
Brno University of Technology

Faculty of Information Technology

Ph.D. THESIS

December 2004 Martin Švec

Brno University of Technology

Faculty of Information Technology

Grammars with Context Conditions

and Their Applications

A thesis submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy.

ing. Martin Švec

Field of specialization: Information Systems
Supervisor: doc. RNDr. Alexander Meduna, CSc.
State doctoral exam: June 15, 2004
Submitted on: December 16, 2004
Availability: Library of the Faculty of Information Technology,

Brno University of Technology, Czech Republic

Declaration

I have worked out this PhD thesis independently under the supervision of doc. RNDr.
Alexander Meduna, CSc. To create a compact and systematic study about grammars with
context conditions, I have included results established by some other people, such as my
supervisor, into this PhD thesis. These results include Theorems 1–10, 14–20, 22–29, 31,
32, and 42–54, Lemmas 1–5, 8–10, and 24–33, Corollaries 1–14, and 19–22; together with
these results, I always cite their publication sources. I have proved all the other results
contained in this thesis.

Acknowledgements

I would like to thank doc. RNDr. Alexander Meduna, CSc., the supervisor of my PhD
thesis, for his help on this thesis. I am very grateful for his advice and many valuable
discussions concerning the formal language theory. I thank prof. RNDr. Milan Češka.
His lectures about the basics of language theory woke up my interest in this research area.
I also greatly benefited from conversations with our colleagues at the Brno University of
Technology. My special thanks go to ing. Vladimı́r Čech.

Martin Švec

Abstract

The present thesis studies grammars with context conditions and their applications. In
particular, it discusses sequential and parallel grammars whose derivation steps are re-
stricted by some conditions placed on the rewritten sentential forms. According to the
types of context conditions, it classifies the grammars with context conditions into three
classes and sums up crucial results about them. Specifically, this classification results
from the distinction between context conditions placed on (1) the domains of grammati-
cal derivations, (2) the use of grammatical productions, and (3) the neighborhood of the
rewritten symbols. In all these cases, the main attention is concentrated on establishing
the grammatical generative power and important properties. In particular, this thesis
studies how to reduce these grammars with respect to some of their components, such
as the number of grammatical symbols or productions, in order to make the grammars
small, succinct and, therefore, easy to use in practice. To demonstrate this practical use, it
also discusses the applications and implementation of grammars with context conditions.
Most of the applications are related to microbiology, which definitely belongs to the central
application areas of computer science today.

Keywords

formal language theory, regulated rewriting, generative power, descriptional complexity,
grammars with context conditions, L grammars, scattered context grammars

Contents

Contents vii

1 Introduction 1

2 Preliminaries and Definitions 5

2.1 Basic Definitions . 5

2.2 Grammars . 7

3 Context Conditions Placed on Derivation Domains 13

3.1 Sequential Grammars over Word Monoids 13

3.2 Parallel Grammars over Word Monoids . 20

4 Conditions Placed on the Use of Productions 27

4.1 Sequential Conditional Grammars . 27

4.1.1 Context-Conditional Grammars . 27

4.1.2 Random-Context Grammars . 32

4.1.3 Generalized Forbidding Grammars 37

4.1.4 Semi-Conditional Grammars . 47

4.1.5 Simple Semi-Conditional Grammars 50

4.2 Parallel Conditional Grammars . 73

4.2.1 Context-Conditional ET0L Grammars 73

4.2.2 Forbidding ET0L Grammars . 78

4.2.3 Simple Semi-Conditional ET0L Grammars 93

4.3 Global Context Conditional Grammars . 102

5 Conditions Placed on the Neighborhood of Rewritten Symbols 107

5.1 Continuous Context . 107

5.1.1 Sequential Uniform Rewriting . 108

5.1.2 Parallel Uniform Rewriting . 113

5.2 Scattered Context . 116

5.2.1 Scattered Context Grammars and Their Reduction 116

5.2.2 Semi-Parallel Uniform Rewriting . 127

6 Grammatical Transformations and Derivation Simulations 133

6.1 Derivation Simulation . 133

6.2 Grammatical Simulation . 138

vii

viii CONTENTS

6.3 Simulation of E(0,1)L Grammars . 139

7 Applications and Implementation 145
7.1 Applications . 145
7.2 Implementation . 149

8 Concluding and Bibliographical Notes 159

Bibliography 161

Index 172

Chapter 1

Introduction

Formal languages fulfill a crucial role in many computer science areas, ranging from com-
pilers through mathematical linguistics to molecular genetics. Whenever dealing with
them, we face the problem of choosing their appropriate models in order to grasp them
elegantly and precisely. By analogy with the specification of natural languages, we often
base these models upon suitable grammars.

A grammar generates its language by performing derivation steps that change strings,
called sentential forms, to other strings according to its grammatical productions. During
a derivation step, the grammar rewrites a part of its current sentential form with a string
according to one of its productions. If in this way it can make a sequence of derivation
steps from its start symbol to a sentential form consisting of terminal symbols—that is,
the symbols over which the language is defined, the resulting sentential form is called a
sentence and belongs to the generated language. The set of all sentences made in this way
is the language generated by the grammar.

In the classical formal language theory, we can divide grammatical productions into
context-dependent and context-independent productions, and based on this division, we
can naturally distinct context-dependent grammars, such as phrase-structure grammars,
from context-independent grammars, such as context-free grammars. Making a derivation
step according to context-dependent productions depends on rather strict conditions, usu-
ally placed on the context surrounding the rewritten symbol while making a step according
to context-independent productions does not. From this point of view, we obviously tend
to use context-independent grammars. Unfortunately, compared to context-dependent
grammars, context-independent grammars are significantly less powerful; in fact, most of
them are incapable to grasp some aspects of quite common programming languages. On
the other hand, most context-dependent grammars are as powerful as the Turing machines,
and this remarkable power represents their indisputable advantage.

From a realistic point of view, the classical context-independent and context-dependent
grammars have some other disadvantages. Consider, for instance, English. Context-
independent grammars are obviously incapable of capturing all those contextual dependen-
cies in this complex language. However, we may find even the classical context-dependent
grammars clumsy for this purpose. To illustrate, in an English sentence, the proper form
of verb usually depends on the form of the subject. For instance, we write I do it, not
I does it, and it is the subject, I, that implies the proper form of do. Of course, there may
occur several words, such as adverbs, between the subject and the verb. We could extend

1

2 CHAPTER 1.

I do it to I often do it, I very often do it and infinitely many other sentences in this way.
At this point, however, the classical context-dependent productions, whose conditions are
placed on the context surrounding the rewritten symbol, are hardly of any use because
the proper form of the verb follows from the subject that does not surround the verb at
all; in fact, it occurs many words ahead of this verb.

To overcome the difficulties and, at the same time, maintain the advantages described
above, the modern language theory has introduced some new grammars that simultane-
ously satisfy these three properties:

• they are based on context-independent productions;

• their context conditions are signficantly more simple and flexible than the strict
condition placed on the context surrounding the rewritten symbol in the classical
context-dependent grammars;

• they are as powerful as classical context-dependent grammars.

In this thesis, we overview the most essential types of these grammars, whose alternative
context conditions can be classified into these three categories:

• context conditions placed on derivation domains;

• context conditions placed on the use of productions;

• context conditions placed on the neighborhood of the rewritten symbols.

As already pointed out, we want the context conditions as small as possible. Therefore,
we pay a lot of attention to the reduction of context conditions in this study. Specifically,
we reduce the number of some of their components, such as the number of nonterminals
or productions. We study how to achieve this reduction without any decrease of their
generative power, which coincides with the power of the Turing machines. By achieving
this reduction, we actually make the grammars with context conditions more succinct and
economical, and these properties are obviously highly appreciated both from a practical
and theoretical standpoint. Regarding each of the dicussed grammars, we introduce and
study their parallel and sequential versions, which represent two basic approaches to gram-
matical generation of languages in today’s formal language theory. To be more specific,
during a sequential derivation step, a grammar rewrites a single symbol in the current sen-
tential form while during a parallel derivation step, a grammar rewrites all symbols. As
context-free and E0L grammars represent perhaps the most fundamental sequential and
parallel grammars, respectively, we usually base the discussion of sequential and parallel
generation of languages on them.

Organization

The text consists of the following chapters:
Chapter 2 gives an introduction to formal languages and their grammars.
Chapter 3 restricts grammatical derivation domains in a very simple and natural way.

Under these restrictions, both sequential and parallel context-independent grammars char-
acterize the family of recursively enumerable languages, which are defined by the Turing
machines.

3

Chapter 4 studies grammars with conditional use of productions. In these grammars,
productions may be applied on condition that some symbols occur in the current sentential
form and some others do not. We discuss many sequential and parallel versions of these
grammars in detail. Most importantly, new characterizations of some well-known families
of L languages, such as the family of ET0L languages, are obtained.

Chapter 5 studies grammars with context conditions placed on the neighborhood of
rewritten symbols. We distinguish between scattered and continuous context neighbor-
hood. The latter strictly requires that the neighborhood of the rewritten symbols forms
a continuous part of the sentential form while the former drops this requirement of conti-
nuity.

Chapter 6 takes a closer look at grammatical transformations, which are frequently
studied in the previous chapters. Specifically, it studies how to transform grammars with
context-conditions to some other equivalent grammars so that both the input grammars
and the transformed grammars generate their languages in a very similar way.

Chapter 7 demostrates the use of grammars with context conditions by several appli-
cations related to biology.

Chapter 8 summarizes the main results of this thesis and states several open problems.
It makes historical notes and suggests some general references regarding the theoretical
background of grammars with context conditions. In addition, it proposes new directions
in the investigation of these grammars.

4 CHAPTER 1.

Chapter 2

Preliminaries and Definitions

2.1 Basic Definitions

This section reviews fundamental notions concerning sets, languages, and relations.

A set, Σ, is a collection of elements, which are taken from some prespecified universe.
If Σ contains an element a, then we symbolically write a ∈ Σ and refer to a as a member
of Σ. On the other hand, if a is not in Σ, we write a 6∈ Σ. The cardinality of Σ, |Σ|, is the
number of Σ’s members. The set that has no member is the empty set, denoted ∅; note
that |∅| = 0. If Σ has a finite number of members, then Σ is a finite set ; otherwise, Σ is
an infinite set.

A finite set, Σ, is customarily specified by listing its members; that is,

Σ = {a1, a2, . . . , an},

where a1 through an are all members of Σ. An infinite set, Ω, is usually specified by a
property, π, so that Ω contains all elements satisfying π; in symbols, this specification
has the following general format Ω = {a : π(a)}. Sets whose members are other sets are
usually called families of sets rather than sets of sets.

Let Σ and Ω be two sets. Σ is a subset of Ω, symbolically written as Σ ⊆ Ω, if each
member of Σ also belongs to Ω. Σ is a proper subset of Ω, written as Σ ⊂ Ω, if Σ ⊂ Ω
and Ω contains an element that is not in Σ. If Σ ⊆ Ω and Ω ⊆ Σ, Σ equals Ω, denoted
by Σ = Ω. The power set of Σ, denoted by 2Σ, is the set of all subsets of Σ. For two
sets, Σ and Ω, their union, intersection, and difference are denoted by Σ ∪ Ω, Σ ∩ Ω,
and Σ − Ω, respectively, and defined as Σ ∪ Ω = {a : a ∈ Σ or a ∈ Ω}, Σ ∩ Ω = {a :
a ∈ Σ and a ∈ Ω}, and Σ − Ω = {a : a ∈ Σ and a 6∈ Ω}. For a set Σ over a universe U ,
the complement of Σ is denoted by Σ and defined as Σ = U − Σ. A sequence is a list of
elements from some universe. A sequence is finite if it represents a finite list of elements;
otherwise, it is infinite. The length of a finite sequence x, denoted by |x|, is the number
of elements in x. The empty sequence, denoted by ε, is the sequence consisting of no
element; that is, |ε| = 0. A finite sequence is usually specified by listing its elements. For
instance, consider a finite sequence x specified as x = 0, 1, 0, 0, and observe that |x| = 4.

An alphabet T is a finite, nonempty set, whose members are called symbols. A finite
sequence of symbols from T is a string or, synonymously, a word over T ; specifically, ε is
refered to as the empty string. By T ∗, we denote the set of all strings over T ; T + = T ∗−{ε}.

5

6 CHAPTER 2.

Any subset T ⊆ T ∗ is a language over T . If L represents a finite set of strings, L is a
finite language; otherwise, L is an infinite language. For instance, T ∗, called the universal
language over T , is an infinite language while ∅ and {ε} are finite; noteworthy, ∅ 6= {ε}
because |∅| = 0 6= |{ε}| = 1. For a finite language, L, max(L) denotes the length of the
longest word in L. By analogy with the set theory, sets whose members are languages are
called families of languages.

