Network Security by Cisco Slavonice, 28th June 2007

Petr Matoušek

matousp@fit.vutbr.cz

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 1/34

Roadmap

Motivation

- 1. Basic Principles of Intrusion Detection Systems
 - Signature-Based Detection
 - Anomaly-Based Detection
- 2. Network Security by Cisco
 - Introduction Cisco Context-Based Access Control (CBAC)
 - Flexible Packet Matching (FPM)
 - Cisco Secure Monitoring, Analysis and Response System (MARS)
 - Cisco Self-Defending Networks (Cisco SDN)
- **3.** Advanced Techniques for Traffic Analysis
 - Cisco Service Control Engine (SCE)
 - ModSecurity HTTP security

Motivation

Network Security by Cisco, Liberouter meeting, Slavonice 2007 - p. 3/34

Motivation

***** Botnet – a new phenomenon in attacking strategy

- **botnet** "bot-net", "robot-network", "software robots"
- a collection of compromised computers under common control
- used for sending spams, DDoS attacks, Phishing, Theft of Identity, etc.

Motivation

Sotnet – a new phenomenon in attacking strategy

- **botnet** "bot-net", "robot-network", "software robots"
- a collection of compromised computers under common control
- used for sending spams, DDoS attacks, Phishing, Theft of Identity, etc.

Bots on rise

- average of 10,352 active botnets per day (Symantec, 20056)
- DoS attacks: from 119 to 927 per day (last 6 month, Symantec, 2005)
- 2005, Dutch police discovered a botnet of 1,5 milion zombie PCs
- DDos-for-Rent: 80\$-90\$ for average site, higher for more complicated
- Extortion: "You pay me 20,000 \$ or your web site goes down!"

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 4/34

***** 1. Defend my own network

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 4/34

- ***** 1. Defend my own network
 - detect and isolate compromised host
 - detect and stop sniffing, scanning (reconaissance), and access attacks
 - detect and stop DDoS attack from inside/outside of the LAN/WAN
 - **complex solution** over entire network

- ***** 1. Defend my own network
 - detect and isolate compromised host
 - detect and stop sniffing, scanning (reconaissance), and access attacks
 - detect and stop DDoS attack from inside/outside of the LAN/WAN
 - complex solution over entire network includes:
 - firewalls, IDS/IPS
 - antispam, anti-virus machines
 - monitors, collectors, managements stations
 - routers, switches, hosts

***** 2. Secure my own services

- ***** 2. Secure my own services
 - classify/analyse network traffic (tunnels, dynamical ports)
 - filter out bad traffic, pass legitimite one
 - create/dynamically add my own rules and policies
 - check application data to prevent attacks on application level

A Road To Go

***** Challenges for research

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 6/34

A Road To Go

- Challenges for research
 - traffic analysis on multigigabits networks (e.g., signature detection)
 - high-level protocol analysis application protocols
 - detection using anomaly-based behaviour
 - rules describing protocols/attacks dynamically loaded to FPGA
 - sophisticated analyses of different incidents, corellation function

A Road To Go

- Challenges for research
 - traffic analysis on multigigabits networks (e.g., signature detection)
 - high-level protocol analysis application protocols
 - detection using anomaly-based behaviour
 - rules describing protocols/attacks dynamically loaded to FPGA
 - sophisticated analyses of different incidents, corellation function
- Current security issues
 - DDoS attacks
 - WWW traffic, Emails
 - IP telephony
 - etc.

Research Background

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 7/34

Research Background

Current Activites

- Liberouter project hardware acceleration on FPGA (CESNET)
 - FlowMon passive network monitoring using FPGA
 - IDS accelerated Network Intrusion Detection System
 - NetCOPE rapid development of network applications

Research Background

Current Activites

- Liberouter project hardware acceleration on FPGA (CESNET)
 - FlowMon passive network monitoring using FPGA
 - IDS accelerated Network Intrusion Detection System
 - NetCOPE rapid development of network applications
- Security-Oriented Research in Information Technology (FIT)
- Cisco Network Academy Network Security on Cisco devices (FIT)
 - CCNA programme
 - Network Security programme (NS)
 - Fundamentals of Wireless Networks (FWL)
- **BUSLab at FIT Brno University Security Laboratory (FIT, FI)**

2 Basic Principles of Intrusion Detection Systems

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 8/34

- **2 Basic Principles of Intrusion Detection Systems**
- ***** 2.1 Signature-based detection
 - IDS signatures identify and classify an alarm condition
 - info or attack signatures
 - incapable to detect new types of attacks

- **2 Basic Principles of Intrusion Detection Systems**
- ***** 2.1 Signature-based detection
 - IDS signatures identify and classify an alarm condition
 - info or attack signatures
 - incapable to detect new types of attacks
- IDS signature classification
 - 1. based on number of packets needed for detection
 - atomic signatures simple patters within a single packet
 - compound signatures complex patterns within multiple packets

- **2 Basic Principles of Intrusion Detection Systems**
- ***** 2.1 Signature-based detection
 - IDS signatures identify and classify an alarm condition
 - info or attack signatures
 - incapable to detect new types of attacks
- IDS signature classification
 - 1. based on number of packets needed for detection
 - atomic signatures simple patters within a single packet
 - compound signatures complex patterns within multiple packets
 - 2. based on severity
 - information signatures detect information-gathering activity
 - attack signatures detect attacks into the protected network

