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Abstract: Protocol analysis involves several parameters in model specification, for in-
stance, transmission delay or the length of the transmitting window. Verification of the
model with parameters is a semi-decision process that depends on the number of clocks,
parameters and counters in the model. Using combination of different verification tools
for timed models as HyTech, TReX and Uppaal we are able to find relation between
parameters satisfying desired property. The paper gives a report on the synthesis of
parameters of PGM protocol. We built a formal model based on extended time au-
tomata with parameters and verified the reliability property. Our results automatically
obtained from the model are consistent with previous results derived manually. The
paper describes our experience with parametric verification of multicast protocol PGM.
Results mentioned in the work were made with collaboration with Mihaela Sighireanu1

from LIAFA, Paris.
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1 Introduction

Model-checking is a popular technique of verification of untimed as well as timed

systems. In comparison with theorem proving model-checking provides an easy

way of specifying and verifying a model without profound knowledge of logics.

For timed systems, model checkers like Uppaal, Kronos, If, TReX can be

used. The basic goal of model-checking is to verify a property on a specified

model using state space search. In practice, a model checker analyses (explicitly

or implicitly) all reachable configurations and tests if the model violates desired

property.

PGM protocol. In our work we verified a reliability property of PGM protocol.

PGM protocol defined in [SFC+01] is a reliable multicast transport protocol

for applications that transfers data from multiple sources to multiple receivers.

It is a standard defined by Cisco for telecommunication services, for instance,

video conferencing. The reliability property defined in the standard states that

“PGM either receives all data packets from transmission and repairs, or is able

to detect unrecoverable data packet loss”. In our model we distinguish three

kinds of recovery - everything is recovered (full recovery), few of lost packets are
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recovered (partial recovery), or nothing is recovered (no recovery). In this paper

we study the full recovery property, i.e., every lost packet is recovered.

Behaviour of the protocol depends on several aspects - the rate of transmis-

sion, the speed of packet generation, the length of the transmission window of

the source or limits of network elements. Our goal is to find dependecies among

these parameters with respect to the full recovery property.

Parametric reasoning works on a model with parameters - variables whose values

are not changed during analysis. Using parametric reasoning we can either verify

that the system satisfies some property for all possible values of the parameters,

or find constraints on the parameters defining the set of all possible values for

which the system satisfies a property.

In our case study we focus on the synthesis of parameters, i.e., finding con-

straints on the parameters that ensure satisfaction of the full recovery prop-

erty. Our model was implemented and verified using three different tools: Up-

paal [PL00], TReX [BCAS01] and HyTech [HHWT97]. Uppaal is a model

checker that does not support parameters so we instantiated variables for some

values. HyTech is a tool for parametric verification of hybrid systems. Timed

automata are a subset of hybrid automata so we can implement our model in

HyTech. HyTech had a problem with termination, so we were not able to

generate full state space of the model. However, using instantiation of certain

parameters and putting constraints on the others we obtained some relations be-

tween parameters. The results were confirmed by similar analysis using TReX.

TReX is a tool for parametric verification of extended timed system with

counters that implements powerful acceleration that helps to terminate compu-

tation. It outputs a graph of symbolic configurations and analyses traces which

we used to study system behaviour and detect configurations where the property

is satisfied.

Contribution. Contribution of our work is to show how parametric verification

works on a non-trivial example of a real protocol and what kind of tools can be

used for parametric verification of timed systems. We identify possible bottle-

necks of analysis, especially the features of the system that induce non termi-

nation. Our observation and recommendations on parametric analysis are men-

tioned in this work.

Outline of the paper. In the first section, we give a short summary of theoreti-

cal background of verification. The second section gives an overview of different

issues related to formal analysis of real-time systems. It discusses four steps of

analysis of a system - creation of a model, model validation, definition of re-

quirements and verification. The third section introduces the analyzed protocol.



We describe a formal model of the protocol based on extended timed automata

with counters [AAB00]. Then we briefly introduce tools we used for verification

- Uppaal, TReX, HyTech and show results we achieved. The last section of

the paper summarizes our results and experience with parametric verification

and discusses our observation of parametric verification of timed systems.

Related work. There are several works on verification of PGM protocol. [BBP02]

verifies a simplified timed version of PGM with a linear topology and a one-

placed buffer. Two properties - lost info property and no-loss property are ver-

ified in this work. The properties are verified by instantiating parameters using

Uppaal. [BL02] validates the sliding window mechanism for any number of data

packets sent using LASH. The model used is untimed. A more complex timed

model of PGM is considered in [BS03], where the model includes parameters. The

constraints on parameters are obtained manually and then verified by instanti-

ation. In contrast to that, we did synthesis and verification fully automatically.

2 Theoretical background

This section gives a short summary of theory of timed systems and parametric

verification. It is not essential to read this section for understanding the full

paper. However, it includes useful definitions of terms that occur in the following

parts of the paper.

2.1 Model checking

Model checking is a technique for verifying finite state concurrent systems such

as communication protocols. In comparison with theorem proving it can be per-

formed fully automatically. The procedure uses an exhaustive search of the state

space of a system to determine if some specification is true or not. The procedure

can terminate with a yes/no answer.

The main disadvantage of model checking is the state explosion that occurs

if the system contains many components that can make transitions in parallel.

Among other sources of complexity there are, for instance, infinite domain of

variables, or the number of parallel processes, etc. They cause that the number

of global system states may grow exponentially with the number of processes.

However, there are various techniques to decrease the size of the state space of a

system - partial order reduction, binary decision diagrams (BDDs), abstraction,

symmetry etc.