As a convention, we omit all separating commas in strings. That is, we write a1a2 . . . an

rather than a1, a2, . . . , an.
Let x, y ∈ T ∗ be two strings over an alphabet, T , and let L,K ⊆ T ∗ be two languages

over T . As languages are defined as sets, all set operations apply to them. Specifically,
L∪K, L∩K, and L−K denote the union, intersection, and difference of languages L and
K, respectively. Perhaps most importantly, the concatenation of x with y, denoted by xy,
is the string obtained by appending y to x. Notice that for every w ∈ T ∗, wε = εw = w.
The concatenation of L and K, denoted by LK, is defined as LK = {xy : x ∈ L, y ∈ K}.
Apart from binary operations, we also make some unary operations with strings and
languages. Let x ∈ T ∗ and L ⊆ T ∗. The complement of L is denoted by L and defined
as L = T ∗ − L. The reversal of x, denoted by rev(x), is x written in the reverse order,
and the reversal of L, rev(L), is defined as rev(L) = {rev(x) : x ∈ L}. For all i ≥ 0, the
ith power of x, denoted by xi, is recursively defined as (1) x0 = ε and (2) xi = xxi−1,
for i ≥ 1. Observe that this definition is based on the recursive definitional method. To
demonstrate the recursive aspect, consider, for instance, the ith power of xi with i = 3.
By the second part of the definition, x3 = xx2. By applying the second part to x2,
x2 = xx1. By another application of this part to x1, x1 = xx0. By the first part of
this definition, x0 = ε. Thus, x1 = xx0 = xε = x. Hence, x2 = xx1 = xx. Finally,
x3 = xx2 = xxx. By using this recursive method, we frequently introduce new notions,
including the ith power of L, Li, which is defined as (1) L0 = {ε} and (2) Li = LLi−1,
for i ≥ 1. The closure of L, L∗, is defined as L∗ =

⋃
i≥0 Li, and the positive closure of

L, L+, is defined as L+ =
⋃

i≥1 Li. Notice that L+ = LL∗ = L∗L, and L∗ = L+ ∪ {ε}.
If there is z ∈ T ∗ such that xz = y, x is a prefix of y; in addition, if x 6∈ {ε, y}, x is a
proper prefix of y. By prefix(y), we denote the set of all prefixes of y. Set prefix(L) = {x :
x ∈ prefix(w) for some w ∈ L}. If there is z ∈ T ∗ such that zx = y, x is a suffix of y;
in addition, if x 6∈ {ε, y}, x is a proper suffix of y. By suffix(y), we denote the set of all
suffixes of y. Set suffix(L) = {x : x ∈ suffix(w) for some w ∈ L}. If there is u, v ∈ T ∗

such that uxv = y, x is a substring or a subword of y; in addition, if x 6∈ {ε, y}, x is
a proper substring or a proper subword of y. By sub(y), we denote the set of all substrings
of y. Moreover, sub(y, k) = {x : x ∈ sub(y), |x| ≤ k}. Observe that for every word, w,
prefix(w) ⊆ sub(w), suffix(w) ⊆ sub(w), and {ε, w} ⊆ prefix(w) ∩ suffix(w) ∩ sub(w). Set
sub(L) = {x : x ∈ sub(w) for some w ∈ L}. Let w be a nonempty word; then, first(w)
denotes the leftmost symbol of w. Given a word, w, alph(w) is the set of all symbols
occuring in w. Set alph(L) =

⋃
y∈L alph(y). For two words, x and y, where |y| ≥ 1, #yx

denotes the number of occurences of y in x. A generalized form, #Wx, where W is a finite
language, ε 6∈ W , denotes the number of all occurences of x’s subwords that belong to W .
Let w = a1 . . . an with ai ∈ T for some n ≥ 0. The set of permutations of w, Π(w), is
defined as

Π(w) = {v : v = b1 . . . bn with bi ∈ alph(w) for i = 1, . . . , n,
and (b1, . . . , bn) is a permutation of (a1, . . . , an)}.

2.2. GRAMMARS 7

For two objects, a and b, (a, b) denotes the ordered pair consisting of a and b in this
order. Let A and B be two sets. The Cartesian product of A and B, A × B, is defined
as A × B = {(a, b) : a ∈ A and b ∈ B}. A binary relation or, briefly, a relation, ρ,
from A to B is any subset of A × B; that is, ρ ⊆ A × B. The domain of ρ, denoted by
domain(ρ), and the range of ρ, denoted by range(ρ), are defined by domain(ρ) = {a :
(a, b) ∈ ρ for some b ∈ B} and range(ρ) = {b : (a, b) ∈ ρ for some a ∈ A}. If A = B, then
ρ is a relation on A. A relation σ is a subrelation of ρ, if σ represents a subset of ρ. The
inverse of ρ, denoted by ρ−1, is defined as ρ−1 = {(b, a) : (a, b) ∈ ρ}. A function from A
to B is a relation φ from A to B such that for every a ∈ A, |{b : b ∈ B, (a, b) ∈ φ}| ≤ 1.
Let φ be a function from A to B. If domain(φ) = A, φ is total ; otherwise, φ is partial. If
for every b ∈ B, |{a : a ∈ A, (a, b) ∈ φ}| ≤ 1, φ is an injection. If for every b ∈ B, |{a :
a ∈ A, (a, b) ∈ φ}| = 1, φ is a surjection. If φ is both a surjection and an injection, φ
represents a bijection.

Instead of (a, b) ∈ ρ, we often write a ∈ ρ(b) or aρb; in other words, (a, b) ∈ ρ, aρb,
and a ∈ ρ(b) are used interchangeably. If ρ is a function, we usually write a = ρ(b).

Let ρ be a relation over a set, A. For k ≥ 1, the k-fold product of ρ, ρk, is recursively
defined as (1) aρ1b if and only if aρb, and (2) aρkb if and only if aρc and cρk−1b, for some
c and k ≥ 2. The transitive closure of ρ, ρ+, is defined as aρ+b if and only if aρkb for
some k ≥ 1, and the reflexive and transitive closure of ρ, ρ∗, is defined as aρ∗b if and only
if aρkb for some k ≥ 0.

Let L and L′ be languages over alphabets T and T ′, respectively. A translation from
L to L′ is a relation τ from T ∗ to (T ′)∗ with domain(τ) = L and range(τ) = L′. If
domain(τ) = T ∗ and τ(uv) = τ(u)τ(v) for every u, v ∈ T ∗, τ is a substitution from T ∗ to
(T ′)∗. By this definition, τ(ε) = ε and τ(a1a2 . . . an) = τ(a1)τ(a2) . . . τ(an), where ai ∈ T ,
1 ≤ i ≤ n, for some n ≥ 1, so τ is completely specified by defining τ(a) for every a ∈ T .
If τ represents both a substitution and a function from T ∗ to (T ′)∗, τ is a morphism from
T ∗ to (T ′)∗.

2.2 Grammars

This section reviews the basics of grammars. Specifically, it provides definitions of context-
free, context-sensitive, and phrase-structure grammars along with some related notions
and basic results which are used throughout the thesis.

Definition 1. A phrase-structure grammar is a quadruple

G = (V, T, P, S),

where

V is the total alphabet ;

T is the set of terminals (T ⊂ V);

P ⊆ V ∗(V − T)V ∗ × V ∗ is a finite relation;

S ∈ V − T is the axiom of G.

8 CHAPTER 2.

The symbols in V − T are referred to as nonterminals. In what follows, each (x, y) ∈ P is
called a production or a rule and written as

x → y ∈ P ;

accordingly, P is called the set of productions in G. The relation of a direct derivation
in G is a binary relation over V ∗ denoted by ⇒G and defined in the following way. Let
x → y ∈ P , u, v, z1, z2 ∈ V ∗, and u = z1xz2, v = z1yz2; then,

u ⇒G v [x → y].

When no confusion exists, we simplify u ⇒G v [x → y] to u ⇒G v. By ⇒k
G, we denote the

k-fold product of ⇒G. Furthermore, let ⇒+
G and ⇒∗

G denote the transitive closure of ⇒G

and the transitive and reflexive closure of ⇒G, respectively. If S ⇒∗
G x for some x ∈ V ∗,

x is called a sentential form. Set

F (G) = {x ∈ V ∗ : S ⇒+
G x}

and
∆(G) = {x ∈ V ∗ : S ⇒+

G x ⇒∗
G y, y ∈ T ∗}.

If S ⇒∗
G w, where w ∈ T ∗, S ⇒∗

G w is said to be a successful derivation of G. The language
of G, denoted by L(G), is defined as

L(G) = {w ∈ T ∗ : S ⇒∗
G w}.

In the literature, the phrase-structure grammars are also often defined with productions
of the form xAy → xuy, where u, x, y ∈ V ∗, A ∈ V − T (see [81]). Both definitions
are interchangeable in the sense that the grammars defined in these two ways generate
the same family of languages—the family of recursively enumerable languages, denoted by
RE.

Definition 2. A context-sensitive grammar is a phrase-structure grammar,

G = (V, T, P, S),

such that each production in P is of the form

xAy → xuy,

where A ∈ V −T , u ∈ V +, x, y ∈ V ∗. A context-sensitive language is a language generated
by a context-sensitive grammar. The family of context-sensitive languages is denoted by
CS.

Definition 3. A context-free grammar is a phrase-structure grammar,

G = (V, T, P, S),

such that each production x → y ∈ P satisfies x ∈ V − T . A context-free language is a
language generated by a context-free grammar. The family of context-free languages is
denoted by CF.

2.2. GRAMMARS 9

For the families of languages generated by context-free, context-sensitive and phrase-
structure grammars, it holds:

Theorem 1 (see [118]). CF ⊂ CS ⊂ RE.

Lemma 1 (Chomsky Normal Form of Context-Free Grammars). Let L ∈ CF,
ε 6∈ L. Then, there exists a context-free grammar, G = (V, T, P, S), such that L = L(G)
and every production in P is either of the form A → BC or A → a, where A,B,C ∈ V −T
and a ∈ T .

Lemma 2 (Penttonen Normal Form of Context-Sensitive Grammars, see [147]).
Let L be a context-sensitive language. Then, there exists a context-sensitive grammar,
G = (V, T, P, S), such that L = L(G) and every production in P is either of the form
AB → AC or A → x, where A,B,C ∈ V − T , x ∈ T ∪ (V − T)2.

Lemma 3 (Penttonen Normal Form of Phrase-Structure Grammars, see [147]).
Let L be a recursively enumerable language. Then, there exists a phrase-structure gram-
mar, G = (V, T, P, S), such that L = L(G) and every production in P is either of the form
AB → AC or A → x, where A,B,C ∈ V − T , x ∈ {ε} ∪ T ∪ (V − T)2.

Lemmas 2 and 3 can be further modified so that for every context-sensitive production
of the form AB → AC ∈ P , A,B,C ∈ V − T , there exist no B → x or BD → BE in P
for any x ∈ V ∗, D,E ∈ V − T .

Lemma 4. Every L ∈ CS can be generated by a context-sensitive grammar G = (NCF ∪
NCS ∪ T, T, P, S), where NCF , NCS, and T are pairwise disjoint alphabets and every
production in P is either of the form AB → AC, where B ∈ NCS, A,C ∈ NCF , or of the
form A → x, where A ∈ NCF , x ∈ NCS ∪ T ∪ N2

CF .

Proof. Let G′ = (V, T, P ′, S) be a context-sensitive grammar in Penttonen normal form
(see Lemma 2) so that L = L(G). Then, let G = (NCF ∪ NCS ∪ T, T, P, S) be the
context-sensitive grammar defined as follows:

NCF = V − T,

NCS = {B̃ : AB → AC ∈ P ′, A,B,C ∈ V − T},
P = {A → x : A → x ∈ P ′, A ∈ V − T, x ∈ T ∪ (V − T)2} ∪

{B → B̃, AB̃ → AC : AB → AC ∈ P ′, A,B,C ∈ V − T}.

Obviously, L(G′) = L(G) and G is of the required form.

Lemma 5. Every L ∈ RE can be generated by a phrase-structure grammar G = (NCF ∪
NCS ∪ T, T, P, S), where NCF , NCS, and T are pairwise disjoint alphabets and every
production in P is either of the form AB → AC, where B ∈ NCS, A,C ∈ NCF , or of the
form A → x, where A ∈ NCF , x ∈ {ε} ∪ NCS ∪ T ∪ N2

CF .

Proof. The reader can prove this lemma by analogy with Lemma 4.

Besides context-free, context-sensitive and phrase-structure grammars, we also discuss
ET0L grammars, EIL grammars and queue grammars in this study.

10 CHAPTER 2.

Definition 4. An ET0L grammar (see [155], [156]) is a t+3-tuple,

G = (V, T, P1, . . . , Pt, S),

where t ≥ 1, and V , T , and S are the total alphabet, the terminal alphabet (T ⊂ V), and
the axiom (S ∈ V − T), respectively. Each Pi is a finite set of productions of the form
a → x, where a ∈ V and x ∈ V ∗. If a → x ∈ Pi implies x 6= ε for all i ∈ {1, . . . , t}, G
is said to be propagating (an EPT0L grammar for short). Let u, v ∈ V ∗, u = a1a2 . . . aq,
v = v1v2 . . . vq, q = |u|, aj ∈ V , vj ∈ V ∗, and p1, p2, . . . , pq is a sequence of productions of
the form pj = aj → vj ∈ Pi for all j = 1, . . . , q, for some i ∈ {1, . . . , t}. Then, u directly
derives v according to the productions p1 through pq, denoted by

u ⇒G v [p1, p2, . . . , pq].

In the standard manner, we define the relations ⇒k
G (k ≥ 0), ⇒+

G, and ⇒∗
G. The language

of G, denoted by L(G), is defined as

L(G) = {w ∈ T ∗ : S ⇒∗
G w}.

The families of languages generated by ET0L and EPT0L grammars are denoted by ET0L
and EPT0L, respectively.