2.1 Signature-based detection

***** Example – Snort rules:

• simple rule

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111
(content: "|00 01 86 95|")

2.1 Signature-based detection

Example – Snort rules:

• simple rule

```
alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111
(content: "|00 01 86 95|")
```

• ddos.rules -> set of 30 rules, example:

alert icmp \$EXTERNAL_NET any -> \$HOME_NET any (msg:"DDOS TFN Probe"; icmp_id:678; itype:8; content:"1234"; reference:arachnids,443; reference:cve, 2000-0138; classtype:attempted-recon; sid:221; rev:5;)

alert icmp \$EXTERNAL_NET any -> \$HOME_NET any (msg:"DDOS tfn2k icmp possible communication"; icmp_id:0; itype:0; content:"AAAAAAAAAA"; reference:arachnids,425; reference:cve,2000-0138; classtype:attempted-dos; sid:222; rev:3;)

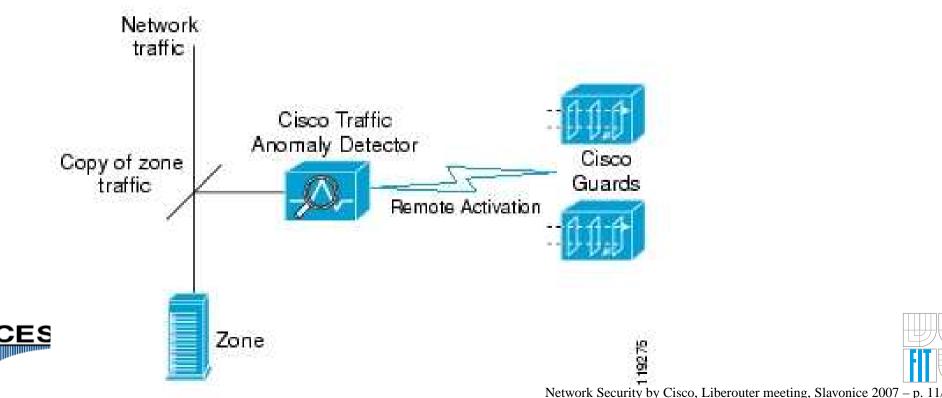
Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 10/34

***** Requires profiles for each user group

- the profile defines the behaviour characteristics for a user group
- the quality of the profiles directly relates to how successful IDS will be
- ***** When a user changes behaviour, the IDS generate alarm

Requires profiles for each user group

- the profile defines the behaviour characteristics for a user group
- the quality of the profiles directly relates to how successful IDS will be
- ***** When a user changes behaviour, the IDS generate alarm
- Advantages
 - enables tunable control over false positives
 - detects previously unpublished attacks


Disadvantages

CESNET

- require an initial training time
- require updating user profiles as habits change
- have difficulty correlating alarms to specific attacks

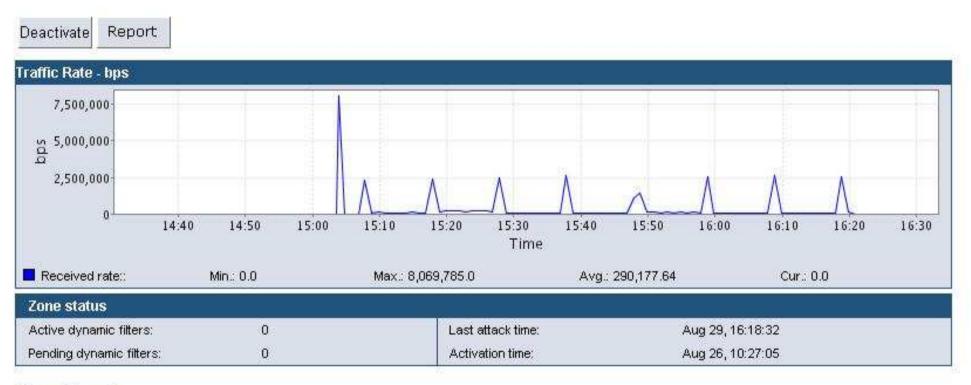
- **Example Cisco Traffic Anomaly Detector Module**
 - a hardware module that monitors a copy of the network traffic
 - learns the zone traffic
 - creates a set of zone-specific policies
 - applies policies and detect anomalies
 - effective for DDoS detection

***** The Learning Process

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 11/34

The Learning Process

- 1. policy construction
 - learns the characteristics (services and traffic rates) of the traffic
 - for both normal and peak traffic
 - detector creates policies based on the services
 - scans traffic flow \Rightarrow policy templates
 - modifies the default zone traffic policies and thresholds


The Learning Process

- 1. policy construction
 - learns the characteristics (services and traffic rates) of the traffic
 - for both normal and peak traffic
 - detector creates policies based on the services
 - scans traffic flow \Rightarrow policy templates
 - modifies the default zone traffic policies and thresholds
- 2. threshold tuning phase
 - policy treshold exceeded \rightarrow the detector executes action

Recent Events

Time	Severity	Туре	Details	
Aug 29 15:03:40	Notify	attack-start	Attack started.	
Aug 26 15:10:04	Notify	attack-ended	Attack ended.	