Partial order reduction. This technique is based on the following observation:

computations that differ in the ordering of independently executed events are



usually indistinguishable by the specification and can be considered equiva-

lent. There are various approaches to the partial order reduction mentioned

in [CGP99]: the stubbern sets proposed by A.Valmari in [Val90], the ample sets

presented by D.Peled in [Pel94], the persistent sets of P.Godefroid introduced in

[God90], or McMillan’s unfolding technique in [McM92]. Using these methods

we can decrease the size of the state space. As practice shows, partial order re-

duction is a very successfull method for software verification.

Binary decision diagrams (BDDs). One of the approaches to avoid the state

explosion problem is using a compact representation of the state space called

binary decision diagrams and symbolic model checking over them. Binary deci-

sion diagrams introduced by R.E.Bryant in [Bry86] provide a canonical form for

boolean formulas that is more compact than conjuctive or disjunctive normal

form, and very efficient algorithms for manipulating them. Because the symbolic

representation captures some of the regularity in the state space determined by

circuits and protocols, it is possible to verify systems with an extremely large

number of states. BDDs are very successful especially in hardware verification.

Abstraction. The use of abstraction is based on the observation that there are

relationships among data in the system. A mapping between the actual data

values in the system and a small set of abstract data values can reduce the

complexity of model checking. Abstraction can be extended to the states and

transitions of the system. The abstract system is often much smaller than the

actual system, and it is simpler to verify properties at the abstract level. More

about abstraction can be found at [CGP99, chapter 13].

Modeling continuous time. For timed systems, clocks are real values. The timed

transition system is infinite and cannot be simply used for automated verifi-

cation. However, D.Dill and R.Alur in [AD94] introduced the notion of region

equivalence over clock assignments and proved that reachability problem is de-

cidable. The main idea of the region technique is that it is possible to find a finite

representation of the valuation graph which represents all the necessary reacha-

bility information symbolically. At first, infinitely many symbols of the transition

system are reduced to the finite number using time abstraction where time incre-

ments over time-transitions are hidden (see section about Timed Automata later

in the article). Then, using equivalence over the state space the number of states

(infinite) is represented by the finite number of classes according to the equiva-

lence. In other words, the state space is factorized into a finite number of regions.

Difference Bound Matrices (DBMs). A more efficient representation of the state-

space for timed systems is based on the notion of zone ([Dil89],[AD94]). A clock



zone ϕ is a conjunction of inequalities that compare either a clock value or the

difference between two clock values to an integer. We allow inequalities of the

following type: x ≺ c, c ≺ x, x − y ≺ c where ≺∈ {<,≤}, x, y ∈ X , X is a set of

clocks, and c ∈ N. A key property of the set of clock zones is closure property

under three operations - the intersection, elapsed time and clock reset.

Clock zones can be efficiently represented using matrices [Dil89]. In order to

express a uniform notation for clock zones we introduce a special clock x0 that

is always 0. Then, any clock zone ϕ can be written as a conjuction of constraints

of the form x − y ≺ c, for x, y ∈ X,≺∈ {<,≤}, and n ∈ N.

Let D be a difference bounded matrix representing clock zone ϕ. Each entry

Di,j is in the form (di,j ,≺i,j) and represents the inequality xi −xj ≺ di,j , where

≺i,j is either <,≤ or (∞, <), if no such bound is known.

Reachability analysis. Reachability analysis can be used to check properties on

states. The main effort on verification of timed systems has been put on safety

properties that can be checked using reachability analysis by exploring the state

space of timed automata. Symbolically, we can describe reachability analysis for

timed automata with the following algorithm:

R := S0 // a set of reached states

F := F0 // a set of final states

while ((R ∩ F ) = ∅) // reached states are different from final

R’ := post(R) // compute a set of successors of R

if (R′ ⊆ R) return "No" // the whole state space was reached

R := R’ // add successors to the set of all states

end while

return "Yes" // final state was reached

Reachability analysis consists of two basic steps: computing the set of suc-

cessors of a set of reached states - a result of procedure post(), and searching for

states that satisfy or contradict given properties - expressed by an intersection

of a set of reached states and a set of final states. In figure above, the analy-

sis finishes if the final state is reached, or if the entire state space is generated

without being intersected with a set of final states.

Symbolic reachability analysis is a powerful paradigm for verification of

infinite-state systems, such as parametrized communicating systems [BCALS01].

Symbolic reachability analysis uses finite structures to represent infinite sets of

configurations, and iterative exploration procedures to compute the set of all

reachable configurations, or an upper approximation of this set. To help with

the termination these procedures are enhanced by acceleration techniques which

allow us to compute the effect of sequences of transitions in one step instead that

of one single transition in the system. As we will see in next sections acceleration



plays an important role in parametric verification.

Acceleration. As mentioned above, verification of an infinite state system can

be enhanced by acceleration in order to help termination. Instead of repeating

the same transition in the reachability graph we can replace these transitions

by an acceleration step. The acceleration step corresponds to the computation

of an upper approximation of the set of reachable configurations by iterating

a sequence of transitions an arbitrary number of times. For instance, starting

with initial value x = 0, the iteration of a transition which increments x by

2 leads to the set of configurations {0, 2, 4, . . .} which can be represented by

constraint x = 2n, with n ≥ 0. Acceleration techniques allow us to compute a

finite representation in one step instead of computing the infinite sequence of

approximations {0}, {0, 2}, {0, 2, 4}, . . .

2.2 Timed Automata

Timed automata introduced by R.Alur and D.Dill in [AD94] serve as a technique

for modeling FSM with explicit time what is essential for specification and anal-

ysis of real-time systems. Here, we briefly show the theory of timed automata.