Let G = (V, T, P1, . . . , Pt, S) be an ET0L grammar. If t = 1, G is called an E0L
grammar. We denote the families of languages generated by E0L and propagating E0L
grammars (EP0L grammars for short) by E0L and EP0L, respectively. Finally, if G is
an E0L grammar and, in addition, V = T , G is usually called an 0L grammar.

By 0L, E0L, EP0L, ET0L, and EPT0L, we denote the families of languages gener-
ated by 0L grammars, E0L grammars, EP0L grammars, and EPT0L grammars, respec-
tively.

Theorem 2 (see [155]).

CF
⊂

E0L = EP0L
⊂

ET0L = EPT0L
⊂

CS.

Definition 5. Given integers m,n ≥ 0, an E(m,n)L grammar (see [155], [156]) is defined
as a quadruple

G = (V, T, P, s),

where V , T , and s are the total alphabet, the terminal alphabet T ⊆ V , and the axiom
s ∈ V , respectively. P is a finite set of productions of the form (u, a, v) → y such that
a ∈ V , u, v, y ∈ V ∗, 0 ≤ |u| ≤ m, and 0 ≤ |v| ≤ n. Let x, y ∈ V ∗. Then, x directly derives
y in G, written as x ⇒G y, provided that x = a1a2 . . . ak, y = y1y2 . . . yk, k ≥ 1, and for all
i, 1 ≤ i ≤ k, (ai−m . . . ai−1, ai, ai+1 . . . ai+n) → yi ∈ P. We assume aj = ε for all j ≤ 0 or
j ≥ k+1. In the standard way, ⇒i

G, ⇒+
G, and ⇒∗

G denote the i-fold product of ⇒G, i ≥ 0,

2.2. GRAMMARS 11

the transitive closure of ⇒G, and the transitive and reflexive closure of ⇒G, respectively.
The language of G, L(G), is defined as

L(G) = {w ∈ T ∗ : s ⇒∗
G w}.

Let G = (V, T, P, s) be an E(0, n)L grammar, n ≥ 0, and p = (ε,A, v) → y ∈ P . We
simplify the notation of p so that p = (A, v) → y throughout this thesis. By EIL grammars,
we refer to E(m,n)L grammars for all m,n ≥ 0.

Definition 6. A queue grammar (see [88]) is a sixtuple,

Q = (V, T,W,F,R, g),

where V and W are alphabets satisfying V ∩W = ∅, T ⊆ V , F ⊆ W , R ∈ (V −T)(W −F),
and g ⊆ (V × (W −F))× (V ∗×W) is a finite relation such that for any a ∈ V , there exists
an element (a, b, x, c) ∈ g. If there exist u, v ∈ V ∗W , a ∈ V , r, z ∈ V ∗, and b, c ∈ W such
that (a, b, z, c) ∈ g, u = arb, and v = rzc, then u directy derives v according to (a, b, z, c)
in Q,

u ⇒Q v [(a, b, z, c)].

Define ⇒k
Q (k ≥ 0), ⇒+

Q, and ⇒∗
Q in the standard way. The language of Q, L(Q), is

defined as
L(Q) = {w ∈ T ∗ : R ⇒+

Q wf, f ∈ F}.

Theorem 3 (see [88]). Every language in RE is generated by a queue grammar.

If some grammars define the same language, they are referred to as equivalent gram-
mars. This equivalence is central to this thesis because we often discuss how to transform
some grammars to some other grammars so that both the original grammars and the
transformed grammars are equivalent.

12 CHAPTER 2.

Chapter 3

Context Conditions Placed on
Derivation Domains

Standardly, the relation of a direct derivation, ⇒, is introduced over V ∗, where V is the
total alphabet of a grammar. Algebraically speaking, ⇒ is thus defined over the free
monoid whose generators are symbols. In this chapter, we modify this definition so that
we use strings rather than symbols as the generators. More precisely, we introduce this
relation over the free monoid generated by a finite set of strings; in symbols, ⇒ is defined
over W ∗, where W is a finite language. As a result, this modification represents a very
natural context condition: a derivation step is performed on the condition that the rewrit-
ten sentential form occurs in W ∗. This context condition results into a strong increase
of the generative power of both sequential and parallel context-independent grammars,
represented by context-free grammars and E0L grammars, respectively. In fact, even if
W contains strings consisting of no more than two symbols, the resulting power of these
grammars coincides with the power of Turing machines.

3.1 Sequential Grammars over Word Monoids

Definition 7. A context-free grammar over word monoid (a wm-grammar for short, see
[103], [111]), is a pair (G,W), where G = (V, T, P, S) is a context-free grammar, and W ,
called the set of generators, is a finite language over V . (G,W) is of degree i, where i is a
natural number, if y ∈ W implies |y| ≤ i. (G,W) is said to be propagating if A → x ∈ P
implies x 6= ε.

Roughly speaking, such a production A → x of a wm-grammar can be applied to a
word w only when w is in W ∗.

Formally, the direct derivation ⇒(G,W) on W ∗ is defined as follows: if p = A → y ∈ P ,
xAz, xyz ∈ W ∗ for some x, z ∈ V ∗, then xAz directly derives xyz,

xAz ⇒(G,W) xyz [p]

in symbols. In the standard manner, we denote the k-fold product of ⇒(G,W) (for some

k ≥ 0) by ⇒k
(G,W), the transitive closure of ⇒(G,W) by ⇒+

(G,W), and the reflexive and

transitive closure of ⇒(G,W) by ⇒∗
(G,W). The language of (G,W), symbolically denoted

13

14 CHAPTER 3.

by L(G,W), is defined as

L(G,W) = {w ∈ T ∗ : S ⇒∗
(G,W) w}.

We denote by WM the family of languages generated by wm-grammars. The family
of languages generated by wm-grammars of degree i is denoted by WM(i). The families
of propagating wm-grammars of degree i and propagating wm-grammars of any degree
are denoted by prop-WM(i) and prop-WM, respectively.

Let us examine the generative capacity of (propagating) wm-grammars.

Theorem 4. prop-WM(0) = WM(0) = ∅, prop-WM(1) = WM(1) = CF.

Proof. Follows immediately from the definitions. �

Next, we prove that (i) a language is context-sensitive if and only if it is generated by
a propagating wm-grammar (of degree 2) and (ii) a language is recursively enumerable if
and only if it is generated by a wm-grammar (of degree 2).

Theorem 5. prop-WM(2) = CS.

Proof. It is straightforward to prove that prop-WM(2) ⊆ CS, hence it suffices to prove
the converse inclusion.

Let L be a context-sensitive language. Without loss of generality we can assume that
L is generated by a context-sensitive grammar G = (NCF ∪ NCS ∪ T, T, P, S) of the form
described in Lemma 4. Let V = (NCS ∪NCF ∪T). The propagating wm-grammar (G′,W)
of degree 2 is defined as follows:

G′ = (V ′, T, P ′, S),

where
V ′ = V ∪ Q,
Q = {〈A,B,C〉 : AB → AC ∈ P, A,C ∈ NCF , B ∈ NCS}.

Clearly, without loss of generality, we can assume that Q∩V = ∅. The set of productions,
P ′, is defined in the following way:

1. if A → x ∈ P , A ∈ NCF , x ∈ NCS ∪ T ∪ N2
CF , then add A → x to P ′;

2. if AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , then add B → 〈A,B,C〉 and 〈A,B,C〉 →
C to P ′.

The set of generators W is defined as follows:

W = {A〈A,B,C〉 : 〈A,B,C〉 ∈ Q, A ∈ NCF } ∪ V.

Obviously, (G′,W) is a propagating wm-grammar of degree 2. Next, let h be a finite
substitution from (V ′)∗ into V ∗ defined as

1. for all D ∈ V , h(D) = D;

2. for all 〈X,D,Z〉 ∈ Q, h(〈X,D,Z〉) = D.

3.1. SEQUENTIAL GRAMMARS OVER WORD MONOIDS 15

Let h−1 be the inverse of h. To show that L(G) = L(G′,W), we first prove that

S ⇒m
G w if and only if S ⇒n

(G′W) v

where v ∈ W ∗ ∩ h−1(w), w ∈ V +, for some m,n ≥ 0.

Only if : This is established by induction on the length m of derivations in G.

Basis: Let m = 0. The only w is S because S ⇒0
G S. Clearly, S ⇒0

(G′,W) S and

S ∈ h−1(S).

Induction Hypothesis: Let us suppose that our claim holds for all derivations of length at
most m, for some m ≥ 0.

Induction Step: Consider a derivation S ⇒m+1
G x, where x ∈ V +. Since m + 1 ≥ 1, there

is some y ∈ V + and p ∈ P such that S ⇒m
G y ⇒G x [p] and, by the induction hypothesis,

there is also a derivation S ⇒n
(G′,W) y′′ for some y′′ ∈ W ∗ ∩ h−1(y), n ≥ 0.

(i) Let us assume that p = D → y2, D ∈ NCF , y2 ∈ NCS ∪ T ∪ N2
CF , y = y1Dy3,

y1, y3 ∈ V ∗, and x = y1y2y3. Since from the definition of h−1 it is clear that
h−1(Z) = {Z} for all Z ∈ NCF , we can write y′′ = z1Dz3, where z1 ∈ h−1(y1) and
z3 ∈ h−1(y3). It is clear that D → y2 ∈ P ′ (see the definition of P ′).

Let z3 6∈ Q(V ′)∗. Then, S ⇒n
(G′,W) z1Dz3 ⇒(G′,W) z1y2z3 and, clearly, z1y2z3 ∈

h−1(y1y2y3) ∩ W ∗.

Let z3 ∈ Q(V ′)∗; that is, z3 = Y r for some Y ∈ Q, r ∈ (V ′)∗. Thus, Dh(Y) →
DC ∈ P (for some C ∈ NCF), y3 = h(Y)s, where r ∈ h−1(s) and s ∈ V ∗. Hence, we
have h(Y) → Y ∈ P ′ (see (2) in the definition of P ′). Observe that h(Y) → Y is the
only production in P ′ that has Y appearing on its right-hand side. Also, it is clear
thar r is not in Q(V ′)∗ (see the definition of W). Thus, {z1Dh(Y)r, z1y2h(Y)r} ⊆
W ∗ and since S ⇒n

(G′,W) z1DY r, there must be also the following derivation in

(G′,W): S ⇒n−1
(G′W)

z1Dh(Y)r ⇒(G′,W) z1DY r [h(Y) → Y] and so we get S ⇒n−1
(G′,W)

z1Dh(Y)r ⇒(G′,W) z1y2h(Y)r [D → y2] such that z1y2h(Y)r is in h−1(x) ∩ W ∗.

(ii) Let p = AB → AC, A,C ∈ NCF , B ∈ NCS , y = y1ABy2, y1, y2 ∈ V ∗, x =
y1ACy2, y′′ = z1AY z2, zi ∈ h−1(yi), i ∈ {1, 2}, and Y ∈ h−1(B). Clearly, {B →
〈A,B,C〉, 〈A,B,C〉 → C} ⊆ P ′ and A〈A,B,C〉 ∈ W .

Let Y = B. Since B ∈ NCS , z2 6∈ Q(V ′)∗, and so z1A〈A,B,C〉z2 ∈ W ∗ (see the
definition of W). Thus,

S ⇒n
(G′,W) z1ABz2

⇒(G′,W) z1A〈A,B,C〉z2 [B → 〈A,B,C〉]
⇒(G′,W) z1ACz2 [〈A,B,C〉 → C]

and z1ACz2 ∈ h−1(x) ∩ W ∗.

Let Y ∈ Q. Clearly, h(Y) = B and by the definitions of Q and P ′, we have
B → Y ∈ P ′. Thus, we can express the derivation S ⇒n

(G′,W) z1AY z2 in the form

16 CHAPTER 3.

S ⇒n−1
(G′,W)

z1ABz2 ⇒(G′,W) z1AY z2 [B → Y]. Since z1A〈A,B,C〉z2 ∈ W ∗, we get

S ⇒n−1
(G′,W)

z1ABz2

⇒(G′,W) z1A〈A,B,C〉z2

⇒(G′,W) z1ACz2,

where z1ACz2 ∈ h−1(x) ∩ W ∗.

If : This is also established by induction, but in this case on n ≥ 0.

Basis: For n = 0 the only v is S because S ⇒0
(G′,W) S. Since S ∈ h−1(S) we have w = S.

Clearly, S ⇒0
G S.

Induction Hypothesis: Let us assume the claim holds for all derivations of length at most
n, for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
(G′,W)

u, where u ∈ h−1(x) ∩ W ∗ and x ∈ V +.

Since n + 1 ≥ 1, there is some p ∈ P ′, y ∈ V +, and v ∈ h−1(y) ∩W ∗ such that S ⇒n
(G′,W)

v ⇒(G′,W) u [p] and, by the induction hypothesis, S ⇒∗
G y. Let v = r′Ds′, y = rBs,

r′ ∈ h−1(r), s′ ∈ h−1(s), r, s ∈ V ∗, D ∈ h−1(B), u = r′z′s′, and p = D → z′ ∈ P ′.
Moreover, let us consider the following three cases:

(i) Let h(z′) = B, (see (2)); then, u = r′z′s′ ∈ h−1(rBs); that is, x = rBs. By the
induction hypothesis we have S ⇒∗

G rBs.

