Part II. Lexical Analysis: Models

Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that denote concatenation, union, and iteration, respectively.
Definition: Let Σ be an alphabet. The regular expressions over Σ and the languages they denote are defined as follows:

- \varnothing is a RE denoting the empty set
- ε is a RE denoting $\{\varepsilon\}$
- a, where $a \in \Sigma$, is a RE denoting $\{a\}$
- Let r and s be regular expressions denoting the languages L_{r} and L_{s}, respectively; then
- (r.s) is a RE denoting $L=L_{r} L_{s}$
- $(r+s)$ is a RE denoting $L=L_{r} \cup L_{s}$
- $\left(r^{*}\right)$ is a RE denoting $L=L_{r}^{*}$

Regular Expressions: Example

Question: Is $\left(\varepsilon+\left(a .\left(b^{*}\right)\right)\right)$ the regular expression over $\Sigma=\{a, b\}$?

Simplification

1) Reduction of the number of parentheses by

Precedences: ${ }^{*}>.>+$

2) Expression $r . s$ is simplified to $r s$
3) Expression $r r^{*}$ or $r^{*} r$ is simplified to r^{+}

Example:
$\left(\left(\boldsymbol{a} .\left(\boldsymbol{a}^{*}\right)\right)+\left(\left(\boldsymbol{b}^{*}\right), \boldsymbol{b}\right)\right)$ can be written as $\underbrace{\boldsymbol{a} \cdot \boldsymbol{a}^{*}+\boldsymbol{b}^{*} \cdot \boldsymbol{b}}$,
and $\boldsymbol{a} . \boldsymbol{a}^{*}+\boldsymbol{b}^{*} . \boldsymbol{b}$ can be written as $\boldsymbol{a}^{+}+\boldsymbol{b}^{+}$

Regular Language (RL)

Gist: Every RE denotes a regular language

Definition: Let L be a language. L is a regular language (RL) if there exists a regular expression r that denotes L.

Denotation: $L(r)$ means the language denoted by r.

Examples:

$r_{1}=a b+b a$
$r_{2}=a^{+} b^{*}$
$r_{3}=a b(a+b)^{*}$
$r_{4}=(a+b)^{*} a b(a+b)^{*}$ denotes $L_{4}=\{x: a b$ is substring of $x\}$
$L_{1}, L_{2}, L_{3}, L_{4}$ are regular languages over Σ

Finite Automata (FA)

Gist: The simplest model of computation based on a finite set of states and computational rules.

Finite Automata: Definition

Definition: A finite automaton (FA) is a 5-tuple:

$$
M=(Q, \Sigma, R, s, F), \text { where }
$$

- Q is a finite set of states
- Σ is an input alphabet
- R is a finite set of rules of the form: $p a \rightarrow q$,
where $p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of final states

Mathematical note on rules:

- Strictly mathematically, R is a relation from $Q \times(\Sigma \cup\{\varepsilon\})$ to Q
- Instead of ($\mathbf{p a} a, \boldsymbol{q}$), however, we write the rule as $\boldsymbol{p} a \rightarrow \boldsymbol{q}$
- $\boldsymbol{p} a \rightarrow \boldsymbol{q}$ means that with a, M can move from \boldsymbol{p} to \boldsymbol{q}
- if $a=\varepsilon$, no symbol is read

Graphical Representation

(a) denotes a state $q \in Q$
\rightarrow (S) denotes the start state $s \in Q$
denotes a final state $f \in F$
(p) $\xrightarrow{\boldsymbol{a}}$ (q) denotes $p a \rightarrow q \in R$

Graphical Representation: Example

$M=(Q, \Sigma, R, s, F)$, where:

- $Q=\{s, p, q, f\} ;$
- $\Sigma=\{a, b, c\} ;$
- $R=\{s a \rightarrow s$,

$$
s \rightarrow p,
$$

$$
p b \rightarrow p
$$

$$
p b \rightarrow f
$$

$$
s \rightarrow q
$$

$$
q c \rightarrow q
$$

$$
q c \rightarrow f
$$

$$
f a \rightarrow f\}
$$

- $F=\{f\}$

Tabular Representation

- Columns: Member of $\Sigma \cup\{\varepsilon\}$
- Rows:

States of Q

- First row:

The start state

- Underscored: Final states

Tabular Representation: Example

$M=(Q, \Sigma, R, s, F)$, where:

- $Q=\{s, p, q, f\} ;$
- $\Sigma=\{a, b, c\} ;$
- $R=\{s a \rightarrow s$,

$$
s \rightarrow p
$$

$$
p b \rightarrow p
$$

$$
p b \rightarrow f
$$

$$
s \rightarrow q,
$$

$$
q c \rightarrow q,
$$

$$
q c \rightarrow f
$$

$$
f a \rightarrow f\}
$$

- $F=\{f\}$

Configuration

Gist: Instance description of FA
Definition: Let $M=(Q, \Sigma, R, s, F)$ be a FA. A configuration of M is a string $\chi \in Q \Sigma^{*}$