Anomaly Detection Process: Traffic Filters

- Bypass filters
 - prevent the Detector from applying rules
 - for specific traffic flows
- Flex-Content filters
 - traffic flow filtered according to the IP, TCP headers and the content
- Dynamic filters
 - apply the analysis detection level
 - anomaly detected \rightarrow dynamic filters loaded
 - zone protection activated

2 Basic Principles of Intrusion Detection Systems

Conclusion – Current Issues of IDS

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 13/34

- **2 Basic Principles of Intrusion Detection Systems**
- Conclusion Current Issues of IDS
 - system limits: CPU performance, memory capacity, input data rates
 - a huge number of alarms (false positives) generated by IDSs
 - only narrow view on the network
 - stateful behaviour flows information needed
 - application protocol analysis required
 - mostly deployed signature-based detection only \Rightarrow a large set of rules
 - tunnelling different protocols (e.g., over port 80)
 - encrypted connections
 - dynamic ports (multimedia)

3 Network Security by Cisco

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 14/34

3 Network Security by Cisco

- *** 3.1 Cisco Context-based Access Control (CBAC)**
- *** 3.2 Flexible Packet Matching (FPM)**
- *** 3.3 Cisco Security Monitoring, Analysis and Response System (MARS)**
- *** 3.4 Cisco Self-Defending Networks (SDN)**

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 15/34

***** Features

- a type of ACLs (Access Control Lists)
- inspect traffic at layer 3 and higher
- manage state information for TCP and UDP sessions
- create temporary openings in the firewall

How CBAC works

- 1. control traffic is inspected by the CBAC rule
- 2. creates a dynamic ACL to allow returning traffic throught the firewall
- 3. inspects control traffic, dynamically creates/removes ACLs
- 4. after session terminates CBAC removes all dynamic ACLs

How CBAC works

- 1. control traffic is inspected by the CBAC rule
- 2. creates a dynamic ACL to allow returning traffic throught the firewall
- 3. inspects control traffic, dynamically creates/removes ACLs
- 4. after session terminates CBAC removes all dynamic ACLs

TCP sessions

- CBAC checks TCP sequence numbers
- discards suspicious packets out of sequence
- monitors command channels only (FTP, SIP etc.)

DoS attack protection

- number of half-open TCP connection
 - total number (default 500)
 - per time (one-minute high/low)
 - per host (default 50)

DoS attack protection

- number of half-open TCP connection
 - total number (default 500)
 - per time (one-minute high/low)
 - per host (default 50)
- wait and idle times
 - SYN (30 sec to reach the established state)
 - FIN (session closed 5 sec after FIN)
 - idle times: TCP (1 hour), UDP (30 sec), DNS (5 sec)
- reactions
 - reset (RST) the oldest half-open connection
 - temporary block all incoming SYN packets

CBAC-Supported Protocols

- TCP, UDP, ICMP
- RPC, Unix R-commands
- FTP, TFTP, SMTP
- Java, SQL*Net, URL filtering
- RTSP, H.323

Conclusion

- a technique for data analysis on higher layers
- more sophisticated ACLs
- a part of router's operating system IOS
- keep state information
- predefined rules and actions \rightarrow easy to deploy
- supports limited fixed number of application protocols
- new attacks and protocols cannot be added

3.2 Flexible Packet Matching (FPM)

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 16/34

3.2 Flexible Packet Matching (FPM)

Introduction

- define traffic classes and actions (policies) to block network attacks
- ACL pattern matching tool for thorough and customized packet filters
- provides match on arbitrary bits of a packet at arbitrary depth
- matches packet header + first 256 bytes of payload
- FPM provides a flexible layer 2-7 stateless classification mechanism

3.2 Flexible Packet Matching (FPM)

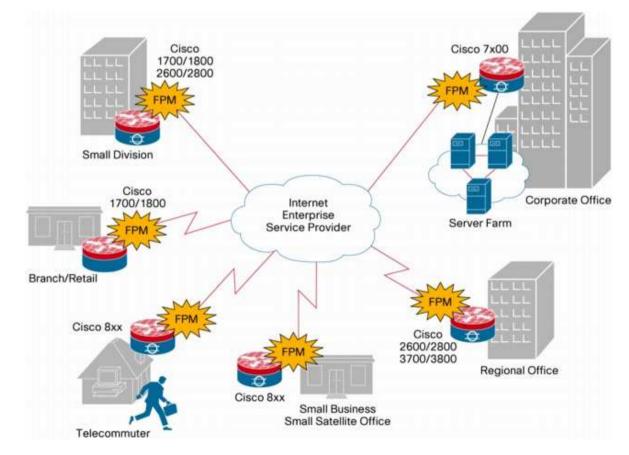
Introduction

- define traffic classes and actions (policies) to block network attacks
- ACL pattern matching tool for thorough and customized packet filters
- provides match on arbitrary bits of a packet at arbitrary depth
- matches packet header + first 256 bytes of payload
- FPM provides a flexible layer 2-7 stateless classification mechanism
- Features
 - works with IP, TCP, UDP and custom protocols defined by PHDF
 - PHDF Protocol Header Definition File (written in XML)
 - pattern matching on protocol fields (eq, neq, gt, lt, value, range, regex)