(ii) Let z′ ∈ T ∪NCS ∪N2
CF ; then, there is a production B → z ′ ∈ P . Since z′ ∈ h−1(z′),

we have x = rz′s. Clearly, S ⇒∗
G rBs ⇒G rz′s [B → z′].

(iii) Let z′ = C ∈ NCF , D = 〈A,B,C〉 ∈ Q. By the definition of W , we have r ′ = t′A,
r = tA, where t′ ∈ h−1(t), t ∈ V ∗ and so x = tACs. By the definition of Q, there is
a production AB → AC ∈ P . Thus, S ⇒∗

G tABs ⇒G tACs [AB → AC].

By the inspection of P ′, we have considered all possible derivations of the form
S ⇒n

(G′,W) v ⇒(G′,W) u in (G′,W). Thus, by the principle of induction, we have es-

tablished that S ⇒n
(G′,W) u for some n ≥ 0 and u ∈ W ∗ implies S ⇒∗

G x, where x ∈ V ∗

and u ∈ h−1(x). Hence,

S ⇒m
G w if and only if S ⇒n

(G′,W) v,

where v ∈ W ∗ ∩ h−1(w) and w ∈ V ∗, for some m,n ≥ 0.
The proof of the equivalence of G and (G′,W) can easily be derived from the above:

by the definition of h−1, we have h−1(a) = {a} for all a ∈ T . Thus, by the statement
above and by the definition of W , we have for any x ∈ T ∗:

S ⇒∗
G x if and only if S ⇒∗

(G′,W) x;

that is, L(G) = L(G′,W). Thus, prop-WM(2) = CS, which proves the theorem. �

Observe that the form of the wm-grammar in the proof of Theorem 5 implies the
following corollary:

3.1. SEQUENTIAL GRAMMARS OVER WORD MONOIDS 17

Corollary 1. Let L be a context-sensitive language over an alphabet T . Then, L can
be generated by a propagating wm-grammar (G,W) of degree 2, where G = (V, T, P, S)
satisfies

(i) T ⊆ W and (W − V) ⊆ (V − T)2;

(ii) if A → x and |x| > 1 then x ∈ (V − T)2.

Next, we study the wm-grammars of degree 2 with erasing productions. We prove that
these grammars generate precisely RE.

Theorem 6. WM(2) = RE.

Proof. Clearly, we have WM(2) ⊆ RE, hence it suffices to show RE ⊆ WM(2). The
containment RE ⊆ WM(2) can be proved by the techniques given in the proof of Theo-
rem 5 because every language L ∈ RE can be generated by a grammar G = (V, T, P, S)
of the form of Lemma 5. The details are left to the reader. �

Since the form of the resulting wm-grammar in the proof of Theorem 6 is analogous
to the wm-grammar in the proof of Theorem 5 (except that the former may contain some
erasing productions), we have:

Corollary 2. Let L be a recursively enumerable language over an alphabet T , Then, L
can be generated by a wm-grammar (G,W) of degree 2, where G = (V, T, P, S) such that

(i) T ⊆ W and (W − V) ⊆ (V − T)2;

(ii) if A → x and |x| > 1, then x ∈ (V − T)2.

Summing up Theorems 4, 5, and 6, we obtain the following corollary:

Corollary 3.

prop-WM(1) = WM(1) = CF
⊂

prop-WM(2) = prop-WM = CS
⊂

WM(2) = WM = RE.

So far, we have demonstrated that propagating wm-grammars of degree 2 and wm-
grammars of degree 2 characterize CS and RE, respectively. Next, we show that the
characterization of RE can be further improved in such a way that even some reduced
versions of wm-grammars suffice to generate all the family of recursively enumerable lan-
guages. More specifically, we can simultaneously reduce the number of nonterminals and
the number of words of length two occuring in the set of generators without any decrease
of the generative power (see [111]).

Theorem 7. Every L ∈ RE can be defined by a ten-nonterminal context-free grammar
over a word monoid generated by an alphabet and six words of length two.

18 CHAPTER 3.

Proof. Let L ∈ RE. By Geffert (see [69]), L = L(G), where G is a phrase-structure
grammar of the form

G = (V, T, P ∪ {AB → ε, CD → ε}, S)

such that P contains only context-free productions and

V − T = {S,A,B,C,D}.

Let us define an wm-grammar (G′,W) of degree 2, where G′ = (V ′, T, P ′, S) and

V ′ = {S,A,B,C,D, 〈AB〉, 〈CD〉, 〈left〉, 〈right〉, 〈empty〉} ∪ T,
P ′ = P ∪ {B → 〈AB〉, 〈AB〉 → 〈right〉,

D → 〈CD〉, 〈CD〉 → 〈right〉,
A → 〈left〉, C → 〈left〉,
〈left〉 → 〈empty〉, 〈right〉 → 〈empty〉, 〈empty〉 → ε}.

The set of generators is defined as

W = {A〈AB〉, C〈CD〉, 〈left〉〈AB〉, 〈left〉〈CD〉,
〈left〉〈right〉, 〈empty〉〈right〉, 〈empty〉} ∪ T ∪ {S,A,B,C,D}.

Clearly, (G′,W) is a wm-grammar with the required properties. To establish L(G) ⊆
L(G′,W), we first prove the following claim.

Claim 1. S ⇒m
G w implies S ⇒∗

(G′,W) w, where w ∈ V ∗ for some m ≥ 0.

Proof. This is established by induction on m.

Basis: Let m = 0. The only w is S because S ⇒0
G S. Clearly, S ⇒0

(G′,W) S.

Induction Hypothesis: Suppose that our claim holds for all derivations of length m or less,
for some m ≥ 0.

Induction Step: Consider a derivation of the form S ⇒m+1
G w with w ∈ V ∗. As m+1 ≥ 1,

there exists y ∈ W + and p ∈ P such that S ⇒m
G y ⇒G w [p]; by the induction hypothesis,

there also exists a derivation S ⇒n
(G′,W) y. Observe that y ∈ W ∗ because V ⊆ W . The

production p has one of these three forms:

(i) p is a context-free production in P ;

(ii) p has the form AB → ε;

(iii) p has the form CD → ε.

Next, we consider these three possibilites.

(i) Let us assume that p = E → y2, y = y1Ey3, E ∈ {S,A,B,C,D}, y1, y3 ∈ V ∗,
and w = y1y2y3. By the construction of P ′, E → y2 ∈ P ′. Thus, S ⇒n

(G′,W)

y1Ey3 ⇒(G′,W) y1y2y3 [E → y2].

3.1. SEQUENTIAL GRAMMARS OVER WORD MONOIDS 19

(ii) Let p = AB → ε, y = y1ABy2, y1, y2 ∈ V ∗, w = y1y2. At this point, we construct
the following derivation in (G′,W):

S ⇒n
(G′,W) y1ABy2

⇒(G′,W) y1A〈AB〉y2 [B → 〈AB〉]
⇒(G′,W) y1〈left〉〈AB〉y2 [A → 〈left〉]
⇒(G′,W) y1〈left〉〈right〉y2 [〈AB〉 → 〈right〉]
⇒(G′,W) y1〈empty〉〈right〉y2 [〈left〉 → 〈empty〉]
⇒(G′,W) y1〈empty〉〈empty〉y2 [〈right〉 → 〈empty〉]
⇒(G′,W) y1〈empty〉y2 [〈empty〉 → ε]

⇒(G′,W) y1y2 [〈empty〉 → ε]

(iii) Let p = CD → ε, y = y1CDy2, y1, y2 ∈ V ∗, w = y1y2. By analogy with (ii), we can
prove that S ⇒∗

(G′,W) y1y2.

Thus, Claim 1 now follows by the principle of induction.

Next, we sketch how to verify L(G′,W) ⊆ L(G). First, we make two observations,
which follow from the definition of W .

Observation 1. Let

S ⇒∗
(G′,W) y1ABy2

⇒(G′,W) y1A〈AB〉y2 [B → 〈AB〉]
⇒∗

(G′,W) w,

where w ∈ T ∗. Then, during the derivation y1A〈AB〉y2 ⇒∗
(G′,W) w, the following six

derivation steps necessarily occur:

1. A is rewritten according to A → 〈left〉, so 〈left〉〈AB〉 is produced.

2. 〈AB〉 is rewritten according to 〈AB〉 → 〈right〉, so 〈left〉〈right〉 is produced.

3. 〈left〉 is rewritten according to 〈left〉 → 〈empty〉, so 〈empty〉〈right〉 is produced.

4. 〈right〉 is rewritten according to 〈right〉 → 〈empty〉, so 〈empty〉〈empty〉 is produced.

5. one 〈empty〉 in 〈empty〉〈empty〉 is erased according to 〈empty〉 → ε.

6. the other 〈empty〉 is erased according to 〈empty〉 → ε.

Observation 2. Let

S ⇒∗
(G′,W) y1CDy2

⇒(G′,W) y1C〈CD〉y2 [D → 〈CD〉]
⇒∗

(G′,W) w,

where w ∈ T ∗. Then, during the derivation y1C〈CD〉y2 ⇒∗
(G′,W) w, the following six

derivation steps necessarily occur:

1. C is rewritten according to C → 〈left〉, so 〈left〉〈CD〉 is produced.

20 CHAPTER 3.

2. 〈CD〉 is rewritten according to 〈CD〉 → 〈right〉, so 〈left〉〈right〉 is produced.

3. 〈left〉 is rewritten according to 〈left〉 → 〈empty〉, so 〈empty〉〈right〉 is produced.

4. 〈right〉 is rewritten according to 〈right〉 → 〈empty〉, so 〈empty〉〈empty〉 is produced.

5. one 〈empty〉 in 〈empty〉〈empty〉 is erased according to 〈empty〉 → ε.

6. the other 〈empty〉 is erased according to 〈empty〉 → ε.

Considering Observations 1 and 2, we can easily prove the following claim.

Claim 2. S ⇒m
(G′,W) w implies S ⇒∗

G w, where w ∈ T ∗, for some m ≥ 0.

Proof. This proof is left to the reader.

By Claim 1, L(G) ⊆ L(G′,W). From Claim 2, we get L(G′,W) ⊆ L(G). Therefore,
L(G) = L(G′,W) and Theorem 7 holds. �

Recall that for ordinary context-free grammars (which coincide with the wm-grammars
of degree 1 in terms of the present chapter), Gruska [77] proved that for every natural
number n ≥ 1, the context-free grammars with n+1 nonterminals are more powerful that
the context-free grammars with n nonterminals. Consequently, if we reduce the number of
nonterminals in context-free grammars over letter monoids, then we also reduce the power
of these grammars. On the other hand, by Theorem 7, context-free grammars defined over
word monoids keep their power even if we reduce their number of nonterminals to ten.

3.2 Parallel Grammars over Word Monoids

Definition 8. An E0L grammar on word monoid, a WME0L grammar for short, is a pair
(G,W), where G = (V, T, P, S) is an E0L grammar. The set of generators, W , is a finite
language over V . By analogy with wm-grammars, (G,W) has degree i, where i is a natural
number, if every y ∈ W satisfies |y| ≤ i. If A → x ∈ P implies x 6= ε, (G,W) is said to
be propagating. Let x, y ∈ W ∗ such that x = a1a2 . . . an, y = y1y2 . . . yn, ai ∈ V , yi ∈ V ∗,
1 ≤ i ≤ n, n ≥ 0. If ai → yi ∈ P for all i = 1 . . . n, then x directly derives y according to
productions a1 → y1, a2 → y2, . . ., an → yn,

x ⇒(G,W) y [a1 → y1, . . . , an → yn]

in symbols. As usual, the list of applied productions is omitted when no confusion arises.
In the standard way, ⇒k

(G,W), ⇒
+
(G,W), and ⇒∗

(G,W) denote the k-fold product of ⇒(G,W),
k ≥ 0, the transitive closure of ⇒(G,W), and the transitive and reflexive closure of ⇒(G,W),
respectively. The language of (G,W), denoted by L(G,W), is defined in the following
way:

L(G,W) = {w ∈ T ∗ : S ⇒∗
(G,W) w}.

By WME0L(i), WMEP0L(i), WME0L, and WMEP0L, we denote the families of
languages generated by WME0L grammars of degree i, propagating WME0L grammars
of degree i, WME0L grammars, and propagating WME0L grammars, respectively.

3.2. PARALLEL GRAMMARS OVER WORD MONOIDS 21

Note that WME0L grammars of degree 2 are called symbiotic E0L grammars in [105].
The families of languages generated by symbiotic E0L grammars and propagating sym-
biotic E0L grammars are denoted by SE0L and SEP0L; that is, SE0L = WME0L(2)
and SEP0L = WME0L(2).

Let us investigate the generative power of WME0L grammars. Clearly,

WMEP0L(0) = WME0L(0) = ∅.

Recall that for ordinary E0L languages, EP0L = E0L (see Theorem 2.4 in [157]). There-
fore, the following theorem follows immediately from the definitions:

Theorem 8. WMEP0L(1) = WME0L(1) = EP0L = E0L.

Next, let us investigate WME0L grammars of degree 2 (symbiotic E0L grammars).
In Theorems 9 and 10, we demonstrate that these grammars have remarkably higher
generative capacity than WME0L grammars of degree 1. More specifically, propagating
WME0L grammars of degree 2 generate precisely the family of context-sensitive languages
and WME0L grammars of degree 2 generate all the family of recursively enumerable
languages.

