consistant with those obtained manually or using
HyTEcH and UPPAAL.
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