Move

Gist: Computational step of FA

Definition: Let $p x$ and $q x$ be two configurations of M, where $p, q \in Q, \quad \in \Sigma \cup\{\varepsilon\}$, and $x \in \Sigma^{*}$. Let $=p \rightarrow q \in R$ be a rule. Then M makes a move from $p x$ to $q x$ according to , written as $p \times \mid-q x$ [] or, simply, $p \times 1-q x$
Note: if $a=\varepsilon$, no input symbol is read
Configuration:
Rule: $p a \rightarrow q$
New configuration:

Sequence of Moves $1 / 2$

Gist: Several consecutive computational steps
Definition: Let χ be a configuration. M makes zero moves from χ to χ; in symbols,

$$
\chi \mid-{ }^{0} \chi[\varepsilon] \text { or, simply, } \chi \mid-{ }^{0} \chi
$$

Definition: Let $\chi_{0}, \chi_{1}, \ldots, \chi_{n}$ be a sequence of configurations, $n \geq 1$, and $\chi_{i-1} \mid-\chi_{i}\left[r_{i}\right], r_{i} \in R$, for all $i=1, \ldots, n$; that is,

$$
\chi_{0}\left|-\chi_{1}\left[r_{1}\right]\right|-\chi_{2}\left[r_{2}\right] \ldots \mid-\chi_{n}\left[r_{n}\right]
$$

Then M makes n moves from χ_{0} to χ_{n} :

$$
\chi_{0} \mid-{ }^{n} \chi_{n}\left[r_{1} \ldots r_{n}\right] \text { or, simply, } \chi_{0} \mid-{ }^{n} \chi_{n}
$$

Sequence of Moves $2 / 2$

If $\chi_{0} 1^{n} \chi_{n}[\rho]$ for some $n \geq 1$, then

$$
\left.\chi_{0}\right|^{+} \chi_{n}[\rho] .
$$

If $\chi_{0} \mid-^{n} \chi_{n}[\rho]$ for some $n \geq 0$, then

$$
\chi_{0} 1^{*} \chi_{n}[\rho] .
$$

Example: Consider

$p a b c \mid-q b c[1: p a \rightarrow q]$, and $q b c \mid-r c[2: q b \rightarrow r]$.
Then, \quad pabc $\left.\right|^{-2}$ rc [1 2],
pabc|-+ rc [12],
pabc |-* rc [1 2]

Accepted Language

Gist: M accepts w if it can completely read w by a sequence of moves from s to a final state
Definition: Let $M=(Q, \Sigma, R, s, F)$ be a FA. The language accepted by $M, L(M)$, is defined as:

$$
L(M)=\left\{w: w \in \Sigma^{*},\left.s w\right|^{*} f, f \in F\right\}
$$

$M=(Q, \Sigma, R, s, F):$
if $q_{n} \in F$ then $\in L(M)$;
otherwise, $\notin L(M)$
$\underbrace{s a_{1} a_{2} \ldots a_{n}}_{W}\left|-q_{1} a_{2} \ldots a_{n}\right|-\ldots\left|-q_{n-1} a_{n}\right|-q_{n}$

FA: Example 1/3

$M=(Q, \Sigma, R, s, F)$, where:
$Q=\{s, q\}, \Sigma=\{a, b\}, R=\{s a \rightarrow q, q b \rightarrow s\}, F=\{s\}$
Question: $a b \in L(M)$?

Finite Automaton M

Finite State Control:

Input tape: \square | a | b |
| :--- | :--- | sab

FA: Example 2/3

$M=(Q, \Sigma, R, s, F)$, where:
$Q=\{s, q\}, \Sigma=\{a, b\}, R=\{s a \rightarrow q, q b \rightarrow s\}, F=\{s\}$
Question: $a b \in L(M)$?

Finite Automaton \boldsymbol{M}

Finite State Control:

Current Configuration:

Input tape: \square $s a b \mid-q b$

FA: Example 3/3

$M=(Q, \Sigma, R, s, F)$, where:
$Q=\{s, q\}, \Sigma=\{a, b\}, R=\{s a \rightarrow q, q b \rightarrow s\}, F=\{s\}$
Question: $a b \in L(M)$?

Finite Automaton M

Finite State Control:

Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.
Example:

Question: Is M_{1} equivalent to M_{2} ?
Answer: M_{1} and M_{2} are equivalent because

$$
L\left(M_{1}\right)=L\left(M_{2}\right)=\left\{a^{n}: n \geq 0\right\}
$$

21/29

Conversion of RE to FA: Basics $1 / 5$

Gist: Algorithm that converts any RE to an equivalent FA (lex in UNIX).

- For a RE $r=\varnothing$, there is an equivalent FA M_{\varnothing}.

Proof:

- For a $\mathrm{RE} r=\varepsilon$, there is an equivalent FA M_{ε}.

Proof:

- For a RE $r=a, a \in \Sigma$, there is an equivalent FA M_{a}.