Protocol Header Description File (PHDF) – example IPv4:

4 bits 4 bits

ver	IHL	ToS	Total Length			/	١
Identification			Flags	s Offset			
T	ΓL	Protocol	Header checksum		checksum	20	
Source Address							
Destination Address						١	/
Options			B Padding		Padding		
Data							


CESNET

Protocol Header Description File (PHDF) – example IPv4:

```
<?xml version="1.0" encoding="UTF-8"?>
<phdf>
   <version>1</version>
       <protocol name="ip" description="Definition-for-the-IP-protocol">
          <field name="version" description="IP-version">
              <offset type="fixed-offset" units="bits">0</offset>
              <length type="fixed" units="bits">4</length>
          </field>
          <field name="ihl" description="IP-Header-Length">
              <offset type="fixed-offset" units="bits">4</offset>
              <length type="fixed" units="bits">4</length>
          </field>
           . . .
          <headerlength type="fixed" value="20"></headerlength>
          <constraint field="version" value="4" operator="eg"></constraint>
          <constraint field="ihl" value="5" operator="eq"></constraint>
       </protocol>
</phdf>
```


- **1. Determine the characteristics of an attack.**
- 2. Select appropriate PHDF. If does not exist, create a custom PHDF.
- **3.** Load all PHDFs needed, configure class/policy maps to take an action.
- 4. Apply the service policies to appropriate interface.

Fragmented UDP Attack

router(config)#load protocol flash:ip.phdf // load protocol definition

router(config)#class-map type stack match-all ip_udp // protocols to match router(config-cmap)#description "match UDP over IP packets" router(config-cmap)#match field ip protocol eq 0x11 next udp

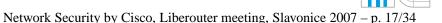
router(config)#class-map type access-control match-any fragudp // patterns router(config-cmap)#description "match on fragmented udp packets" router(config-cmap)#match field ip flags eq 1 mask 6 // more fragment bit router(config-cmap)#match field ip fragment-offset gt 0 // offset > 0

router(config)# policy-map type access-control fpm_frag_udp_policy /action router(config-pmap)# description "policy for fragmented UDP based attacks" router(config-pmap)# class fragudp router(config-pmap-c)# drop

. . .

router(config)# interface GigabitEthernet 0/1 // apply on the interface router(config-if)# service-policy type access-control input fpm_policy

- Traffic Classification Definition File (TCDF)
 - a configuration file
 - controls Flexible Packet Matching (FPM) features
 - FPM uses a TCDF to define traffic classes and policies
 - written in XML
 - an alternative to CLI (Command Line Interface)



3.2 Flexible Packet Matching (FPM) – Deployment * TCDF for Slammer Packets:

```
<?xml version="1.0" encoding="UTF-8"?>
< t.c.df >
   <class name="ip-udp" type="stack"> // define the traffic class
       <match><eq field="ip.protocol" value="0x11" next="udp"></eq></match>
   </class> // define matching criteria
   <class name="slammer" type="access-control" match="all">
       <match>
           <eq field="udp.dest-port" value="0x59A"></eq> // dest. port 1434
           <eq field="ip.length" value="0x194"></eq> // length < 404</pre>
           // matching pattern 0x00401010 at 224 B from start of the IP headers
           <eq start="13-start" offset="224" size="4" value="0x00401010"></eq>
       </match>
   </class>
   <policy type="access-control" name="fpm-udp-policy"> // define action
       <class name="slammer"></class>
       <action>Drop</action>
   </policy>
</tcdf>
```


3.2 Flexible Packet Matching (FPM) – Deployment * Process Utilization for FPM

- run o Cisco 7206VXR Router with NPE-400 processor, 128 NB, IOS 12.4(4)T
- tests used configuration with **10 FPM classes**
- 50% of 10 traffic streams generated matches on the 1st,5th, or 10th match statement
- STD a standard IP source address match

CESNET

- EXT IP source, IP dest., TCP source port, TCP dest. port, TCP protocol match
- ALL IP source, IP dest., TCP source port range, TCP dest., TCP SYN flag

Filter type	1000 pps	2000 pps	3000 pps	4000 pps	5000 pps
FPM STD-1-Match	16 %	33 %	49 %	64 %	70 %
FPM STD-5-Match	17 %	33 %	52 %	68 %	79 %
FPM STD-10-Match	<mark>18</mark> %	37%	<mark>56</mark> %	72 %	<mark>86</mark> %
FPM EXT-1-Match	38 %	42 %	43 %	43 %	43 %
FPM EXT-5-Match	42 %	50 %	59 %	59 %	59 %
FPM EXT-10-Match	42 %	50%	50 %	<mark>50</mark> %	<mark>50</mark> %
FPM ALL-1-Match	51 %	30 %	50 %	50 %	50 %

Conclusion

- FPM pattern matching technique on a packet
- flexible description of the protocol and attacks
- stateless system
- a part of router's operating system IOS
- defines actions over attacks
- new protocols/attacks can be added
- current threats/attacks can be modified/updated