Transition system with timing constraints. To express system behaviour with

timing constraints, we consider finite graphs augmented with a finite set of (real-

valued) clock. The vertices of a graph are called locations, and the edges are called

switches. While the switches are instantaneous, time can elapse in a location. A

clock can be reset to zero simultaneously with any switch. At any instant, the

reading of a clock equals the time elapsed since the last clock reset. With each

switch we associate a clock constraint, and we require that the switch may be

taken only if the current values of the clock satisfy the constraint. With each

location we associate a clock constraint called an invariant, and we require that

time can elapse in a location only if its invariant stays true.

Clock constraints and clock interpretation. For a set X of clocks, the set Φ(X)

of clock constraints ϕ is defined by grammar

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in X and c is a constant in Q. A clock interpretation ν for a

set X of clocks assigns a real value to each clock; that is, it is a mapping from X

to the set R≥0 of non-negative reals. For ∆ ∈ R, ν + ∆ denotes the clock inter-

pretation which maps every clock x to the value ν(x)+∆. For Y ⊆ X, ν[Y := 0]

denotes the clock interpretation for X which assigns 0 to each x ∈ Y , and agrees

with ν over the rest of the clocks.



Syntax. A timed automaton A is a tuple 〈L, L0, Σ, X, I, E〉, where

- L is a finite set of locations,

- L0 is a finite set of initial locations,

- Σ is a finite set of labels,

- X is a finite set of clocks,

- I is a mapping that labels each location s with a clock constraint Φ(X), and

- E ⊆ L×Σ × 2X ×Φ(X)×L is a set of switches. A switch e = 〈s, a, ϕ, λ, s′〉

represents an edge from location s to location s′ on symbol a. ϕ is a clock

constraint over X that specifies when the switch is enabled, and the set

λ ⊆ X gives the clocks to be reset with the switch.

Semantics. The semantics of timed automaton A is defined by a transition system

SA associated with it. A state of SA is a pair (s, ν) such that s is a location of

A and ν is a clock interpretation for X such that ν satisfies the invariant I(s).

The set of all states of A is denoted QA. There are two types of transitions in

SA:

1. Time transition: for a state (s, ν) and a real-valued time increment ∆ ≥ 0

there holds (s, ν)
∆
→ (s, ν + ∆) if for all 0 ≤ ∆′ ≤ ∆, ν + ∆′ satisfies the

invariant I(s).

2. Action transition: for a state (s, ν) and a switch 〈s, a, ϕ, λ, s′〉 such that ν

satisfies ϕ there holds (s, ν)
a
→ (s′, ν[λ := 0]).

2.3 Extended Timed Automata with Parameters

Classical timed automata where clocks can only be compared to constants do

not allow us a parametric reasoning. Moreover, it has been shown in [AHV93]

that for parametric timed automata, the reachability problem is, in general, un-

decidable. In [AAB00], the authors propose a semi-algorithmic approach that

allows to deal with parametric counter and timed sytems. They define a new

symbolic representation called Parametric DBMs (PDBMs) for use in reacha-

bility analysis, and provide powerful technique for computing representations of

their sets of reachable configuration.

Parametric Timed System. A Parametric Timed System (PTS) is a tuple T =

〈L, X, P, I, δ〉, where

- L is a finite set of locations



- X is a finite set of clocks,

- P is a finite set of parameters,

- I : L → SC(X, P ) is a mapping that associates invariants with locations,

SC(X, P ) is a simple parametric constraint expressed as a conjunction of

formulas of the form x ≺ t or x − y ≺ t where x, y ∈ X,≺∈ {<,≤}, t is

an arithmetical term over the set of parameters P defined by the grammar

t ::= 0 | 1 | p | t − t | t + t | t ∗ t where p ∈ P is a parameter.

- δ is a set of transitions of the form (l1, g, sop, l2) where l1, l2 ∈ L, g ∈

SC(X, P ) is a guard, and sop is a simple operation over X - a special kind

of assignment of the form x := y + t or x := t where x, y ∈ X and t is an

arithmetical term over the set of parameters.

Clocks and parameters range over a set D which can be either the set of

positive reals R≥0(dense time model) or the set of positive integers N (discrete

time model). A configuration of T is a triplet 〈l, ν, γ〉 where l ∈ L is a location,

ν ∈ X → D is a valuation of the clocks, and γ : P → D is a valuation of param-

eters.

Semantics. Similarly to timed automata we define two types of transitions:

1. Time transition: 〈l1, ν1, γ1〉 → 〈l2, ν2, γ2〉 iff l1 = l2, γ1 = γ2 and there

exists ∆ ∈ D such that ν2 = ν1 +∆ and for all ∆′ ≤ ∆ : (ν1 +∆′, γ) satisfies

the invariant I(l1).

2. Action transition: for a state 〈l1, ν1, γ1〉 and a transition τ = (l1, g, sop, l2) ∈

δ we define a transition relation →τ between configurations as 〈l1, ν1, γ1〉 →τ

〈l2, ν2, γ2〉 such that (ν1, γ1) satisfies g and ν2 = sop(ν1) ∧ γ1 = γ2.

Parametric Difference Bound Matrix (PDBM). Let M be a parametric difference

bound matrix that encodes the contraints in the form xi − xj ≺ t (similar to

DBMs) where xi, xj ∈ X are clocks, t is an arithmetical term over the set of

parameters P defined by the grammar t ::= 0 | 1 | p | t − t | t + t | t ∗ t where

p ∈ P is a parameter, and ≺∈ {<,≤}. A constrained PDBM is a pair (M, ϕ)

where M is a PDBM and ϕ is a parameter constraint - quantifier-free formula

over parameters given by grammar ϕ ::= t ≤ t | ¬ϕ | ϕ ∨ ϕ.

