
A New Data Structure Based on Intervals for

Parametric Counter Automata

Petr Matoušek∗

Abstract

Traditional approaches to the verification of real-time systems deal with timed
models where time is expressed by variables that are compared with explicite values
(i.e., integers). Parametric timed and counter models use parameters to define con-
straints over clocks or counters. Verification of automata with parameters is generally
undecidable. However, there are restricted classes of parametric systems that can be
successfully verified. Analysis mostly depends on the efficient data structure that
is used to express behavior of the system. In this paper we discuss data structures
used for representation of timed and counter automata. We introduce a new data
structure based on parametrized intervals for counter automata and operation that
are needed for verification. This structure makes operations over parametric counter
automata simple in comparison to other approaches.

Introduction

Parametric analysis works with systems that contains special variables that are not changed
during the execution - parameters. In parametric models clocks and counters can be
compared with parameters. Parameters are used in transitions where they define lower
and upper bounds on clocks or counters. Parameters may range over infinite domains and
are related by a set of constraints. Using parametric reasoning we can either verify that
the system satisfies some property for all possible values of the parameters, or we can find
constraints on the parameters that define the set of all possible values for which the system
satisfies a property.

In this paper, at first we give an overview of parametric counter automata defined
by [AHV93], [AAB00], and the basics of verification of parametric systems. The second
section shows structures used for data representation of parametric timed and counter
automata - parametric DBM’s [AAB00] that are implemented in TReX and parametric
hypercubes (pHCubes) - a new data structure used for counters. This structure is based on
intervals [ST02]. We introduce its structure and operations over it. The advantage of this
structure is that it reduces space needed to represent data and simplifies some operations

∗Faculty of Information Technology, Brno, Czech republic, matousp@fit.vutbr.cz

1

(emptiness test, intersection, etc.). Second contribution is that this structure allow to
represent conditions of the form x1 + . . .+ xn ≺ t while DBMs allow comparison of terms
with only two variables xi − xj ≺ t.

1 Parametric Real-time Reasoning

As mentioned in [AHV93], the main question for parametric automata (we consider both
timed and counter automata) is the emptiness: given a parametric timed system, are there
concrete values for the parameters so that the automaton has an accepting run? This
question in generally undecidable but there exist algorithms for checking the emptiness of
restricted classes of parametric timed automata.

Another important question connected to the emptiness testing is termination of the
analysis. Values of clocks and counters can grow beyond every limitation. The important
issue is to limit their domains to terminate the analysis. There are various techniques that
enforce the convergation of the analysis like widening technique or convex hull [ACH+95]
implemented in HyTech, or extrapolation based on control loops introduced in [AAB00]
and implemented in TReX.

1.1 Parametric Counter Automata

Parametric counter automata are similar to timed automata of [Alu99] augmented with
parameters. Timed automata are finite-state machines with clocks which are used to
constrain the accepting runs by imposing timing requirements on the transitions. While
ordinary automata generate sequence of events (states), time automata are constrained by
timing requirements and generate timed sequences. All clocks proceed at the same rate
and measure the amount of time that has elapsed since they were started or reset. Each
transition of the automaton may reset some of the clocks, and it puts certain constraints on
the values of the clocks: a transition can be taken only if the current clock values satisfy
the corresponding constraints. Parametric counter automata are similar to parametric
timed automata. Only difference is that function post() is defined without considering
time-transitions.

Parametric Counter Automaton is a tuple C = 〈L,C, P, I, δ〉, where

• L is a finite set of locations,

• C is a finite set of integer valued variables (counters),

• P is a finite set of parameters,

• I : L → SC(C, P) is a mapping that associates invariants with locations, SC(C, P)
is a simple parametric constraint expressed as a conjunction of formulas of the form
x ≺ t or x − y ≺ t where x, y ∈ X,≺∈ {<,≤}, t is a arithmetical linear term over
the set of parameters AT (P) defined by the grammar t ::= c | p | t − t | t + t | c ∗ t
where p ∈ P is a parameter and c ∈ Z is a constant.

2

• δ is a set of transitions of the form (l1, g, sop, l2) where l1, l2 ∈ L, g ∈ SC(C, P) is
a guard, and sop is a simple operation over C - a special kind of assignment of the
form x := y + t or x := t where x, y ∈ C and t ∈ AT (P).