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 18/34

Introduction

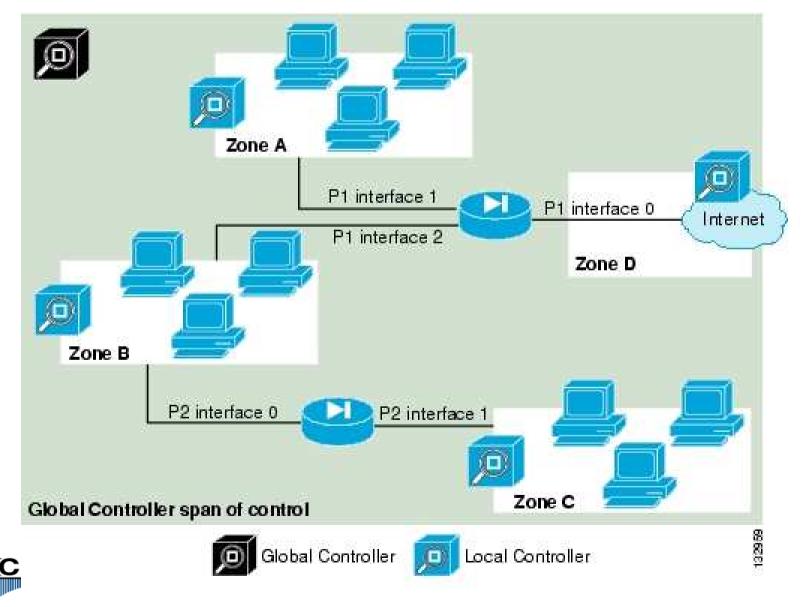
- an applianced-based solution
- a security threat mitigation (STM) system
- identify, isolate and recommend removal of offending elements
- correlate network anomalies and security events

Introduction

- an applianced-based solution
- a security threat mitigation (STM) system
- identify, isolate and recommend removal of offending elements
- correlate network anomalies and security events

How MARS works

- processes raw events from reporting devices and sessionezes them
- analyses them and evaluates for matching inspection rules
- identifies false positives
- reduces the amount of raw data that requries manual review
- **presents** comprehensive view of the network



- Components of the system
 - Local Controller
 - receives and pulls data from reporting devices
 - from firewalls, routers, IDS/IPS, etc.
 - suggests mitigation rules for detected attacks
 - Global Controller
 - summarizes findings of Local Controllers
 - defines new device types, inspection rules, queries
 - distributes them to Local Controllers
 - MARS Web Interface
 - **Reporting and Mitigation Devices**

***** Components of the system

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 19/34

Global Data Collection in MARS – Sources:

- Dynamic vulnerability scanning
- NetFlow data collection
- L3 topology discovery
 - determine the attack path vector
 - populates the Topology graphs
- L2 device discovery
 - determine the attack path vector
 - identify attacking hosts and targets by MACs

Clobal Data Collection in MARS – Sources:

- Distributed Threat Mitigation (DTM) devices
 - DTM polls IPS/IDS devices to determine the top firing signatures
 - MARS generates the list of top signatures
 - IOS routers running DTM asks MARS for that list
- Windows event logs (every 5 mins)
- Oracle event logs (every 5 mins)
- Monitored device update scheduler

- Reporting and mitigating devices
 - Router
 - hostname, static router, ACL rules, static NAT rules
 - trafic flows, NetFlow data, ARP cache table
 - device status, resource utilization (CPU, memory, port stats)
 - Cisco router, ExtremeWare
 - Switch
 - switching table, device status, NetFlow data
 - 802.1x log
 - Cisco Switch (IOS, CatOS)

- Reporting and mitigating devices
 - Firewall
 - interface configuration, NAT/PAT mapping, firewall policies
 - firewall logs, audit logs, arp cache table
 - Cisco PIX, ASA, Juniper Netscreen, Checpoint Opsec, Nokia Firewall
 - VPN
 - remote user info, login/logout records, device status
 - Cisco VPN Concentrator
 - Network IDS/IPS
 - fired signature alerts, trigger packet info
 - Cisco NIDS, NIPS, IPS ASA, IOS IPS, McAfee Intrushield
 - Juniper Netscreen, ISS RealSecure, Snort, CSA

- Reporting and mitigating devices
 - Host IDS, OS, Anti-Virus
 - security event logs, system logs, infected hosts
 - Windows, Solaris, Redhat
 - Web servers, Web proxy, Database
 - logs via syslog
 - MS IIS, Sun iPlanet, Apache, NetApp NetCache, Oracle
 - Syslog, SNMP
 - logs and traps

***** System performance

- high level of event traffic (10,000 events per second)
- 300,000 NetFlow events per second
- high-performance correlation made through inline processing logic
- embedded Oracle system

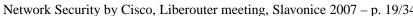
Specification

- Dynamic Session-Based Correlation
 - Anomaly detection, including Cisco NetFlow
 - Behaviour-based and rules-based event correlation
 - Automated NAT normalization
- Topology Discovery
- Vulnerability Analysis
 - Switch, router, firewall, and NAT configuration analysis
 - Incident-triggered targeted network-based and host-based fingerprinting
 - Automated vulnerability scanner data capture