2.4 Symbolic reachability graph

Symbolic configuration. A symbolic configuration Γ is a pair (l, S), where l ∈ L

is a control state, and S is a constrained PDBM. A symbolic configuration

Γ = (l, S) includes Γ ′ = (l′, S′) if l = l′ and [S] ⊇ [S′].



Symbolic reachability graph. Let T is a Parametric Timed System. Starting

from a symbolic configuration Γ we construct a symbolic reachability graph

SG(T ) = (V, E) where V is a finite set of structures representing infinite set of

configurations of T and E ⊆ V × V is a finite set of transitions between struc-

tures in V. Each vertex V is a symbolic configuration and an edge E corresponds

to a transition of T . The vertices of the symbolic graph are treated according to

a depth-first traversal. The construction stops when each symbolic configuration

that can be generated is covered with some symbolic configuration that has been

already computed. During this construction, acceleration is needed in order to

help with the termination.

A symbolic reachability graph is one of the results of verification using

TReX - see Figure 7. It is a powerful mean for analysis of system behaviour.

3 Formal analysis of real-time systems

In the last ten years we can see a rapid development in the field of formal methods

for the specification, analysis and verification of real-time systems. Especially

in continuous time modeling, there has been a great progress in verification

techniques despite the fact that continuous time means dealing with an infinite

state space. Thanks to pioneering approaches and new techniques we can fully

automatically analyse and verify some classes of continuous time systems.

In this paper we present our experience with parametric verification of PGM

protocol. We concentrate on three tools we used for analysis - Uppaal, HyTech,

and TReX. Using combination of these tools we were able to automatically find

relations between parameters of the protocol. Our results automatically obtained

are consistent with previous results derived manually in [BS03].

In this section we give an overview of issues that are related to formal anal-

ysis of real-time systems.

Formal analysis. Formal analysis of a system consists of four basic parts:

1. Creation of a model.

– The model is an abstraction of a real system. The question is a level of

abstraction - we need to detect parts of a model that can be hidden in

the abstract model without changing functionality of a system.

– The model should be described using formal language. Description is

then unambigous and precise.

– Description should be easy to read and understand. This little bit con-

tradicts with the previous point, especially for those who are not familiar

with the reading of formal descriptions. A great advantage is in using



tools with graphical interface where the formal description is hidden be-

hind the simple figures as we can see, for instance, in Uppaal.

– Description language should be easily transformed into an input lan-

guage of a verification tool.

2. Validating the model.

– The main issue of validation can be expressed by the question “Does the

model correspond to the modeled system?”

3. Definition of required properties.

– Among such properties there can be reliability, response of the system,

safety etc.

– Properties are written mostly as assertions or logical formulas.

4. Simulation or/and verification of required behaviour.

– Simulation is useful for proving that the model corresponds to the mod-

eling system. We can as well observe the behavior of the system for

well-known conditions and input values.

– Simulation can never state that the system is correct or that a specified

property is true for all input values and control states of the system.

– Verification can prove that the property is valid for all input values and

states of the system.

– If verification ends with the result that the property is not satisfied we

can find a counter-example where the property is violated. It helps us to

detect flaws in system design.

In our case study we analysed a system using following steps:

(i) System specification. We created an abstract model and described it using

extended timed automata with parameters. The automata communicate using

shared variables.

(ii) Implementation in verification tools. Formal model was translated into in-

put languages of Uppaal, HyTech, and TReX. Transformation was straight-

forward, because Uppaal and TReX use timed automata for model descrip-

tion. HyTech models systems using hybrid automata. Timed automata can

be considered as a subset of hybrid automata, so translation of the model to

HyTech was not difficult too.

(iii) Verification. Because Uppaal does not support parameters, we instatiated

parameters and verified the model for a set of different values. Parametric verifi-

cation was made in HyTech and TReX. During verification we faced a problem

of non termination. If the analysis did not terminate we used following algorithm:



1. We checked traces/runs to find a source of non-termination.

2. We refined a model - we put an additional restriction on parameters, instan-

tiated some parameters, etc.

3. Verification was repeated.

Parametric verification resulted in relations between parameters (parameter

synthesis) that satisfied the observed property.

4 Modeling PGM

This section deals with the modeling of PGM protocol. Our model of PGM was

tuned during time of analysis - a few features were modeled not very precisely,

first models were too large to finish verification etc. Here, we present the last

version of our model where we were able to prove desired properties.

Network
Elements

Receivers

Sender

Figure 1: PGM - multicast transmission.

PGM protocol. PGM protocol defined in [SFC+01] is a complex multicast proto-

col. It works on a network of nodes with multiple senders and multiple receivers.

Its dynamic behavior is depicted in Figure 1. Transport-layer originators of PGM

data packets are referred to as senders, transport-layer consumers of PGM data

packets are referred to as receivers, and network-layer entities in the intervening

network are referred to as network elements.

In the normal course of data transfer, a sender multicasts sequenced data

packets (ODATA), and receivers unicast selective negative acknowledgments



(NAKs) for data packets detected to be missing from the expected sequence.

Network elements forward NAKs hop-by-hop to the source, and confirm each

hop by multicasting a NAK confirmation (NCF) in the response to the inter-

face at which the NAK was received. Repairs (RDATA) may be provided by the

sender in the response to a NAK.