A configuration of C is a triplet 〈l, ν, γ〉 where l ∈ L is a location, ν ∈ C → D is a
valuation of the counters, and γ : P → D is a valuation of parameters. Set D denotes
a domain of counter values. D can be R

≥0 or N. Given a transition τ ∈ δ we define
an action relation →τ : For a state 〈l1, ν1, γ1〉 and a transition τ = (l1, g, sop, l2) ∈ δ we
define a transition relation →τ between configurations as 〈l1, ν1, γ1〉 →τ 〈l2, ν2, γ2〉 such
that (ν1, γ1) satisfies g and ν2 = sop(ν1) ∧ γ1 = γ2. The function postτ here is defined
without considering time-transitions.

1.2 Verification

In automata-theoretic verification, a finite-state system is modeled by an automaton. The
set of words accepted by the automaton corresponds to the possible behaviours (runs) of
the system. While automata on infinite words can be used to deal with nonterminating
processes, for verifying safety properties it suffices to consider automata over finite words.

• For verification of parametric systems we want to prove that a system satisfies its
specification for all parameters values that meet a given set of constraints. Given a
set ∆ ⊆ [P 7→ D] of possible parameter valuations, we wish to verify that no γ ∈ ∆
is consistent with A (automaton of desirable behavior), that is ∆ ∪ Γ(A) = ∅.

• In parameter synthesis, we want to find all parameter valuations Γ(A) that are con-
sistent with A, or we want to find a parameter valuation that is consistent with A
and is optimal with respect to some criterion.

The question of deciding whether a specific parameter valuation γ is consistent with A can
be solved using techniques developed in [AD90]. Given a parameter valuation γ, one can
construct a finite-state automaton Aγ that accepts Lγ(A). Then γ ∈ Γ(A) iff Aγ accepts
some string. The solution is known to be PSPACE-complete.

2 Data structures for parametric counter systems

2.1 Parametric DBM’s

We define parametric DBM’s according to [AAB00]. Let M be a parametric difference
bound matrix that encodes the contraints in form xi − xj ≺ t (similar to DBMs) where
xi, xj ∈ C are counters, t ∈ AT (P), and ≺∈ {<,≤}. A constrained PDBM is a pair
(M, ϕ) where M is a PDBM and ϕ is a parameter constraint - quantifier-free formula over
parameters given by grammar ϕ ::= t ≤ t | ¬ϕ | ϕ ∨ ϕ. Basic operations on constrained
PDBM are:

3

• Transformation into a canonical form. Canonical forms of DBM’s (nonparametric
case) are constructed using Floyd Warshall algorithm which computes the minimum
path between all pairs of entries. In parametric case we follow the same principle by
running a symbolic Floyd Warshall algorithm. During computation the algorithm
needs to determine minimums between terms. For that, algorithm assumes each of
the two possible cases and check their consistency with respect to the parameter
constraints: given two terms t1 and t2 it considers the case where min(t1, t2) = t1,
resp. t2, and adds t1 < t2, resp. t1 ≥ t2 in the parameter constraints. In order to check
the consistency of each of the possible cases when computing the minimum between
two terms, we have to test the satisfiability of formulas ϕ of the form Φ(P) ∧ t1 ≺
t2 where ≺∈ {<,≤} and Φ is a parameter constraint. The transformation into a
canonical form is used for emptiness check.

• Intersection. Let S1 = (M1,Φ1) and S2 = (M2,Φ2). Intersection consists of com-
puting minimum for every i, j between two terms M1(i, j) and M2(i, j) under the
parameter constraints Φ1 ∧ Φ2.

• Inclusion test. The inclusion of S1 in S2 can be expressed by formula
∀P.Φ1(P) ∧ Φ2(P) ⇒M1 ≤ M2.

PDBMs use two-dimensional arrays for representing clocks and counter. However, for
counters we don’t need two dimensions because it is not needed to store differences between
every two clocks/counters. So we propose a new structure that reduces both the space and
time requirements for storing and manipulating data.

2.2 Parametric hypercubes

Parametric hypercubes (pHCube) symbolically represent data domain of variables x1, . . . , xn.
We use this structure to represent counters in extended time automata. Manipulation with
this structure (intersection, union, widening) is easier in comparison with other parametric
data structures like PDBMs or pohyhedra.