Theorem 9. WMEP0L(2) = CS.

Proof. It is straightforward to prove that WMEP0L(2) ⊆ CS, hence it suffices to prove
the converse inclusion. Let L be a context-sensitive language generated by a context-
sensitive grammar G = (NCF ∪ NCS ∪ T, T, P, S) of the form described in Lemma 4. Let
V = NCF ∪ NCS ∪ T and V ′ = V ∪ Q, where

Q = {〈A,B,C〉 : AB → AC ∈ P, A,C ∈ NCF , B ∈ NCS}.

Clearly, without loss of generality, we can assume that Q ∩ V = ∅.
The WMEP0L grammar of degree 2, (G′,W), is defined as follows:

G′ = (V ′, T, P ′, S),

where P ′ is constructed as

1. for all A ∈ V ′, add A → A to P ′;

2. if A → x ∈ P , A ∈ NCF , x ∈ NCS ∪ T ∪ N2
CF , then add A → x to P ′;

3. if AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , then add B → 〈A,B,C〉 and 〈A,B,C〉 →
C to P ′.

The set of generators, W ⊆ (V ∪ V 2), is defined in the following way:

W = {A〈A,B,C〉 : 〈A,B,C〉 ∈ Q, A ∈ NCF} ∪ V.

Obviously, (G′,W) is a WMEP0L grammar of degree 2. Let us introduce a substitution
from (V ′)∗ into V ∗ as

1. for all D ∈ V , h(D) = D,

22 CHAPTER 3.

2. for all 〈X,D,Z〉 ∈ Q, h(〈X,D,Z〉) = D.

Let h−1 be the inverse of h. To demonstrate that L(G) = L(G′,W), we first prove two
claims:

Claim 3. If S ⇒m
G , w ∈ V +, for some m ≥ 0, then S ⇒∗

(G′,W) v, where v ∈ h−1(w).

Proof. This is established by induction on the length m of derivations in G.

Basis: Let m = 0. The only w is S because S ⇒0
G S. Since S ∈ W ∗, S ⇒0

(G′,W) S and by

the definition of h−1, S ∈ h−1(S).

Induction Hypothesis: Let us suppose that our claim holds for all derivations of length at
most m, for some m ≥ 0.

Induction Step: Consider a derivation S ⇒m+1
G x, x ∈ V ∗. Since m + 1 ≥ 1, there is some

y ∈ V + and p ∈ P such that S ⇒m
G y ⇒G x [p] and, by the induction hypothesis, there is

also a derivation S ⇒n
(G′,W) y′ for some y′ ∈ h−1(y), n ≥ 0. By the definition, y′ ∈ W ∗.

(i) Let us first assume that p = D → y2 ∈ P , D ∈ NCF , y2 ∈ NCS ∪ T ∪ N2
CF ,

y = y1Dy3, and x = y1y2y3, y1 = a1 . . . ai, y3 = b1 . . . bj, where ak, bl ∈ V , 1 ≤ k ≤ i,
1 ≤ l ≤ j, for some i, j ≥ 0 (i = 0 implies y1 = ε and j = 0 implies y3 = ε). Since
from the definition of h−1 it is clear that h−1(Z) = {Z} for all Z ∈ NCF , we can
write y′ = z1Dz3, where z1 ∈ h−1(y1) and z3 ∈ h−1(y3), that is to say, z1 = c1 . . . ci,
z3 = d1 . . . dj , where ck ∈ h−1(ak), dl ∈ h−1(bl), for 1 ≤ k ≤ i, 1 ≤ l ≤ j. It is clear
that D → y2 ∈ P ′.

Let d1 6∈ Q. Then, it is easy to see that z1y2z3 ∈ W ∗ and so z1Dz3 ⇒(G′,W)

z1y2z3 [c1 → c1, . . . , ci → ci, D → y2, d1 → d1, . . . , dj → dj]. Therefore, S ⇒n
(G′,W)

z1Dz3 ⇒(G′,W) z1y2z3 and z1y2z3 ∈ h−1(y1y2y3).

Let d1 ∈ Q; that is, Dh(d1) → DC ∈ P (for some C ∈ NCF), see the definition of h.
Hence, we have h(d1) → d1 ∈ P ′, see (3) (observe that this production is the only
production in P ′ that has d1 appearing on its right-hand side). It is clear, by the
definition of W , that d2 6∈ Q. Thus, {z1Dh(d1)d2 . . . dj , z1y2h(d1)d2 . . . dj} ⊆ W ∗.
Since S ⇒n

(G′,W) z1Dd1 . . . dj , there must exist the following derivation in (G′,W):

S ⇒n−1
(G′,W)

z1Dh(d1)d2 . . . dj

⇒(G′,W) z1Dd1d2 . . . dj [c1 → c1, . . . , ci → ci, D → D,

h(d1) → d1, d2 → d2, . . . , dj → dj].

So we get

S ⇒n−1
(G′,W)

z1Dh(d1)d2 . . . dj

⇒(G′,W) z1y2h(d1)d2 . . . dj [c1 → c1, . . . , ci → ci, D → y2,

h(d1) → h(d1), d2 → d2, . . . , dj → dj]

such that z1y2h(d1)d2 . . . dj is in h−1(x).

3.2. PARALLEL GRAMMARS OVER WORD MONOIDS 23

(ii) Let p = AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , y = y1ABy2, y1, y2 ∈ V ∗,
x = y1ACy2, y′ = z1AY z2, zi ∈ h−1(yi), i ∈ {1, 2}, Y ∈ h−1(B), and y1 = a1 . . . ai,
y3 = b1 . . . bj, ak, bl ∈ V , 1 ≤ k ≤ i, 1 ≤ l ≤ j, for some i, j ≥ 0. Let z1 = c1 . . . ci,
z3 = d1 . . . dj , ck ∈ h−1(ak), dl ∈ h−1(bl), 1 ≤ k ≤ i, 1 ≤ l ≤ j. Clearly, {B →
〈A,B,C〉, 〈A,B,C〉 → C} ⊆ P ′, and A〈A,B,C〉 ∈ W , see the definition of W .

Let Y = B. Since y′ ∈ W ∗ and B ∈ NCS , we have d1 6∈ Q. Consequently,
z1A〈A,B,C〉z2 and z1ACz2 are in W ∗ by the definition of W . Thus,

S ⇒n
(G′,W) z1ABz2

⇒(G′,W) z1A〈A,B,C〉z2 [π1]

⇒(G′,W) z1ACz2 [π2]

where π1 = c1 → c1, . . . , ci → ci, A → A,B → 〈A,B,C〉, d1 → d1, . . . , dj → dj ,
π2 = c1 → c1, . . . , ci → ci, A → A, 〈A,B,C〉 → C, d1 → d1, . . . , dj → dj, and
z1ACz2 ∈ h−1(x).

Let Y ∈ Q. Clearly, h(Y) must be equal to B. By (3) and the definition of Q,
we have B → Y ∈ P ′. Clearly, z1ACz2 is in W ∗ for d1 6∈ Q as we have already
shown. Thus, since S ⇒n

(G′,W) z1AY z2, the word z1AY z2 can be derived in (G′,W)
as follows:

S ⇒n−1
(G′,W)

z1ABz2

⇒(G′,W) z1AY z2 [π]

where π = c1 → c1, . . . , ci → ci, A → A,B → Y, d1 → d1, . . . , dj → dj . Since
z1A〈A,B,C〉z2 and z1ACz2 belong to W ∗, we get

S ⇒n−1
(G′,W)

z1ABz2

⇒(G′,W) z1A〈A,B,C〉z2 [π1]

⇒(G′,W) z1ACz2 [π2]

where π1 = c1 → c1, . . . , ci → ci, A → A,B → 〈A,B,C〉, d1 → d1, . . . , dj → dj ,
π2 = c1 → c1, . . . , ci → ci, A → A, 〈A,B,C〉 → C, d1 → d1, . . . , dj → dj, and
z1ACz2 ∈ h−1(x).

Cases (i) and (ii) cover all possible rewriting of y in G. Thus, the claim now follows from
the principle of induction.

Claim 4. Let S ⇒∗
(G′,W) v, v ∈ W ∗, v = rDs, and p = D → z ∈ P . Then, h(v) ⇒i

G

h(r)h(z)h(s), for some i = 0, 1.

Proof. To verify this claim, consider the following three cases:

(i) Let h(z) = h(D). Then, h(v) ⇒0
G h(r)h(z)(s).

(ii) Let z ∈ T ∪ NCS ∪ N2
CF , D ∈ NCF . Then, there is a production B → z ∈ P , and

by the definition of h, we have B → z = h(B) → h(z). Thus, h(r)h(D)h(s) ⇒G

h(r)h(z)h(s) [h(B) → h(z)].

24 CHAPTER 3.

(iii) Let z = C ∈ NCF and D = 〈A,B,C〉 for some 〈A,B,C〉 ∈ Q, see (3). By the
definition of W , we have r = tA, where t ∈ W ∗ and so v = tACs. By the definition
of Q, there is a production AB → AC ∈ P . Thus, tABs ⇒G tACs [AB → AC]
where tABs = h(tA)h(〈A,B,C〉)h(s) and tACs = h(tA)h(C)h(s).

By inspection of P ′, cases (i) through (iii) cover all possible types of productions in P ′,
which proves the claim.

Claim 5. If S ⇒n
(G′,W) u, u ∈ W ∗, for some n ≥ 0, then S ⇒∗

G h(u).

Proof.

Basis: For n = 0, the only u is S because S ⇒0
(G′,W) S. Since S = h(S) we have S ⇒0

G

S in G.

Induction Hypothesis: Let us assume that the claim holds for all derivations of length at
most n, for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
(G′,W)

u, where u ∈ W ∗. Since n+1 ≥ 1, there

is some v ∈ W ∗ such that S ⇒n
(G′,W) v ⇒(G′,W) u and by the induction hypothesis S ⇒∗

G

h(v). Return to the proof of Claim 4. It should be clear that by using (i) through (iii)
from Claim 5, we can construct a derivation h(v) ⇒i

G h(u), for some i ∈ {0, . . . , |u|}, in
the following way: first rewrite all occurences of symbols corresponding to the case (iii),
then all occurences of symbols corresponding to (ii); the technical details are left to the
reader.

Thus, S ⇒∗
G h(v) ⇒i

G h(u) in G. Hence, by the principle of induction, we have
established Claim 5.

Next, the proof of the equivalence of G and (G′,W) can be derived from Claims 3
and 5: By the definition of h−1, we have h−1(a) = {a} for all a ∈ T . Thus, by Claim 3,
we have for any x ∈ T ∗,

S ⇒∗
G x implies S ⇒∗

(G′,W) x,

that is, L(G) ⊆ L(G′,W).
Conversely, since T ∗ ⊆ W ∗, we get, by the definition of h and Claim 5, for any x ∈ T ∗,

S ⇒∗
(G′,W) x implies S ⇒∗

G x,

that is, L(G′,W) ⊆ L(G). As a result, L(G) = L(G′,W) and so WMEP0L(2) = CS =
SEP0L, which proves the theorem. �

Observe that Theorem 9 and the definitions yield the following normal form:

Corollary 4. Let L be a context-sensitive language over an alphabet T . Then, L can be
generated by an WMEP0L grammar (G,W) of degree 2, G = (V, T, P, S), where W is over
an alphabet V such that T ⊆ W , (W − V) ⊆ (V − T)2, and if A → x and |x| > 1, then
x ∈ (V − T)2.

Let us turn the investigation to WME0L grammars of degree 2 with erasing produc-
tions.

3.2. PARALLEL GRAMMARS OVER WORD MONOIDS 25

Theorem 10. WME0L(2) = RE.

Proof. Clearly, WME0L(2) ⊆ RE, hence it suffices to show RE ⊆ WME0L(2).
Each language L ∈ RE can be generated by a phrase-structure grammar G having the

form of Lemma 5. Thus, the containment RE ⊆ WME0L(2) can be proven by analogy
with the techniques used in the proof of Theorem 9. The details are left to the reader.

�

Since the forms of the resulting WME0L(2) grammar in the proofs of Theorem 9 and
Theorem 10 are analogous, we obtain the following corollary as an analogy to Corollary 4:

Corollary 5. Let L be a recursively enumerable language over an alphabet T . Then, L
can be generated by an WME0L grammar (G,W) of degree 2, G = (V, T, P, S), where W
is over an alphabet V such that T ⊆ W , (W − V) ⊆ (V − T)2, and if A → x and |x| > 1,
then x ∈ (V − T)2.

Summing up Theorems 8, 9 and 10, we obtain the following corollary:

Corollary 6.
CF
⊂

WMEP0L(1) = WME0L(1) = EP0L = E0L
⊂

WMEP0L(2) = CS
⊂

WME0L(2) = RE.

Open Problems. In this chapter, we have discussed grammars with derivations over
the word monoids rather than the letter monoids. From a broader algebraic perspective,
we could consider many other modifications of the derivation domains. Specifically, what
is the generative power of context-free grammars whose derivations are defined over free
groups?