Proof:

22/29

RE to FA: Concatenation 2/5

- Let \boldsymbol{r} be a RE over Σ and $\boldsymbol{M}_{\boldsymbol{r}}=\left(Q_{r}, \Sigma, R_{r}, s_{r},\left\{f_{r}\right\}\right)$ be an FA such that $L\left(M_{r}\right)=L(r)$.
- Let \boldsymbol{t} be a RE over Σ and $\boldsymbol{M}_{\boldsymbol{t}}=\left(Q_{t}, \Sigma, R_{t}, s_{t},\left\{f_{t}\right\}\right)$ be an FA such that $L\left(M_{t}\right)=L(t)$.
- Then, for the RE r.t, there exists an equivalent FA \boldsymbol{M}_{r}.t Proof: Let $Q_{r} \cap Q_{t}=\varnothing$.
Construction:
$M_{r . t}=\left(Q_{r} \cup Q_{t}, \Sigma, R_{r} \cup R_{t} \cup\left\{f_{r} \rightarrow s_{t}\right\}, s_{r},\left\{f_{t}\right\}\right)$

RE to FA: Union $3 / 5$

- Let \boldsymbol{r} be a RE over Σ and $\boldsymbol{M}_{\boldsymbol{r}}=\left(Q_{r}, \Sigma, R_{r}, s_{r},\left\{f_{r}\right\}\right)$ be an FA such that $L\left(M_{r}\right)=L(r)$.
- Let \boldsymbol{t} be RE over Σ and $\boldsymbol{M}_{\boldsymbol{t}}=\left(Q_{t}, \Sigma, R_{t}, s_{t},\left\{f_{t}\right\}\right)$ be an FA such that $L\left(M_{t}\right)=L(t)$.
- For a RE $\boldsymbol{r}+\boldsymbol{t}$, there exists an equivalent FA $\boldsymbol{M}_{\boldsymbol{r}+\boldsymbol{t}}$ Proof: Let $Q_{r} \cap Q_{t}=\varnothing, s, f \notin Q_{r} \cup Q_{t}$.
Construction

$$
M_{r+t}=\left(Q_{r} \cup Q_{t} \cup\{s, f\}, \Sigma, R_{r} \cup R_{f} \cup\left\{s \rightarrow s_{r}\right.\right.
$$

$$
\left.\left.s \rightarrow s_{t}, f_{r} \rightarrow f, f_{t} \rightarrow f\right\}, s,\{f\}\right)
$$

RE to FA: Iteration $4 / 5$

- Let r be a RE over Σ and $M_{r}=\left(Q_{r}, \Sigma, R_{r}, s_{r},\left\{f_{r}\right\}\right)$ be an FA such that $L\left(M_{r}\right)=L(r)$.
- For the RE r^{*}, there exists an equivalent FA $M_{r^{*}}$ Proof: Let $s, f \notin Q_{r}$.
Construction:

$$
\begin{aligned}
M_{r^{*}}= & \left(Q_{r} \cup\{s, f\}, \Sigma, R_{r} \cup\left\{s \rightarrow s_{r}, f_{r} \rightarrow f,\right.\right. \\
& \left.\left.f_{r} \rightarrow s_{r}, s \rightarrow f\right\}, s,\{f\}\right)
\end{aligned}
$$

25/29

RE to FA: Completion 5/5

- Input: RE r over Σ
- Output: FA M such that $L(r)=L(M)$
- Method:
- From "inside" of r, repeatedly use the next rules to construct M :
- for RE \varnothing, construct FA $\boldsymbol{M}_{\varnothing}$
- for RE ε, construct FA $\left.\boldsymbol{M}_{\varepsilon}\right\} \longrightarrow($ see $1 / 5)$
- for RE $\boldsymbol{a} \in \Sigma$, construct FA $\boldsymbol{M}_{\boldsymbol{a}}$
- let for REs \boldsymbol{r} and \boldsymbol{t}, there already exist FAs $\boldsymbol{M}_{\boldsymbol{r}}$ and $\boldsymbol{M}_{\boldsymbol{v}}$, respectively; then,
- for RE r.t, construct FA $\boldsymbol{M}_{\boldsymbol{r} . \boldsymbol{t}} \quad$ (see 2/5)
- for RE $\boldsymbol{r}+\boldsymbol{t}$, construct FA $\boldsymbol{M}_{\boldsymbol{r}+\boldsymbol{t}}$ (see 3/5)
- for RE \boldsymbol{r}^{*} construct FA $\boldsymbol{M}_{\boldsymbol{r}^{*}}$
(see 4/5)

RE to FA: Example 1/3

Transform RE $r=((a b)+(c d))^{*}$ to an equivalent FA M

RE to FA: Example 2/3

For RE $a b$:

For RE cd:

For RE $a b+c d:$

RE to FA: Example 3/3

For RE $a b+c d$:

For a final RE $(a b+c d)^{*}$:

Models for Regular Languages

Theorem: For every RE r, there is an FA M such that $L(r)=L(M)$.
Proof is based on the previous algorithm.
Theorem: For every FA M, there is an RE r such that $L(M)=L(r)$.
Proof: See page 210 in [Meduna: Automata and Languages]
Conclusion: The fundamental models for regular languages are

1) Regular expressions 2) Finite Automata