Specification

- Incident Analysis and Response
 - Event management dashboard
 - Session-based event consolidation with full-rule context
 - Graphical attack path visualization
 - Attack path device profiles
 - Notification: email, pager, syslog, SNMP

***** MARS Appliances


CESNET

Model	Managed Routers	Events/sec	NetFlows/sec	Storage
MARS 20R	5 devices	50	1,500	120 GB (non-RAID)
MARS 20	25 devices	500	15,000	120 GB (non-RAID)
MARS 50	25 devices	1000	30,000	240 GB RAID 0
MARS 100e	100 devices	3000	75,000	790 GB RAID 10
MARS 100	100 devices	5000	150,000	750 GB RAID 10
MARS 200	100 devices	10,000	300,000	1 TB RAID 10

System specification – MARS 210, GC2R

- processor Dual Intel Woodcrest Xeon 3.0 GHz
- memory 8GB DDR2 SDRAM, Front Side Bus 1333 MHz
- PCI NIC Dual Port Intel Pro/1000 PT
- hard drive 2.0 TB-RAID 10, 6x750 GB SATA-IO HDD

Conclusion

- monitoring, analysis and response system, not IPS
- solution for large networks
- complex solution for network diagnoses and protection
- gets data (configs, alarms, logs) from different network devices
- correlate incidents
- useful for DDoS protection
- **global view** on the network devices share info about attacks
- advanced configuration requries skilled admins
- work mostly with Cisco devices (routers, firewalls etc.)

3.4 Cisco Self-Defending Network (SDN)

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 20/34

- **3.4 Cisco Self-Defending Network (SDN)**
- Complex network protection
 - using combination of different techniques, and
 - combination of network active and passive devices

- **3.4 Cisco Self-Defending Network (SDN)**
- Complex network protection
 - using combination of different techniques, and
 - combination of network active and passive devices
- Critical components of network security
 - Secure Network Platform firewall, IPSec, VPNs, SSLs, IPSs, NAC
 - Confidential Communication SSLs, VPNs
 - **Secure Transactions** application-layer security
 - Threat Control and Containment HIPS/NIPS, CSA, AV protection
 - Operational Management and Policy Control MARS

Building blocks of SDN

- Secure data transmission
- End hosts protection
- Access control, infection containtment
- Intrusion detection, anomaly detection
- Intelligent monitoring
- Securing applications

***** False alarms mitigation

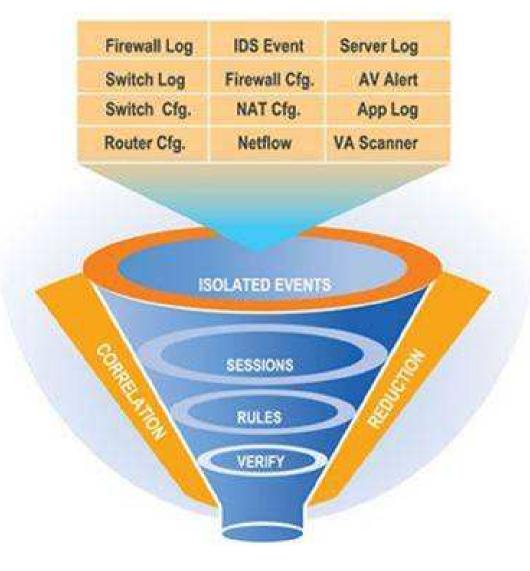
• Event Severity + Signature Fidelity + Attack Relevance + Asset Value of Targe ⇒ Risk Rating

Risk Rating Threshold	Action
0 < RR < 35	Alarm
35 < RR < 85	Alarm & Log Packet
85 < RR < 100	Drop packet

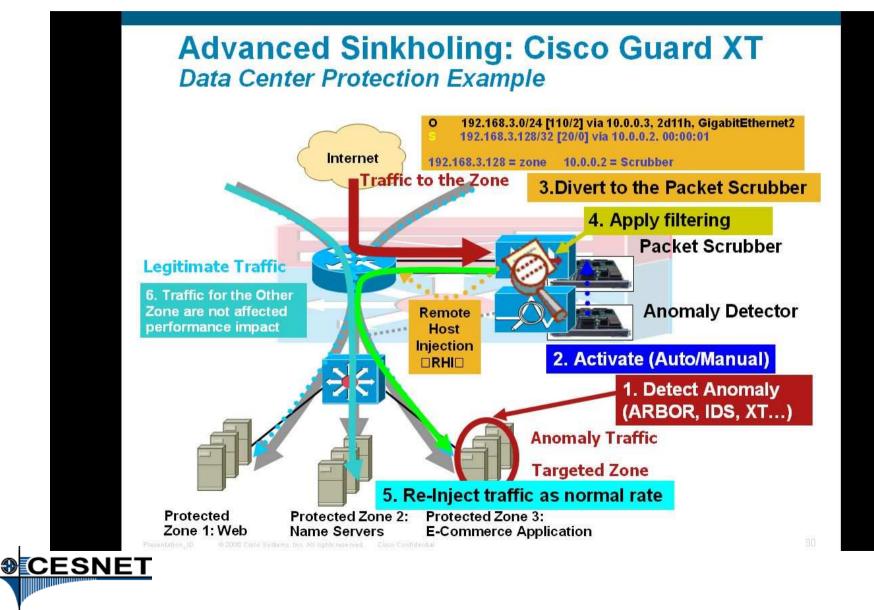
✤ False alarms mitigation

 Event Severity + Signature Fidelity + Attack Relevance + Asset Value of Targe ⇒ Risk Rating