26 CHAPTER 3.

Chapter 4

Context Conditions Placed on the
Use of Productions

In this chapter, we discuss grammars with context conditions represented by strings asso-
ciated with productions. We distinguish two types of these conditions—forbidding condi-
tions and permitting conditions. A production is applicable to a sentential form if each of
its permitting conditions occurs in the sentential form and any of its forbidding conditions
does not. In Section 4.1, we study sequential grammars with context conditions, originally
introduced in van der Walt [175] in 1970. Then, in Section 4.2, we introduce and discuss
parallel versions of these grammars. In both sections, we demonstrate that this concept of
context conditions attached to grammatical productions significantly increase the gram-
matical generative power. Furthermore, we reduce some grammars with respect to several
measures of descriptional complexity, such as the number of conditional productions, the
length of context conditions, and the number of nonterminals.

4.1 Sequential Conditional Grammars

Informally, a sequential conditional grammar is an ordinary context-free grammar in which
the application of productions is regulated by the permitting and forbidding context condi-
tions. In every derivation step, such a grammar can rewrite only one nonterminal symbol
in the given sentential form; that is, it works purely sequentially. Making use of this
basic principle, a large number of variants of these grammars have been introduced. In
order to unify the notations and definitions, we start with the basic definition of a context-
conditional grammar in Section 4.1.1. Then, in Sections 4.1.2 through 4.1.5, we investigate
some special cases of the context-conditional grammars.

4.1.1 Context-Conditional Grammars

Definition 9. A context-conditional grammar is a quadruple,

G = (V, T, P, S),

where V , T , and S are the total alphabet, the terminal alphabet (T ⊂ V), and the axiom
(S ∈ V − T), respectively. P is a finite set of productions of the form (A → x, Per, For),

27

28 CHAPTER 4.

where A ∈ V − T , x ∈ V ∗, and finite sets Per, For ⊆ V +. If Per 6= ∅ or For 6= ∅, the
production is said to be conditional ; otherwise, it is called context-free. G has degree (r, s),
where r and s are natural numbers, if for every (A → x, Per, For) ∈ P , max(Per) ≤ r
and max(For) ≤ s. If (A → x, Per, For) ∈ P implies x 6= ε, G is said to be propagating.
Let u, v ∈ V ∗ and (A → x, Per, For) ∈ P . Then, u directly derives v according to
(A → x, Per, For) in G, denoted by

u ⇒G v [(A → x, Per, For)]

provided that for some u1, u2 ∈ V ∗, the following conditions hold:

(a) u = u1Au2,

(b) v = u1xu2,

(c) Per ⊆ sub(u),

(d) For ∩ sub(u) = ∅.

When no confusion exists, we simply write u ⇒G v instead of u ⇒G v [(A → x, Per, For)].
By analogy with context-free grammars, we extend ⇒G to ⇒k

G (where k ≥ 0), ⇒+
G, and

⇒∗
G. The language of G, denoted by L(G), is defined as

L(G) = {w ∈ T ∗ : S ⇒∗
G w}.

The families of languages generated by context-conditional grammars and propagating
context-conditional grammars of degree (r, s) are denoted by CG(r, s) and prop-CG(r, s),
respectively. Furthermore, we define

CG =

∞⋃

r=0

∞⋃

s=0

CG(r, s)

and

prop-CG =

∞⋃

r=0

∞⋃

s=0

prop-CG(r, s).

Next, we establish several theorems dealing with the generative power of context-
conditional grammars. Let us note, however, that a number of specializations of these
grammars will be defined and investigated in Sections 4.1.2 through 4.1.5. Therefore, only
the results concerning the general versions of context-conditional grammars are presented
here.

Theorem 11. prop-CG(0, 0) = CG(0, 0) = CF

Proof. This theorem follows immediately from the definition. Clearly, context-conditional
grammars of degree (0, 0) are ordinary context-free grammars. �

Lemma 6. prop-CG ⊆ CS.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 29

Proof. Let r = s = 0. Then, prop-CG(0, 0) = CF ⊂ CS. The rest of the proof
establishes the inclusion for degrees (r, s) such that r + s > 0.

Consider a propagating context-conditional grammar G = (V, T, P, S) of degree (r, s),
r + s > 0, for some r, s ≥ 0. Let k be the greater number of r and s. Set M = {x ∈ V + :
|x| ≤ k}. Next, define cf(P) = {A → x : (A → x, Per, For) ∈ P, A ∈ (V − T), x ∈ V +}.
Then, set

NF = {〈X,x〉 : X ⊆ M, x ∈ M ∪ {ε}},
NT = {bXc : X ⊆ M},
NB = {dpe : p ∈ cf(P)} ∪ {d∅e},
V ′ = NF ∪ NT ∪ NB ∪ {B,C, $, S ′},
T ′ = T ∪ {#}.

Construct the context-sensitive grammar, G′ = (V ′, T ′, P ′, S′), with the finite set of pro-
ductions, P ′, defined in the following way:

1. add S′ → B〈∅, ε〉SC to P ′;

2. for all X ⊆ M , x ∈ (V k ∪ {ε}) and y ∈ V k, add 〈X,x〉y → y〈X ∪ sub(xy, k), y〉 to
P ′;

3. for all X ⊆ M , x ∈ (V k ∪ {ε}) and y ∈ V +, |y| ≤ k, add 〈X,x〉yC → ybX ∪
sub(xy, k)cC to P ′;

4. for all X ⊆ M and every p = A → x ∈ cf(P) such that there exists (A →
x, Per, For) ∈ P satisfying Per ⊆ X and For ∩ X = ∅, add bXcC → dpeC to
P ′;

5. for every p ∈ cf(P) and a ∈ V , add adpe → dpea to P ′;

6. for every p = A → x ∈ cf(P), A ∈ (V − T), x ∈ V +, add Adpe → d∅ex to P ′;

7. for every a ∈ V , add ad∅e → d∅ea to P ′;

8. add Bd∅e → B〈∅, ε〉 to P ′;

9. add B〈∅, ε〉 → #$, $C → ##, and $a → a$, for all a ∈ T , to P ′.

Claim 6. Every successful derivation in G′ has the form

S′ ⇒G′ B〈∅, ε〉SC

⇒+
G′ B〈∅, ε〉xC

⇒G′ #$xC

⇒
|x|
G′ #x$C

⇒G′ #x##

such that x ∈ T + and during B〈∅, ε〉SC ⇒+
G′ B〈∅, ε〉xC, every sentential form w satisfies

w ∈ {B}H+{C} where H ⊆ V ′ − {B,C,#, $, S ′};

Proof. Observe that the only production that rewrites the axiom is S ′ → B〈∅, ε〉SC;
thus, S′ ⇒G′ B〈∅, ε〉SC. After that, every sentential form that occurs in B〈∅, ε〉SC ⇒+

G′

B〈∅, ε〉xC can be rewritten by using any of the productions (2) through (8) from the

30 CHAPTER 4.

construction of P ′. By inspection of these productions, it is obvious that the edge symbols
B and C remain unchanged and no other occurences of them appear inside the sentential
form. Moreover, there is no production generating a symbol from {#, $, S ′}. Therefore,
all these sentential forms belong to {B}H+{C}.

Next, let us explain how G′ generates a word from L(G′). Only B〈∅, ε〉 → #$ can
rewrite B to a symbol from T (see (9) in the definition of P ′). According to the left-hand
side of this production, we obtain

S′ ⇒G′ B〈∅, ε〉SC ⇒∗
G′ B〈∅, ε〉xC ⇒G′ #$xC,

where x ∈ H+. To rewrite C, G′ uses $C → ##. Thus, G′ needs $ as the left neighbor
of C. Suppose that x = a1a2 . . . aq, where q = |x| and ai ∈ T , for all i ∈ {1, . . . , q}. Since
for every a ∈ T there is $a → a$ ∈ P ′ (see (9)), we can construct

#$a1a2 . . . anC ⇒G′ #a1$a2 . . . anC

⇒G′ #a1a2$. . . anC

⇒
|x|−2
G′ #a1a2 . . . an$C.

Notice that this derivation can be constructed only for x that belong to T +. Then, $C is
rewritten to ##. As a result,

S′ ⇒G′ B〈∅, ε〉SC ⇒+
G′ B〈∅, ε〉xC ⇒G′ #$xC ⇒

|x|
G′ #x$C ⇒G′ #x##

with the required properties. Thus, the claim holds.

The following claim demonstrates how G′ simulates a direct derivation from G—the
heart of the construction.

Let x ⇒⊕
G′ y denote the derivation x ⇒+

G′ y such that x = B〈∅, ε〉uC, y = B〈∅, ε〉vC,
u, v ∈ V +, and there is no other occurence of a string of the form B〈∅, ε〉zC, z ∈ V ∗,
during x ⇒+

G′ y.

Claim 7. For every u, v ∈ V ∗, it holds that B〈∅, ε〉uC ⇒⊕
G′ B〈∅, ε〉vC if and only if

u ⇒G v.

Proof.

Only if : Let us show how G′ rewrites B〈∅, ε〉uC to B〈∅, ε〉vC. The simulation consists of
two phases.

During the first, forward phase, G′ scans u to get all nonempty substrings of length
k or less. By repeatedly using productions 〈X,x〉y → y〈X ∪ sub(xy, k), y〉, X ⊆ M ,
x ∈ (V k ∪ {ε}), y ∈ V k (see (2) in the definition of P ′), the occurence of a symbol with
form 〈X,x〉 is moved towards the end of the sentential form. Simultaneously, the substrings
of u are collected in X. The forward phase is finished by 〈X,x〉yC → ybX ∪ sub(xy, k)cC,
x ∈ (V k ∪ {ε}), y ∈ V +, |y| ≤ k (see (3)); this production reaches the end of u and
completes X = sub(u, k). Formally,

B〈∅, ε〉uC ⇒+
G′ BubXcC

such that X = sub(u, k).

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 31

The second, backward phase simulates the application of a conditional production.
Assume that u = u1Au2, u1, u2 ∈ V ∗, A ∈ (V − T), and there exists a production
A → x ∈ cf(P) such that (A → x, Per, For) ∈ P for some Per, For ∈ M , where Per ⊆ X,
For ∩X = ∅, and, furthermore, u1xu2 = v. Then, G′ derives BubXcC ⇒+

G′ B〈∅, ε〉vC by
performing the following five steps:

(i) bXc is changed to dpe, where p = A → x satisfies the above conditions (see (4) in
the definition of P ′).

(ii) Bu1Au2dpeC is rewritten to Bu1Adpeu2C by using the productions of the form
adpe → dpea, a ∈ V (see (5)).

(iii) Bu1Adpeu2C is rewritten to Bu1d∅exu2C by using Adpe → d∅ex (see (6)).

(iv) Bu1d∅exu2C is rewritten to Bd∅eu1xu2C by using the productions of the form
ad∅e → d∅ea, a ∈ V (see (7)).

(v) Finally, Bd∅e is rewritten to B〈∅, ε〉 by Bd∅e → B〈∅, ε〉.

As a result, we obtain

B〈∅, ε〉uC ⇒+
G′ BubXcC ⇒G′ BudpeC

⇒
|u|
G′ Bd∅evC ⇒G′ B〈∅, ε〉vC.

Observe that this is the only way of deriving B〈∅, ε〉uC ⇒⊕
G′ B〈∅, ε〉vC.

Let us show that u ⇒G v. Indeed, the application of Adpe → d∅ex implies that there
exists (A → x, Per, For) ∈ P , where Per ⊆ sub(u, k) and For ∩ sub(u, k) = ∅. Hence,
there exists a derivation u ⇒G v [p], where u = u1Au2, v = u1xu2 and p = (A →
x, Per, For) ∈ P .

If : The converse implication is similar to the only-if part, so we leave it to the reader.

Claim 8. S ′ ⇒+
G′ B〈∅, ε〉xC if and only if S ⇒∗

G x, for all x ∈ V +.

Proof.

Only if : The only-if part is proven by induction on the i-th occurence of the sentential
form w satisfying w = B〈∅, ε〉uC, u ∈ V +, during the derivation in G′.

Basis: Let i = 1. Then, S ′ ⇒G′ B〈∅, ε〉SC and S ⇒0
G S.

Induction Hypothesis: Suppose that the claim holds for all i ≤ h, for some h ≥ 1.

Induction Step: Let i = h+1. Since h+1 ≥ 2, we can express S ′ ⇒+
G′ B〈∅, ε〉xiC as S′ ⇒+

G′

B〈∅, ε〉xi−1C ⇒⊕
G′ B〈∅, ε〉xiC, where xi−1, xi ∈ V +. By the induction hypothesis, S ⇒∗

G

xi−1. Claim 7 says that B〈∅, ε〉xi−1C ⇒⊕
G′ B〈∅, ε〉xiC if and only if xi−1 ⇒G xi. Hence,

S ⇒∗
G xi−1 ⇒G xi and the only-if part holds.

If : By induction on n, we prove that

S ⇒n
G x implies S ′ ⇒+

G′ B〈∅, ε〉xC

32 CHAPTER 4.

for all n ≥ 0, x ∈ V +.

Basis: For n = 0, S ⇒0
G S and S′ ⇒G′ B〈∅, ε〉SC.

Induction Hypothesis: Assume that the claim holds for all n or less, for some n ≥ 0.

Induction Step: Let S ⇒n+1
G x, x ∈ V +. Because n + 1 ≥ 1, there exists y ∈ V + such

that S ⇒n
G y ⇒G x and, by the induction hypothesis, there is also a derivation S ′ ⇒+

G′

B〈∅, ε〉yC. From Claim 7, we have B〈∅, ε〉yC ⇒⊕
G′ B〈∅, ε〉xC. Therefore, S ′ ⇒+

G′ B〈∅, ε〉xC

and the converse implication holds as well.