Since NAKs provide the sole mechanism for reliability, PGM is particularly

sensitive to their loss. To minimize the NAK loss, PGM defines a network-layer

hop-by-hop procedure for reliable NAK forwarding - see Figure 2.

Receiver

Network
Element

Source

ODATA, RDATA
SPM
NCF

NAK

Figure 2: Data packets defined in PGM.

In our approach we abstract the model to a simple one-sender and one-

receiver system. Joining and leaving multiple nodes during session can be con-

sidered as nodes missing data [BS03].

Abstract model. Analysing the full PGM protocol is beyond limits of current

verification tools because of

– dynamic topology - joining/leaving out a node,

– multiple senders,

– a lot of different packet types (SPM, NCF, NAK),

– a lot of processes, counters and clocks.

Possible sources of complexity are the number of clocks and counters, the number

of parameters, non-linear relations between variables. However, by combination

of different tools for analysis we were able to prove the reliability property.



Our abstract model is based on a global view of the protocol running in

the sender and one of its receivers, as presented on Figure 3. The intermediate

network between the sender and the receiver is abstracted into a unreliable,

unbounded FIFO queue. Only data packets (ODATA) are transmitted between the

sender and the receiver, the other packets (SPM, NAK, NCF, RDATA) are abstracted

also.

Sender

Receiver

Network

TXW_TAIL TXW_SIZE

L

Figure 3: Abstract model of PGM.

Using the abstract model we can abstract from individual packet numbers.

We are not interested in a precise sequence number to detect losses. When the

receiver receives a packet it is informed by global variable that there was a loss

(or multiple losses) preceding the incoming packet. The receiver knows an actu-

all size of the data in the network (variable L - the length of FIFO queue), the

number of old data in the sender’s transmitting window and the speed of the

transmission. From these values it is possible to detect if a lost packet can be

recovered. In Figure 3 we can see that the number of packets present in trans-

mitting window for recovery is TXW SIZE - L. The real possibility of recovery

depends on the speed of transmission expressed by parameter RATE.

Formal description. For verification purposes we use extended timed automata

with parameters (see previous section) to describe our abstract model. The choice

of the formalism was made with regard to verification tools we intented to use.

Our prime goal was to synthetize parameters of a protocol. So we looked for

tools that implement parametric verification. Because the observed system is a

communication protocol working in real-time, the need of explicit continuous

time was raised. Following these requirements we decided to use extended timed

automata with parameters to formally describe PGM protocol.

Our PGM model is composed of three automata – a sender, a network and

a receiver with six parameters, one finite variable, two clocks, two counters and

two communication channels, see Figures 4, 5, and 6.



The automata work simultanously and are synchronized by rendez-vous on

gates SN and NR. They communicate using shared variables L and lp. The

states labelled by C are urgent states, i.e., states where the time is not allowed

to advance.

S0

x<=SND_PERIOD

Start

x>=SND_PERIOD

SN!

x:=0

x:=SND_PERIOD

Figure 4: PGM model - sender

The sender. The sender generates new data each period (SND PERIOD). The data

sent are stored in the transmitting window that advances each time new data

are sent. The transmitting window is fully opened during the session to recover

as many data packets as possible. If data loss is detected, we test if an original

data packet is in the transmitting window. If not, a non-recoverable data loss

has happened and the full recovery property is violated.

N0p

y<=0

N0

y<=CH_PERIOD

SN?

L:=L+1

y>=CH_PERIOD,L==0

y:=0

y>=CH_PERIOD,L>=1
NR!

L:=L-1,y:=0

y>=CH_PERIOD,lp==0,
L>=NLOSS+1

NR!

y:=0,L:=L-NLOSS-1,
lp:=1

Figure 5: PGM model - network



The network. The network automaton models the transmission channel between

the sender and the receiver with transmission delays and non-deterministic

losses. The network receives data from the sender and increments the length

of buffer L. The buffer is unbounded, it can grow without limitation. The net-

work element either delivers data to the receiver with the speed defined by

CH PERIOD parameter or multiple data are discarded in order to model losses

during transmission. The model allows NLOSS data packets to be lost, NLOSS be-

ing a parameter. The initial buffer length is set to BUFFER LENGTH, which means

the system is in process of communication - we don’t model opening and closing

stages of communication.

R01 R_recoveryR0

R_EL

R_AR

R_AL
lp==1NR?

lp==0

TXW_SIZE <=RATE+L+NLOSS, 
TXW_SIZE >= RATE+L+2

def_lost:=def_lost+RATE+L+NLOSS-TXW_SIZE+1

def_lost:=def_lost+NLOSS

TXW_SIZE <= RATE + L+ 1

TXW_SIZE  >=  RATE + L + NLOSS + 1

def_lost:=def_lost+0

lp:=0

lp:=0

lp:=0

Figure 6: PGM model - receiver

The receiver. The receiver is informed about losses using a global variable lp.

When a loss occurs the receiver calculates possibility of recovery. The result

depends on TXW SIZE, BUFFER LENGTH, RATE and the current length of the buffer

L’.

By reasoning about the recovery of transmitted data we distinguish three

possible cases - every lost packet can be recovered, some lost packets can be

recovered or nothing can be recovered. This depends on the size of the sender’s

transmitting window, the speed of transmission, the delay in the network etc.

These cases can be described by following manually obtained results:

∀R All lost packets may be recovered (full recovery) if TXW SIZE > RATE+ L′ +

NLOSS, state R AR,



∀L None of the NLOSS lost packets may be recovered (no recovery) if TXW SIZE ≤

RATE+ L′ + 1, state R AL, or

∃R Some of the lost packets may be recovered (partial recovery) if TXW SIZE >

RATE+ L′ + 1 and TXW SIZE ≤ RATE+ L′ + NLOSS (state R EL) .