This structure contains a parametrized interval for every variable constrained by a
formula ϕ. First, we define contrained parametrized interval over variable x as follows:

Ĩ(x,P) = (〈a, b〉, ϕ) = (〈(≺i, ti), (≺s, ts)〉, ϕ)

where ≺i,≺s∈ {<,≤}.a = (≺i, ti), b = (≺s, ts) are constrained parametrized bounds such
that (−x ≺i ti) ∧ (x ≺s ts) ∧ ϕ. Terms ti, ts are from AT (P)∪{∞,−∞} and constraint
ϕ is a quantifier-free formula over P given by grammar ϕ ::= t ≤ t | ¬ϕ | ϕ ∨ ϕ.

Parametric hypercube is an abstract data structure over intervals. It can be described
using parameterized interval formula, i.e., conjuctions of constraints over parametrized
terms of the form: ∧

j

(tji ≺i xj ≺s tjs)

4

where xj ∈ X is a variable, and t
j
i , resp. tjs, is a lower bound (infimum), resp. an upper

bound (supremum).
Formally, parameterized hypercube ph over set of variables X = {x1, . . . , xn} is a vector

of parametrized bounds constrained by formula ϕ:

ph(X) = (I, ϕ) = (I1, . . . , In, ϕ) = (〈a1, b1〉, . . . , 〈an, bn〉, ϕ)

where ai, resp. bi are the lower, resp. the upper parameterized bound of variable xi, ϕ is
a constraint over parameters P. The form of a parameterized bound is ({<,≤}, ti), where
ti ∈ AT (P) ∪ {∞,−∞}.

For example, let ~v = (x, y, z) is a set of variables over X, P = {p, q}, and ϕ ∈ F (P).
Let ph(~v) be a pHCube over vector ~v such that

ph(~v) = (〈(<, 0), (≤, 2 ∗ p)〉, 〈(<,∞), (<,∞)〉, 〈(≤,−3), (<, 3 + q)〉,−p ≤ 1 ∧ −q ≤ −1)

This structure represents data domain of three variable x, y, z. Two variables x and z are
bounded by intervals (0 < x ≤ 2∗p), (3 ≤ z < 3+q) respectively. Variable y is unbounded
(−∞ < y < ∞) and covers entire domain. Parameters {p, q} are constrained by formula
ϕ = p ≥ −1 ∧ q ≥ 1.

2.3 Operations on pHCubes

In this section we will define operations on pHCubes and their relation to the verification of
counter automata. Because of lack of space we show only few operations over parameterized
hypercubes.

• Emptiness test. We test emptiness before applying any other operation during system
analysis, for example, inclusion, equality etc. Let ph be a pHCube. We say that ph
is not empty, if ∃p ∈ P . ϕ

∧
i(ai ≤ bi). ph is empty if negation of this formula is

satisfied.

• Universality test. pHCube is universal if every its bound is infinite and does not
depend on a constraint expressed by formula ϕ. Implementation of this simple.
pHCube ph is universal if and only if ∀i ∈ {1, . . . , n} . ai = {<,∞} ∧ bi = {<,∞}.
For instance, unbounded pHCubes is universal.

• Inclusion. Test of inclusion of pHCubes is very important operation over pHCubes.
After computation of a new configuration we test if a new pHCube is included into
existing ones.

Inclusion of pHCubes is based on the relation of the total order ⊆. Here, we
extend this relation on pHCubes. Let ph = (〈a1, b1〉, . . . , 〈an, bn〉, ϕ) and ph′ =
(〈a′1, b

′
1〉, . . . , 〈a

′
n, b

′
n〉, ϕ

′) be two pHCubes. We define inclusion on pHCubes as fol-
lows:

ph ⊆ ph′ ⇐⇒ ∀p ∈ P . ϕ ⇒ (ϕ′ ∧
∧

i

(ai ≤ a′i ∧ bi ≤ b′i))

⇐⇒ ∀p ∈ P . ¬ϕ ∨ (ϕ′ ∧
∧

i

(ai ≤ a′i ∧ bi ≤ b′i)

5

For implementation is useful to test non-inclusion. The new formula is

ph 6⊆ ph′ ⇐⇒ ∃p ∈ P . ϕ ∧ (¬ϕ′ ∨
∨

i

(¬(ai ≤ a′i ∧ bi ≤ b′i))

⇐⇒ ∃p ∈ P . ¬(ϕ ⇒ ϕ′) ∨ (ϕ ∧
∧

i

(¬(ai ≤ a′i ∧ bi ≤ b′i))

Using this formula we test inclusion by testing satisfiability of the formula. If it
is not satisfied, the phcubes are included. An empty pHCube is included in every
phCube. If ph is empty, ph ⊆ ph′. If ph′ is empty, ph 6⊆ ph′.