From Claims 6 and 8, we see that any successful derivation in G′ is of the form S ′ ⇒+
G′

B〈∅, ε〉xC ⇒+
G′ #x## such that S ⇒∗

G x, x ∈ T +. Therefore, we have for each x ∈ T +,

S′ ⇒+
G′ #x## if and only if S ⇒∗

G x.

Define the homomorphism h over (T ∪ {#})∗ as h(#) = ε and h(a) = a for all a ∈ T .
Observe that h is 4-linear erasing with respect to L(G′) (see page 98 in [161]). Furthermore,
notice that h(L(G′)) = L(G). Because CS is closed under linear erasing (see Theorem
10.4 on page 98 in [161]), L ∈ CS. Thus, Lemma 6 holds.

Theorem 12. prop-CG = CS.

Proof. By Lemma 6, we have prop-CG ⊆ CS. CS ⊆ prop-CG holds true as well.
In fact, later in this study, we introduce several special cases of propagating context-
conditional grammars and prove that even these grammars generate CS (see Theorems 26
and 28). As a result, prop-CG = CS. �

Lemma 7. CG ⊆ RE.

Proof. This lemma follows from Church’s thesis. To obtain an algorithm converting any
context-conditional grammar to an equivalent phrase-structure grammar, use the tech-
nique presented in Lemma 6.

Theorem 13. CG = RE.

Proof. By Lemma 7, CG ⊆ RE. Later on, we define some special cases of context-
conditional grammars and demonstrate that they characterize RE (see, for example, The-
orems 19, 27, and 29). Thus RE ⊆ CG, too. �

4.1.2 Random-Context Grammars

This section discusses three special cases of context-conditional grammars whose conditions
are nonterminal symbols, so their degree is not greater than (1,1). Specifically, random-
context grammars, also known as permitting grammars, are of degree (1,0). Forbidding
grammars are of degree (0,1). Finally, random-context grammars with appearance checking
are of degree (1,1).

Definition 10. Let G = (V, T, P, S) be a context-conditional grammar. G is called a
random-context grammar with appearance checking provided that (A → x, Per, For) ∈ P
implies Per ⊆ N and For ⊆ N .

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 33

Definition 11. Let G = (V, T, P, S) be a random-context grammar with appearance
checking. G is called a random-context grammar (an rc-grammar for short) or permitting
grammar provided that every (A → x, Per, For) ∈ P satisfies For = ∅.

Definition 12. Let G = (V, T, P, S) be a random-context grammar with appearance
checking. G is called a forbidding grammar provided that every (A → x, Per, For) ∈ P
satisfies Per = ∅.

The following convention simplifies productions in permitting grammars and forbidding
grammars, respectively.

Convention 1. Let G = (V, T, P, S) be a permitting grammar and let p = (A →
x, Per, For) ∈ P . Since by the definition For = ∅, we usually omit the empty set of
forbidding conditions. That is, we write (A → x, Per) when no confusion arises.

Let G = (V, T, P, S) be a forbidding grammar and let p = (A → x, Per, For) ∈ P .
Analogously, we write (A → x, For) instead of (A → x, Per, For), because Per = ∅ for
all p ∈ P .

The families of languages defined by random-context grammars, random-context gram-
mars with appearance checking, and forbidding grammars are denoted by RC, RC(ac),
and F, respectively. To indicate that only propagating grammars are considered, we use
the prefix prop-. That is, prop-RC, prop-RC(ac), and prop-F denote the families of
languages defined by propagating random-context grammars, propagating random-context
grammars with appearance checking, and propagating forbidding grammars, respectively.

Example 1 ([43]). Let

G = ({S,A,B,C,D,A′ , B′, C ′, a, b, c}, {a, b, c}, P, S)

be a permitting grammar, where P is defined as follows:

P = {(S → ABC, ∅),
(A → aA′, {B}),
(B → bB′, {C}),
(C → cC ′, {A′}),
(A′ → A, {B′}),
(B′ → B, {C ′}),
(C ′ → C, {A}),
(A → a, {B}),
(B → b, {C}),
(C → c, ∅)}.

Consider the word aabbcc. G generates this word in the following way:

S ⇒ ABC ⇒ aA′BC ⇒ aA′bB′C ⇒ aA′bB′cC ′ ⇒
aAbB′cC ′ ⇒ aAbBcC ′ ⇒ aAbBcC ⇒
aabBcC ⇒ aabbcC ⇒ aabbcc.

Observe that G is a propagating rc-grammar and L(G) = {anbncn : n ≥ 1}. Recall that
{anbncn : n ≥ 1} is a non-context-free language.

34 CHAPTER 4.

Example 2 ([43]). Let

G = ({S,A,B,D, a}, {a}, P, S)

be an rc-grammar with appearance checking. The set of productions, P , is defined as
follows:

P = {(S → AA, ∅, {B,D}),
(A → B, ∅, {S,D}),
(B → S, ∅, {A,D}),
(A → D, ∅, {S,B}),
(D → a, ∅, {S,A,B})}.

Notice that G is a propagating forbidding grammar. For aaaaaaaa, G makes the following
derivation:

S ⇒ AA ⇒ AB ⇒ BB ⇒ BS ⇒ SS ⇒ AAS ⇒ AAAA ⇒
BAAA ⇒ BABA ⇒ BBBA ⇒ BBBB ⇒ SBBB ⇒ SSBB ⇒ SSSB ⇒
SSSS ⇒ AASSS ⇒3 AAAAAAAA ⇒8 DDDDDDDD ⇒8 aaaaaaaa.

Clearly, G generates the non-context-free language L(G) = {a2n

: n ≥ 1}.

The generative power of random-context grammars is intensively studied in [43] and [148],
which present the next two theorems.

Theorem 14. CF ⊂ prop-RC ⊆ prop-RC(ac) ⊂ CS.

Proof. CF ⊂ prop-RC follows from Example 1. By the definition of rc-grammars and rc-
grammars with appearance checking, prop-RC ⊆ prop-RC(ac). prop-RC(ac) ⊂ CS
follows from Theorems 1.2.4 and 1.4.5 in [43]. �

Theorem 15. prop-RC ⊆ RC ⊂ RC(ac) = RE.

Proof. prop-RC ⊆ RC follows immediately from the definitions. By Theorem 1.2.5
in [43], RC(ac) = RE. Furthermore, from Theorem 2.7 in Chapter 3 of Volume 2
of [157], it follows that RC ⊂ RC(ac); thus, the theorem holds. �

Lemma 8. ET0L ⊂ prop-F.

Proof (see [148]). Let L ∈ ET0L, L = L(G) for some ET0L grammar,

G = (V, T, P1, . . . , Pt, S).

Without loss of generality we can assume that G is propagating. Now we introduce the
alphabets

V (i) = {a(i) : a ∈ V }, 1 ≤ i ≤ t,
V ′ = {a′ : a ∈ V },
V ′′ = {a′′ : a ∈ V },
V̄ = {ā : a ∈ T}.

For w ∈ V ∗, by w(i), w′, w′′, and w̄ we denote the words obtained from w by replacing
each occurence of a symbol a ∈ V by a(i), a′, a′′, and ā, respectively. Let P ′ be the set of
all random-context productions defined as

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 35

1. for every a ∈ V , add (a′ → a′′, ∅, V̄ ∪ V (1) ∪ V (2) ∪ . . . ∪ V (t)) to P ′;

2. for every a ∈ V for all 1 ≤ i ≤ t, add (a′′ → a(i), ∅, V̄ ∪V ′∪V (1)∪V (2)∪ . . .∪V (i−1)∪
V (i+1) ∪ . . . ∪ V (t)); to P ′;

3. for all i ∈ {1, . . . , t} for every a → u ∈ Pi, add (a(i) → u′, ∅, V ′′ ∪ V̄) to P ′;

4. for all a ∈ T , add (a′ → ā, ∅, V ′′ ∪ V (1) ∪ V (2) ∪ . . . ∪ V (t)) to P ′;

5. for all a ∈ T , add (ā → a, ∅, V ′ ∪ V ′′ ∪ V (1) ∪ V (2) ∪ . . . ∪ V (t)) to P ′;

Then, define the random-context grammar

G′ = (V ′ ∪ V ′′ ∪ V̄ ∪ V (1) ∪ V (2) ∪ . . . ∪ V (t), T, P ′, S′)

which has only forbidding contexts.
Let x′ be a string over V ′. To x′ we can apply only productions whose left-hand side

is in V ′.

(i) We use a′ → a′′ for some a′ ∈ V ′. Now the obtained sentential form contains symbols
of V ′ and V ′′. Hence we can use only productions of type (1). Continuing in this way
we get x′ ⇒∗

G′ x′′. By analogous arguments we now have to rewrite all symbols of

x′′ by productions of (2) with the same index (i). Thus, we obtain x(i). Now to each
symbol a(i) of x(i) we apply a production a(i) → u′ where a → u ∈ Pi. Since again
all symbols of x(i) have to be replaced before starting with productions of another
type we simulate a derivation step in G and get z ′ where x ⇒G z in G. Therefore,
starting with a production of (1) we simulate a derivation step in G, and conversely,
each derivation step in G can be simulated in this way.

(ii) We apply to x′ a production a′ → ā. Then, each a′ of T ′ occuring in x′ has to be
substituted by ā and then by a using the productions of (5). Therefore, we obtain a
terminal word only if x′ ∈ (T ′)∗.

By these considerations the successful derivations in G′ are of the form

S′ ⇒G′ S′′ ⇒G′ S(i0)

⇒G′ z′1 ⇒∗
G′ z′′1 ⇒∗

G′ z
(i1)
1

...

⇒∗
G′ z′n ⇒∗

G′ z′′n ⇒∗
G′ z

(in)
n

⇒∗
G′ zn+1 ⇒∗

G′ z̄n+1 ⇒∗
G′ zn+1

and such a derivation exists if and only if

S ⇒G z1 ⇒G z2 ⇒G . . . ⇒G zn ⇒G zn+1

is a successful derivation in G. As a conclusion, L(G) = L(G′).
In order to finish the proof, it suffices to find a language which is not in ET0L and

which can be generated by a forbidding grammar. A language of this kind is

L = {b(bam)n : m ≥ n ≥ 0}

36 CHAPTER 4.

which can be generated by the grammar

G = ({S,A,A′, B,B′, B′′, C,D,E}, {a, b}, P, s)

with P consisting of the following productions:

(S → SA, ∅, ∅),
(S → C, ∅, ∅),
(C → D, ∅, {S,A′, B′, B′′, D,E}),
(B → B′a, ∅, {S,C,E}),
(A → B′′a, ∅, {S,C,E,B ′′}),
(A → A′a, ∅, {S,C,E}),
(D → C, ∅, {A,B}),
(B′ → B, ∅, {D}),
(B′′ → B, ∅, {D}),
(A′ → A, ∅, {D}),
(D → E, ∅, {S,A,A′, B′, B′′, C,E}),
(B → b, ∅, {S,A,A′, B′, B′′, C,D}),
(E → b, ∅, {S,A,A′, B,B′, B′′, C,D}).

First, we have the derivation

S ⇒∗
G SAn ⇒G CAn ⇒G DAn

and then we have to replace all occurences of A; if we want to replace an A by a terminal
word in some steps it is necessary to use A → B ′′a; however, this can be done at most
once in a phase which replaces all A. Therefore, m ≥ n.

Theorem 16. CF ⊂ ET0L ⊂ prop-F ⊆ F ⊂ CS.

Proof. According to Example 2, we already have CF ⊂ prop-F. By [155] and Lemma 8,
CF ⊂ ET0L ⊂ prop-F. Moreover, in [148], Penttonen proved that prop-F ⊆ F ⊂ CS.
Therefore, the theorem holds. �

The following corollary summarizes the relationships of language families generated by
random-context grammars.

Corollary 7.

CF ⊂ prop-RC ⊆ prop-RC(ac) ⊂ CS,

prop-RC ⊆ RC ⊂ RC(ac) = RE,

CF ⊂ ET0L ⊂ prop-F ⊆ F ⊂ CS,

Open Problems. Consider the inclusions that are not proper in Corollary 7. Which of
them are, in fact, identities?

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 37

4.1.3 Generalized Forbidding Grammars

Generalized forbidding grammars introduced by Meduna in [104] represent a generalized
variant of forbidding grammars (see Section 4.1.2) in which forbidding context conditions
are formed by finite languages.

Definition 13. Let G = (V, T, P, S) be a context-conditional grammar. If every (A →
x, Per, For) satisfies Per = ∅, then G is said to be a generalized forbidding grammar (a
gf-grammar for short).

The following convention simplifies the notation of gf-grammars.

Convention 2. Let G = (V, T, P, S) be a gf-grammar of degree (r, s). Since every (A →
x, Per, For) ∈ P implies Per = ∅, we omit the empty set of permitting conditions. That
is, we write (A → x, For) instead of (A → x, Per, For). For simplicity, we also say that
G’s degree is s instead of (r, s).

The families generated by gf-grammars and propagating gf-grammars of degree s are
denoted by GF(s) and prop-GF(s), respectively. Furthermore,

GF =

∞⋃

s=0

GF(s)

and

prop-GF =
∞⋃

s=0

prop-GF(s).