The full recovery may be done for the first case if the parameters satisfy

constraint SND PERIOD ≥ CH PERIOD∧ TXW SIZE ≥ RATE+ BUFFER LENGTH. This

constraint on parameters was obtained manually in [BS03]. In this paper we focus

on automatical synthesis of parameters. However, it is interesting to compare the

manually obtained results with output of verification tools listed in the following

section. It can be seen that the results are consistent.

5 Tools for parametric verfication

In parametric verification we used three tools - HyTech, TReX and Uppaal.

In this part we introduce the tools and our results. As mentioned in [AHV93],

a large class of parametric verification problems is undecidable. In [AAB00] the

authors introduce a semi-logaritmic approach based on an expressive symbolic

representation, parametric DBMs, and extrapolation techniques that allow one

to speed up reachability analysis and help its termination. We will see how

important an effective extrapolation technique is in comparison with TReX and

HyTech.

5.1 HyTech

HyTech [HHWT95] is a tool for analysis of linear hybrid automata [ACHH93].

A hybrid automaton is a mathematical model for hybrid systems that models

both their discrete and continuous behaviour. Hybrid automata can be consid-

ered a generalization of timed automata with continuous variables. Timed au-

tomata have one type of continuous variables - clocks. Generally, hybrid systems

are undecidable [HHWT95]. Linear hybrid systems form a subclass of hybrid sys-

tems which can be analysed semi-automatically [ACHH93]. Invariants, guards

and actions in linear hybrid systems depend linearly on time and other variables.

HyTech is a symbolic model checker for linear hybrid automata. The ability

of HyTech to perform parametric analysis is an important feature. It is able to

synthetize parameter values, i.e., to find the correct values for the parameters so

that the system will satisfy a specified property.

Model description. HyTech takes a description of a model as in input in the

form of linear hybrid system and analysis commands. System description con-

tains variables of several types: discrete, clock, stopwatch, parameter and analog.



Guards and constraints are composed of linear terms and expressions. Each au-

tomaton is composed of locations and their transitions. Locations are labeled

with their invariants. Transitions contain guards with enabling conditions and

the successor location. There must be provided an initial state of an automaton

and an initial value of the variables.

Model analysis. Analysis in HyTech is specified by two parts: declaration of

regions, and a sequence of analysis commands. Analysis commands provide a

means of manipulating and outputting regions. At any time instant, the state of

a hybrid automaton is specified by a location and constraints on variables. This

is called a region. HyTech computes the forward reachable region by finding

the limit of the infinite sequence I, post(I), post2(I), ... of regions. All timed

safety requirements, including bounded-time response requirements, can be ver-

ified using the reachability set. However, the iteration scheme is a semidecision

process: there is no guarantee of termination.

In our first approach, we computed the reachability set of the system. The

property to be verified in the system was expressed in negative form using a

region that violates the property: final reg := def lost > 0. Term def lost >

0 describes states where the recovery property is not satisfied, i.e. number of

definitely lost packets is greater then zero. Firstly, HyTech generates a set of all

reachable configurations of the system. Then intersection with specified property

is applied on the set. If the property holds we get a non-empty result in the form

of equations between parameters that satisfy our model and specified conditions.

Declaration of analysed region and analysis commands in HyTech for the first

approach is following:

-- definition of initial and final region
init_reg, final_reg: region;

-- region inizialization
init_reg := loc[sender] = S0 & x = SND_PERIOD & loc[Node] = N0 & y =

0 & L = BUFFER_LENGTH & lp = 0 & loc[receiver] = R0 & def_lost = 0
& RATE >= 1 & TXW_SIZE >= 1 & NLOSS >= 1 & BUFFER_LENGTH >= 1 &
CH_PERIOD >= 1 ;

-- a violation state (final_reg)
final_reg := def_lost > 0;

-- analysis
reached := reach forward from init_reg endreach;
prints "------------";
print omit all locations

hide non_parameters in reached & final_reg endhide;

For the first approach computation did not terminate. In symbolic model

checking there are very important techniques like acceleration that help to speed

up and terminate the analysis. For above written example HyTech had a prob-

lem to accelerate and after few hours the computation failed because of the lack

of memory.



The second approach analyses the model on the fly. At first, the nearest

reachable region is computed using post() operation and then, immediately in-

tersection of the region and the undesirable property final region is tested. If

the intersection is non empty, non-reliable state was reached. If the intersection

is empty, we continue in the iteration. We cannot find all states satisfying the

property but we can determine states that violate the property and synthetize

parameters for non-allowed states. In HyTech, the second approach is written

as follows:

init_reg, reached,old, final_reg: region;

init_reg := loc[sender] = S0 & x = SND_PERIOD & loc[Node] = N0 & y =
0 & L = BUFFER_LENGTH & lp = 0 & loc[receiver] = R0 & def_lost = 0
& RATE >= 1 & TXW_SIZE >= 1 & NLOSS >= 1 & BUFFER_LENGTH >= 1 &
CH_PERIOD >= 1 ;

final_reg := def_lost > 0;

-- initialize region reached:
reached := init_reg;
prints "------------";
while empty(reached & final_reg) do

old:= reached;
reached:=post(old);
print diff(reached, old);

endwhile;

prints "reached & final_reg:";
print omit all locations hide non_parameters in reached & final_reg
endhide;

Results. During the analysis of PGM we distinguish four different cases depend-

ing on the speed

• Case 1: SND PERIOD > CH PERIOD - the rate of arrivals is less than that of

departures, the size of the queue converges to zero. Following constraints on

parameters were synthetized:

CH_PERIOD < SND_PERIOD & CH_PERIOD >= 1 & NLOSS >= 1 & NLOSS <= BUFFER_LENGTH
& RATE >= 1 & TXW_SIZE >= 1 & TXW_SIZE + NLOSS <= RATE + BUFFER_LENGTH + 1

|
RATE >= 1 & NLOSS <= BUFFER_LENGTH & TXW_SIZE + NLOSS >= RATE + BUFFER_LENGTH + 2
& CH_PERIOD < SND_PERIOD & CH_PERIOD >= 1 & TXW_SIZE <= RATE + BUFFER_LENGTH

The result shows that for TXW SIZE ≤ RATE+ BUFFER LENGTH− NLOSS (the

first part of the formula) nothing can be recovered and for TXW SIZE >

RATE+BUFFER LENGTH−NLOSS (the second part of the formula) some losses

can be recovered. This corresponds to results obtained by TReX - see later.

• Case 2: SND PERIOD = CH PERIOD - arrivals are of the same speed as depar-

tures, the size of the queue decreases to zero by the number of losses NLOSS

these are non-deterministic losses in the queue.

The constrained obtained are the same as in the previous case.



• Case 3: CH PERIOD/SND PERIOD > NLOSS - arrivals are faster then departures

and losses, the queue grows beyond any limits.

For this case and case 4, we introduce a new parameter q = CH PERIOD/

SND PERIOD, and we consider that q ≥ 2. Parameter synthesis obtained by

HyTech for q = 2 as follows.

q >= NLOSS + 1 & SND_PERIOD > 1 & BUFFER_LENGTH >= 1 & NLOSS <= BUFFER_LENGTH + 1
& RATE >= 1 & TXW_SIZE + NLOSS <= RATE + BUFFER_LENGTH + 2 &TXW_SIZE>= 1 & NLOSS >= 1
|

q >= NLOSS + 1 & NLOSS <= BUFFER_LENGTH + 1 & RATE >= 1 & TXW_SIZE + NLOSS >= RATE
+ BUFFER_LENGTH + 3 & SND_PERIOD > 1 & TXW_SIZE <= RATE + BUFFER_LENGTH + 1

This is for q = 2. If we set q equal to {3, 4, . . .} we obtain similar results that

differ by constants in relation with TXW SIZE.

• Case 4: NLOSS > CH PERIOD/SND PERIOD > 1 - arrivals are faster than de-

partures but not enough to fill the losses between two deliveries, the size of

the buffer does not grow fast enough because of the losses.

The experiments and the results are similar to the third case.

5.2 TReX

TReX [BCAS01] is a tool that allows one to analyse automatically automata-

based models equipped with variables of different kinds of infinite domain and

with parameters. The models are parametric timed automata extended with

integer counters and communicating through unbounded FIFO queues.

The verification technique is improved with an efficient extrapolation tech-

nique. TReX allows on-the-fly model checking as well as the generation of the

set of reachable configuration and of a finite symbolic graph.

Model description and analysis. A model of the system is specified using an

input language that is a subset of IF language [BFG+00]. A model contains

timed automata with counters, parameters and gates for synchronization. In

.cnd file we specify initial constraints on parameters to help its termination.

The output of the verification is a resulting finite graph (.sg), a set of symbolic

configurations (.res) and a list of traces/runs (.tr) over a symbolic configuration

graph.

Using a set of traces and a graph of symbolic configuration we can observe

behaviour of the system and find a relation between parameters satisfying desired

property. In our case we search for configurations where the number of definitely

lost packets is zero. This configuration satisfies the full recovery property.

In HyTech we were able to verify only counter-examples, i.e., configurations

where the property was violated. We did not succeed to generate a full set of

reachable configuration. On the contrary, TReX successfully generates a full



graph of all reachable configurations. From this graph we can synthetize param-

eters satisfying the desired property. For instance, in Figure 7 we can see all

possible traces (runs) of the model for which the desired property def lost = 0

holds. The graph was generated from TReX (.tr file) for the full recovery prop-

erty (def lost = 0) and CH PERIOD= SND PERIOD. We can observe a dependency

of an initial value of the buffer BUFFER LENGTH on current length L of the buffer

for all recovery property.
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Figure 7: TReX - symbolic reachability graph

Results. The results obtained from a set of symbolic configurations cover all three

cases of recovering losses. We can see that relations in the case of no recovery

and of partial recovery correspond with HyTech results and full recovery with

manually obtained relation. The example is for SND PERIOD > CH PERIOD:



• R AR - full recovery

txw size ≥ rate + buffer length and buffer length ≥ nloss + 1

• R EL - partial recovery

txw size ≥ rate + buffer length -nloss - n3 - 1 and twx size ≤ rate + buffer length - n3 - 3 and

buffer length ≥ nloss + n3 - 3 and buffer length ≥ n3 - 2 and n3 ≥ 0

• R AL - no recovery

txw size ≤ rate -nloss + buffer length - n3 - 1 and buffer length ≥ nloss + n3 - 2 and buffer length

- n3 - 1 ≤ 0 and n3 ≥ 0

Variables nX ∈ N are called iteration variables. They are used by acceleration

procedures to describe symbolically the number of iterations of detected loop.

5.3 Uppaal

Figure 8: Simulation of PGM in Uppaal.



Uppaal is a tool for validation and verification of RT systems developed by co-

laboration of Uppsala University in Sweden and Aalborg University in Denmark

[PL00]. A model is described using timed automata. Verifier checks specified

properties that are expressed using simple temporal logic with operators E<>,

A[], E[], A<>. Uppaal verifies an existence of a deadlock using special prop-

erty A[] not deadlock.