• Equality. The operation equality can be substituted by the operation of inclusion
because ph = ph′ ⇐⇒ (ph ⊆ ph′) ∧ (ph′ ⊆ ph).

• Intersection. Computation of intersection is an expensive operation. For every di-
mension we need to test all possible cases of relations between two intervals. Here, we
demonstrate intersection for pHCubes with only one variable. Let ph = (I, ϕ), ph′ =
(I ′, ϕ′), where I = 〈a, b〉, I ′ = 〈a′, b′〉. The result of the intersection will be a list of
pHCubes (I ′′, ϕ ∧ ϕ′ ∧ ψ). We distinguish following cases:

1. If I ′ < I ∨ I < I ′, then intersection will be empty. The following constraint
must be satisfied: ψ = b′ < −a ∨ b < −a′.

2. If I ′ ⊆ I ∨ I ⊆ I ′, then one interval is included into another. The result will be
one of the intervals. For I ′ ⊂ I formula ψ = a′ < a ∧ b′ < b must be satisfied,
for I ⊂ I ′ formula ψ = a < a′ ∧ b < b′ must be satisfied.

3. If I ∩ I ′ 6= ∅ the following four cases are possible:

(a) ψ = a < a′ ∧ b < b′, I ′′ = 〈a, b〉

(b) ψ = a < a′ ∧ b′ ≤ b, I ′′ = 〈a, b′〉

(c) ψ = a′ ≤ a ∧ b < b′, I ′′ = 〈a′, b〉

(d) ψ = a′ ≤ a ∧ b′ ≤ b, I ′′ = 〈a′, b′〉

For symbolic computation only the third case is enought to implement. The
second case can be simply implemented by inclusion test as introduced above.
In addition, we don’t need to detect the first case because we are interested in
intersection only. If the first case happens none of the formulae from the third
case will be satisfied and the result will be an empty pHCube.

While looking at the relations above remember that interpretation of interval I(x) =
〈a, b〉 is −a < x < b.

• Extrapolation. Extrapolation computes the effect of applying a loop on ϕ if the first
step of the loop gives ϕD. Types of extrapolation are widening, that removes the
constraint with changes, and acceleration, that adds the difference between code ϕ
and ϕD as a period. In the result, the acceleration method may transform the ϕ into
an open domain by introducing acceleration parameters, see [AAB00], for instance.

6

3 Conclusion

This paper deals with the problem of verification of parametric systems. We discuss para-
metric counter automata and introduce a new structure to represent data - parametric
hypercubes. In comparison with parametric DBMs parametric hypercubes are smaller in
space and operation over them are simpler. They allow to represent constraints with more
than two variables in comparison with PDMBs. This new data structure is implemented
now in verification tool TReX[BCAS01]. Now we test the implementation and compare
with PDBMs. The result of the comparison with PDBMs and the full description of the
pHCube library will be included in the author’s PhD. thesis.

References

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In E.A. Emerson and A.P. Sistla,
editors, Proceedings of the 12th CAV, volume 1855 of LNCS, pages 419–434.
Springer Verlag, July 2000.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theor. Comput. Sci., 138(1):3–34, 1995.

[AD90] R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceed-

ings of the seventeenth international colloquium on Automata, languages and

programming, pages 322–335. Springer, 1990.

[AHV93] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In
ACM Symposium on Theory of Computing, pages 592–601, 1993.

[Alu99] R. Alur. Timed automata. In Proceedings of 11th CAV, volume 1633 of LNCS,
pages 8–22, 1999.

[BCAS01] A. Bouajjani, A. Collomb-Annichini, and M. Sighireanu. Trex: A tool for
reachability analysis of complex systems. In Proceedings of CAV, volume 2102
of LNCS, pages 368–372. Springer Verlag, June 2001.

[ST02] Karsten Strehl and Lothar Thiele. Interval diagrams for efficient symbolic veri-
fication of process networks. IEEE Transactions on Computer-Aided Design of

Integrated Ciruits and Systems, 2002.

7