Action	Risk Rating Threshold
Alarm	0 < RR < 35
Alarm & Log Packet	35 < RR < 85
Drop packet	85 < RR < 100


Intelligent Correlation and Incident Response

- overlaying feedback from a variety of points
 ⇒ firewalls, NIDS, routers, switches, hosts
- learning about L2 and L3 topology
- attack visualization and tracing


***** Intelligent Correlation and Incident Response

Sinkhole protection

Incident Dashboard

- aggregate
- correlate
- summarize

Incident Filtering

2,694.083 events \rightarrow 992.511 sessions \rightarrow 249 incidents \rightarrow 61 high severity incidents

4 Advanced Techniques for Traffic Analysis

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 24/34

- **4 Advanced Techniques for Traffic Analysis**
- Cisco Service Control Engine
 - session classification
 - control of application-level IP traffic per subscriber
 - deep packet inspection
- ModSecurity
 - HTTP security

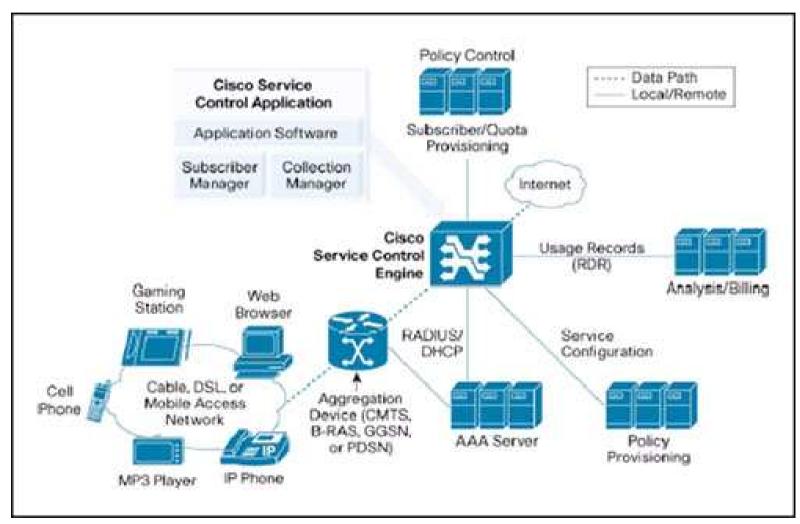
4.1 Cisco Service Control Engine (SCE)

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 25/34

- **4.1 Cisco Service Control Engine (SCE)**
- Cisco SCE Introduction
 - a purpose-build hardware device for service providers
 - classification, analysis and control of Internet/IP traffic
 - ISP can analyse, charge for, and control IP traffic at multigigabit speeds

- **4.1 Cisco Service Control Engine (SCE)**
- Cisco SCE Introduction
 - a purpose-build hardware device for service providers
 - classification, analysis and control of Internet/IP traffic
 - ISP can analyse, charge for, and control IP traffic at multigigabit speeds

SCE features


CESNET

- session-based classification
- control of application-level IP traffic per subscriber
- deep packet inspection for multi-gigabit and 10 gigabit speeds
- reconstructs flows at the Layer 7 state of each application flow
- programmable and extensible through Service Management Language (SML)

4.1 Cisco Service Control Engine (SCE)

Deployment

- **4.1 Cisco Service Control Engine (SCE)**
- The core of the Service Control Engine
 - Application-layer stateful-flow inspection of IP traffic
 - Using ASIC components and RISC processors
 - Robust support for over 600 protocols and applications:
 - General: http, https, ftp, telnet, nntp, smtp, pop3, imap, wap
 - P2P file sharing: FastTrack-KazaA, Gnutella, BitTorrent
 - **P2P VoIP:** Skype, Skinny, DingoTel
 - Multimedia: RTSP, SIP, HTTP streaming, RTP/RTCP
 - **programmable system core** for flexible reporting and bandwidth control

- **4.1 Cisco Service Control Engine (SCE)**
- **SCE Management and Collection**
 - Network Management
 - Faults, Configuration, Accounting, Performance, Security
 - Subscriber Management
 - different policies on different subscribers
 - mapping network IDs to subscriber IDs
 - combination of DHCP, AAA, Radius services

- **4.1 Cisco Service Control Engine (SCE)**
- **SCE Management and Collection**
 - Network Management
 - Faults, Configuration, Accounting, Performance, Security
 - Subscriber Management
 - different policies on different subscribers
 - mapping network IDs to subscriber IDs
 - combination of DHCP, AAA, Radius services
 - Service Configuration Management
 - definition of service control application
 - traffic classification, accounting, reporting
 - Data Collection

CESNET

- data and statistics in Raw Data Records (RDR) format
- Collection Manager (CM) listens on RDRs and process them