Model description. A part of Uppaal tool is a simulator that performs simu-

lation on a specified model. We used the simulator especially in the first stage

of the model specification where we tuned our model and compared it with the

given protocol - see Figure 8. A model was decribed graphically using a built-in

editor. The specification is visual and enables the first check of the consistency

of the model. Specification of our model in Uppaal is in Figures 4, 5, and 6.

Model analysis. In our project we did the verification using Uppaal states where

def lost > 0 and def lost = 0. Uppaal does not support parametric verifi-

cation, so we instantiated parameters. Using Uppaal we were able to prove that

our results obtained by HyTech and TReX are consistent and that our model

is deadlock-free.

Results. In this part we briefly show obtained results.

• Result 1: relation between the current length of the buffer and the number of

definitely lost packets for different values of parameters. constants: CH PERIOD:

10, SND PERIOD: 15, RATE: 0

TXW SIZE 10 10 10 10 10 12 11 10 10 12 12 13 14 10 10 2

NLOSS 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5

BUFFER LENGTH 0 5 8 9 10 10 10 11 12 12 12 12 12 5 5 4

max L 1 6 9 10 11 11 11 12 13 13 13 13 13 6 6 5

def lost 0 0 0 1 2 0 1 3 3 2 2 1 0 0 0 0

From the above table we see that:

1. max L = BUFFER LENGTH+ 1

Because of CH PERIOD < SND PERIOD the buffer cannot grow except for

the initial phase of the transmission.

2. L ≥ NLOSS+ 1

We can produce losses only if the queue is greater then NLOSS+1 packets.



• Result 2: relation between TXW SIZE and BUFFER LENGTH.

TXW SIZE 10 7 7 7 7

NLOSS 3 3 4 5 5

BUFFER LENGTH 5 5 5 5 6

def lost 0 0 0 0 1

The second table shows that we have a definitely lost packets if L >= NLOSS+

1 and if TXW SIZE > BUFFER LENGTH + 1. Losses occur only if we reach

L ≥ NLOSS+ 1, so BUFFER LENGTH ≥ NLOSS+ 1.

• Result 3: relation for CH PERIOD > SND PERIOD.

If we test our model for CH PERIOD > SND PERIOD, i.e, (CH PERIOD= 2

SND PERIOD, SND PERIOD=10,CH PERIOD=20), than we obtain following re-

sults:

1. queue L grows beyond every limit,

2. def lost is at most NLOSS.

6 Conclusion

Analysis and verification of parametrized models is difficult because verification

problem is, in general, undecidable. In this paper, we showed our experience

and results of synthesis of the parameters for PGM protocol. We discovered the

following sources of complexity that prevent the tool to finish the verification:

The number of clocks and counters. The number of clocks and counters in the

model can cause that reachability analysis does not terminate. One of the sug-

gestion for dealing with it is to refine the model and abstract out some of the

clock or counter variables.

Parameters. Parameters form another type of complexity. To speed up verifi-

cation it is usefull to set strict initial constraints (bounds) on parameters that

limit the size of the generated state space. For instance, by setting parameter

CH PERIOD > 0 the tool is prevented to explore states where CH PERIOD < 0.

Nonlinear relation between parameters. During the analysis PGM protocol we

discovered a big issue concerning parameters that are related non-linearly. Cur-

rent tools and verification techniques cannot solve this problem. As a solution

we propose to instantiate parameters which are non-linear. For instance, we in-

troduced substitution of SND PERIOD= 2 * CH PERIOD.



Tool Formal speci-
fication

Data
structure

Params Acceleration Notes

HyTech hybrid
automata

polyhedra yes not very good problem with ter-
mination

Uppaal extended timed
automata

DBMs no yes includes simulator,
graphical interface

TReX extended timed
automata

PDBMs yes well implemented generates symbolic
reachability graph

Table 1: Features of verification tools

Analysis does not terminate. It is not surprising when analysis does not terminate

or crashes because of the lack of memory. Timed systems with parameters are

generally not decidable. The termination of the analysis is sensitive to several

aspects. In our case study we synthetize following recommandations:

– Explicit on-the-fly verification. This was extremely useful in verification with

HyTech.

– Analysis of traces. We used a symbolic reachability graph - at least a part

of it - to find a beginning of the non-termination. By setting the initial

constraints on parameters we can refine the model and narrow the state

space. It may help the verification to terminate.

We worked with three different tools - Uppaal, HyTech and TReX. In

combined analysis using these tools we were able to find constraints on the pa-

rameters that satisfied desired property - the full recovery property. We proved

that for SND PERIOD ≥ CH PERIOD ∧ TXW SIZE ≥ RATE + BUFFER LENGTH the

property is satisfied. In comparison with previous work [BS03] our result was

obtained automatically.

Analysis using Uppaal helped us to visually describe our model and simu-

late its behaviour. We used its verifier to prove the full recovery property for a

model with instantiating parameters. Verification of deadlock detection proved

the consistancy of the model. For parametric analysis we used HyTech and

TReX. HyTech had problems with termination so we verified only the nega-

tion of the property and detected configurations that violate that property. This

covers two cases - partial recovery and no recovery. Using TReX we obtained

a full graph of symbolic configurations and observed relations between parame-

ters. We synthetized parameters for all three cases - full recovery, partial recovery

and no recovery. The results were consistent with those obtained manually in

previous work, and those obtained using HyTech and Uppaal.



In Table 1, a brief comparison of verification tools that where used for para-

metric verification of PGM protocol is shown.
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