4.1 Cisco Service Control Engine (SCE)

Conclusion

- combination of a special hardware device and software solution
- provides traffic analysis and classification
- collects data, make statistics and accounting reports
- application-layer stateful data inspection
- programmable solution with Service Modelling Language (SML)

4.2 HTTP Security

Network Security by Cisco, Liberouter meeting, Slavonice 2007 – p. 26/34

4.2 HTTP Security

ModSecurity(tm), Breach

- a web application firewall (WAF)
- provides HTTP traffic monitoring, RT analysis, attack detection
- works as Web IDS
- can be a part of the web server, or Apache-based reverse proxy server
- distributed under GNU GPL or commercial licences with a support

4.2 HTTP Security

ModSecurity(tm), Breach

- a web application firewall (WAF)
- provides HTTP traffic monitoring, RT analysis, attack detection
- works as Web IDS
- can be a part of the web server, or Apache-based reverse proxy server
- distributed under GNU GPL or commercial licences with a support

Flexible Rule Engine

• implements ModSecurity Rule Language

Attack prevention

- **1.** Negative security model
 - monitors requests for anomalies, unusual behaviour, common web attacks
 - keeps anomaly score for each request, IP, session and user account
 - requests with high anomaly scores are logged or rejected

Attack prevention

- **1.** Negative security model
 - monitors requests for anomalies, unusual behaviour, common web attacks
 - keeps anomaly score for each request, IP, session and user account
 - requests with high anomaly scores are logged or rejected
- 2. Positive security model
 - only valid requests are accepted
 - best for application that are heavily used but rarely updated

***** ModSecurity Core Rules Structure includes

- the logic required to detect attacks
- a policy setting the actions to perform if an attack is detected
- information regarding attack

ModSecurity Core Rules Structure includes

- the logic required to detect attacks
- a policy setting the actions to perform if an attack is detected
- information regarding attack
- Core Rules Content
 - HTTP protection violation of the HTTP protocol
 - Common Web Attacks Protection
 - Automation detection bots, crawlers, scanners etc.
 - Trojan Protection access to Trojans horses
 - Error Hiding Disguising error messages sent by the server

HTTP protection

- SQL Injection
- Cross-Site Scripting
- OS Command execution
- Remote code inclusion
- LDAP Injection
- SSI Injection
- Information leak
- Buffer overflows
- File disclosure

Example – HTTP violation

```
# Accept only digits in content length
#
SecRule REQUEST_HEADERS:Content-Length "!^\d+$"
"deny,log,auditlog,status:400,msg:'Content-Length HTTP header is not
numeric', severity:'2',id:'960016',"
```

Example – protocol anomalies

```
SecRule REQUEST_HEADERS:User-Agent "@eq 0" \
"skip:1, log,auditlog, msg:'Request Missing a User Agent Header'
"id:'960009', severity:'4'"
SecRule REQUEST_HEADERS:User-Agent "^$" \
"log,auditlog,msg:'Request Missing a User Agent Header', id:'960009',
severity:'4'"
```


***** Example – protocol policy

```
Restrict file extension
#
#
#
  TODO the list of file extensions below are virtually always considered unsafe
#
       and not in use in any valid program. If your application uses one of
#
       these extensions, please remove it from the list of blocked extensions.
#
       You may need to use ModSecurity Core Rule Set Templates to do
#
       so, otherwise comment the whole rule.
#
SecRule REQUEST_BASENAME "\.(?:c(?:o(?:nf(?:ig)?|m)|s(?:proj|r)?|dx|er|fg|md)|
p(?:rinter|ass|db|o1|wd)|v(?:b(?:proj|s)?|sdisco)|a(?:s(?:ax?|cx)|xd)|d(?:bf?|
```

at|ll|os)|i(?:d[acq]|n[ci])|ba(?:[kt]|ckup)|res(?:ources|x)|s(?:h?tm|ql|ys)| l(?:icx|nk|og)|\w{,5}~|webinfo|ht[rw]|xs[dx]|key|mdb|old)\$" \

"t:urlDecodeUni, t:lowercase, deny,log,auditlog,status:500,msg:'URL file extension is restricted by policy', severity:'2',,id:'960035',"

Conclusion

- an application specific IDS
- syntactical protocol analysis
- attack detection based on signatures (regular expressions)
- flexible extension, adding new rules

Conclusion of the talk

Sasic Principles for Building Network Security

- complex solution required not a single device
- both signature and anomaly based detection
- weighted correlation of different incident events, logs etc.
 - packet and flow analysis and processing ⇒ huge disk capacity
- analysis of high level protocols
 - a description language for protocols, attacks, response
 - simple format adding new rules
- combination of fast hardware processing and software solution

Použitá literatura

- Fundamentals of Network Security. CiscoPress, 2002.
- An Introduction to Intrusion Detection Assesment. ICSA, Inc, 1999.
- Cisco Traffic Anomaly Detection. <u>Cisco Web Site</u>.
- Flexible Packet Matching XML Deployment Guide. <u>Cisco Web Site</u>.
- CS MARS. <u>Cisco Web site</u>.
- Cisco Service Control Engine Cisco Web Site
- ModSecurity Reference Manual. ModSecurity Web Site.
- Cisco Expo 2007 Security Techtorial. Lecture notes.