By analogy with Theorem 11, it is easy to see that gf-grammars of degree 0 are ordinary
context-free grammars:

Theorem 17. prop-GF(0) = GF(0) = CF.

Futhermore, gf-grammars of degree 1 are as powerful as forbidding grammars:

Theorem 18. GF(1) = F.

Proof. This simple proof is left to the reader. �

Theorem 19. GF(2) = RE.

Proof. It is straightforward to prove that GF(2) ⊆ RE, hence it suffices to prove the
converse inclusion.

Let L be a recursively enumerable language. Without loss of generality we can assume
that L is generated by a phrase-structure grammar, G = (V, T, P, S), of the Penttonen
normal form (see Lemma 3) and let N = V − T .

Let @, $, S ′ be new symbols and m be the cardinality of V ∪ {@}. Clearly, m ≥ 1.
Furthermore, let f be an arbitrary fixed bijection from V ∪ {@} onto {1, . . . ,m} and f −1

is the inverse of f .
The gf-grammar, G′ = (V ′ ∪ {@, $, S′}, T, P ′, S′), of degree 2 is defined as follows:

V ′ = W ∪ V, where
W = {[AB → AC, j] : AB → AC ∈ P, A,B,C ∈ N, 1 ≤ j ≤ m + 1},

W , {@, $, S ′}, and V are pairwise disjoint alphabets.
The set of productions P ′ is defined in the following way:

38 CHAPTER 4.

1. add (S′ → @S, ∅) to P ′;

2. if A → x ∈ P , A ∈ N , x ∈ {ε} ∪ T ∪ N 2, then add (A → x, {$}) to P ′;

3. if AB → AC ∈ P , A,B,C ∈ N , then add the following set of productions

{(B → $[AB → AC, 1], {$})} ∪
{([AB → AC, j] → [AB → AC, j + 1], {f−1(j)$}) : 1 ≤ j ≤ m, f(A) 6= j} ∪
{([AB → AC, f(A)] → [AB → AC, f(A) + 1], ∅), ([AB → AC,m + 1] → C, ∅)}

to P ′;

4. add the following two productions (@ → ε,N ∪ W ∪ {$}) and ($ → ε,W) to P ′.

Basic Idea. Basically, the application of AB → AC in G is simulated in G′ as follows:
An occurence of B is rewritten with $[AB → AC, 1]. Then, the left adjoining symbol of $
is checked not to be any symbol from (V ∪ {@}) except A. After this, the right adjoining
symbol of $ is [AB → AC,m+1]. This symbol is rewritten with C. Formal proof is given
below.

Immediately from the definition of P ′ it follows:

S′ ⇒+
G′ x,

where x ∈ (V ′ ∪ {@, S′})∗, implies

(I) S′ 6∈ sub(x);

(II) #(sub({$}W)−{ε})x ≤ 1 such that if #W x = 1 then #{$}W x = 1;

(III) if x 6∈ T ∗, then the leftmost symbol of x is @.

Next, we define a finite letter-to-letters substitution g from V ∗ into (V ′)∗ such that for
all B ∈ V , g(B) = {B} ∪ {[AB → AC, j] ∈ W : AB → AC ∈ P, A,C ∈ N, j ∈
{1, . . . ,m + 1}}. Let g−1 be the inverse of g.

To show that L(G) = L(G′), we first prove that

S ⇒n
G x if and only if S ⇒n′

G′ x′,

where x′ = @v′Xw′, X ∈ {$, ε}, v′w′ ∈ g(x), x ∈ V ∗, for some n ≥ 0, n′ ≥ 1.

Only if : This is established by induction on the length n of derivations; that is, we have
to demonstrate that S ⇒n

G x, x ∈ V ∗, n ≥ 0, implies S ⇒+
G′ x′ for some x′ such that

x′ = @v′Xw′, X ∈ {$, ε}, v′w′ ∈ g(x).

Basis: Let n = 0. The only x is S because S ⇒0
G S. Clearly, S ′ ⇒G′ @S and S ∈ g(S).

Induction Hypothesis: Suppose that our claim holds for all derivations of length at most
n, for some n ≥ 0.

Induction Step: Let us consider a derivation S ⇒n+1
G x, x ∈ V ∗. Since n + 1 ≥ 1, there

is some y ∈ V + and p ∈ P such that S ⇒n
G y ⇒G x [p] and by the induction hypothesis

there is also a derivation S ⇒n′

G′ y′, for some n′ ≥ 1, such that y′ = @r′Y s′, Y ∈ {$, ε},
and r′s′ ∈ g(y).

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 39

(i) Let us assume that p = D → y2 ∈ P , D ∈ N , y2 ∈ {ε} ∪ T ∪ N 2, y = y1Dy3,
y1, y3 ∈ V ∗, x = y1y2y3. From (2) it is clear that (D → y2, {$}) ∈ P ′.

(a) Let $ 6∈ alph(y′). Then, we have y′ = @r′s′ = @y1Dy3, S′ ⇒n′

G′ @y1Dy3 ⇒G′

@y1y2y3 [(D → y2, {$})], and y1y2y3 ∈ g(y1y2y3) = g(x).

(b) Let Y = $ ∈ sub(y′) and W∩sub(y′) = ∅. Then, there is the following derivation
in G′: S′ ⇒n′

G′ @r′$s′ ⇒G′ @r′s′ [($ → ε,W)]. By analogy with (a) above, we

have @r′s′ = @y1Dy2 and so S′ ⇒n′+1
G′ @y1Dy3 ⇒G′ @y1y2y3 [(D → y2, {$})],

where y1y2y3 ∈ g(x).

(c) Let $[AB → AC, i] ∈ sub(y′) for some i ∈ {1, . . . ,m + 1}, AB → AC ∈ P ,
A,B,C ∈ N . Thus, y′ = @r′$[AB → AC, i]t′, where s′ = [AB → AC, i]t′.
By inspection of the productions (see (3)) it can be seen (an the reader should
be able to produce a formal proof) that we can express the derivation S ′ ⇒∗

G′

y′ in the following form:

S′ ⇒∗
G′ @r′Bt′

⇒G′ @r′$[AB → AC, 1]t′ [(B → $[AB → AC, 1], {$})]
⇒i−1

G′ @r′$[AB → AC, i]t′.

Clearly, r′Bt′ ∈ g(y) and $ 6∈ sub(r′Bt′). Thus, r′Bt′ = y1Dy3 and there is a
derivation S ′ ⇒∗

G′ @y1Dy3 ⇒G′ @y1y2y3 [(D → y2, {$})] and y1y2y3 ∈ g(x).

(ii) Let p = AB → AC ∈ P , A,B,C ∈ N , y = y1ABy2, y1, y2 ∈ V ∗, x = y1ACy2.

(a) Let $ 6∈ sub(y′). Thus, r′s′ = y1ABy2. By inspection of the productions
introduced in (3) (technical details are left to the reader), there is the following
derivation in G′:

S′ ⇒n′

G′ y1ABy2

⇒G′ @y1A$[AB → AC, 1]y2

[(B → $[AB → AC, 1], {$})]
⇒G′ @y1A$[AB → AC, 2]y2

[([AB → AC, 1] → [AB → AC, 2], {f−1(1)$})]
...

⇒G′ @y1A$[AB → AC, f(A)]y2

[([AB → AC, f(A) − 1] → [AB → AC, f(A)], {f−1(f(A) − 1)$})]
⇒G′ @y1A$[AB → AC, f(A) + 1]y2

[([AB → AC, f(A)] → [AB → AC, f(A) + 1], ∅)]
...

⇒G′ @y1A$[AB → AC,m + 1]y2

[([AB → AC,m] → [AB → AC,m + 1], {f−1(m)$})]
⇒G′ @y1A$Cy2

[([AB → AC,m + 1] → C, ∅)]

such that y1ACy2 ∈ g(y1ACy2) = g(x).

(b) Let $ ∈ sub(y′), sub(y′) ∩ W = ∅. Using an analogue from (i.b), the derivation
S′ ⇒∗

G′ @r′s′, where @r′s′ = @y1ABy2, can be constructed in G′. Then, by

40 CHAPTER 4.

analogy with (ii.a), one can construct the derivation S ′ ⇒∗
G′ @y1ABy2 ⇒∗

G′

@y1A$Cy2 such that y1ACy2 ∈ g(x).

(c) Let #({$}W−{ε})y
′ = 1. By analogy with (i.c), one can construct the derivation

S′ ⇒∗
G′ @y1ABy2. Then, using an analogue from (ii.a), the derivation S ′ ⇒∗

G′

@y1ABy2 ⇒∗
G′ @y1A$Cy2 can be constructed in G′ such that y1ACy2 ∈ g(x).

In (i) and (ii) above we have considered all possible forms of p. In cases (a), (b), (c)
of (i) and (ii), we have considered all possible forms of y ′. In any of these cases we
have constructed the desired derivation of the form S ′ ⇒+

G′ x′ such that x′ = @r′Xs′,
X ∈ {$, ε}, r′s′ ∈ g(x). So, we have established the only-if part of our claim by the
principle of induction.

If : This is also demonstrated by induction but in this case on n′. We have to demonstrate
that if S′ ⇒n′

G′ x′, x′ = @r′Xs′, X ∈ {$, ε}, r′s′ ∈ g(x), x ∈ V ∗, for some n′ ≥ 1, then
S ⇒∗

G x.

Basis: For n′ = 1 the only x′ is @S since S ′ ⇒G′ @S. Because S ∈ g(S) we have x = S.
Clearly S ⇒0

G S.

Induction Hypothesis: Assume that the claim holds for all derivations of length at most
n′ for some n′ ≥ 1. Let us show that it is also true for n′ + 1.

Induction Step: Consider a derivation S ′ ⇒n′+1
G′ x′, x′ = @r′Xs′, X ∈ {$, ε}, r′s′ ∈ g(x),

x ∈ V ∗. Since n′+1 ≥ 2, we have S ′ ⇒n′

G′ y′ ⇒G′ x′ [p′] for some p′ = (Z ′ → w′, F or) ∈ P ′,
y′ = @q′Y t′, Y ∈ {$, ε}, q′t′ ∈ g(y), y ∈ V ∗, and by the induction hypothesis, S ⇒∗

G y.
Suppose:

(i) Z ′ ∈ N , w′ ∈ {ε} ∪ T ∪ N 2. Inspecting P ′ (see (2)) we have For = {$} and
Z ′ → w′ ∈ P . Thus, $ 6∈ sub(y′) and so q′t′ = y. Hence, there is the following
derivation S ⇒∗

G y ⇒G x [Z ′ → w′].

(ii) g−1(Z ′) = g−1(w′). But then y = x and, by the induction hypothesis, we have the
derivation S ⇒∗

G y.

(iii) p′ = (B → $[AB → AC, 1], {$}); that is, Z ′ = B, w′ = $[AB → AC, 1], For = {$}
and so w′ ∈ {$}g(Z ′), Y = ε, X = $. By analogy with (ii) we get S ⇒∗

G y and
y = x.

(iv) Z ′ = Y = $; that is, p′ = ($ → ε,W). Then, X = ε, r′s′ = q′t′ ∈ g(y) and S ⇒∗
G

y.

(v) p′ = ([AB → AC,m+1] → C, ∅); that is, Z ′ = [AB → AC,m+1], w′ = C, For = ∅.
From (3) it follows that there is a production of the form AB → AC ∈ P . Moreover,
inspecting (3), it is not too difficult to see (technical details are left to the reader)
that Y = $, r′ = q′, t′ = [AB → AC,m + 1]o′, s′ = Co′, and the derivation S ′ ⇒n′

G′

y′ ⇒G′ x′ [p′] can be expressed in the form

S′ ⇒∗
G′ @q′Bo′

⇒G′ @q′$[AB → AC, 1]o′ [(B → $[AB → AC, 1], {$})]
⇒m+1

G′ @q′$[AB → AC,m + 1]o′ [h]
⇒G′ @q′$Co′ [([AB → AC,m + 1] → C, ∅)],

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 41

where

h = h1([AB → AC, f(A)] → [AB → AC, f(A) + 1], ∅)h2,
h1 = ([AB → AC, 1] → [AB → AC, 2], {f−1(1)$})

([AB → AC, 2] → [AB → AC, 3], {f−1(2)$})
...

([AB → AC, f(A) − 1] → [AB → AC, f(A)], {f−1(f(A) − 1)$}),

where f(A) = 1 implies h1 = ε,

h2 = ([AB → AC, f(A) + 1] → [AB → AC, f(A) + 2], {f−1(f(A) + 1)$})
...

([AB → AC,m] → [AB → AC,m + 1], {f−1(m)$}),

where f(A) = m implies h2 = ε; that is, the rightmost symbol of q ′ = r′ must be A.

Since q′t′ ∈ g(y), we have y = q′Bo′. Because the rightmost symbol of q′ is A and
AB → AC ∈ P , we get S ⇒∗

G q′Bo′ ⇒G q′Co′ [AB → AC], where q′Co′ = x.

Now, regarding (i) through (v) and inspecting P ′, we have considered all possible
derivations of the form S ′ ⇒n′

G′ y′ ⇒G′ x′ and, thus, we have established that

S ⇒∗
G x if and only if S ′ ⇒+

G′ x′

where x′ = @r′Xs′, r′s′ ∈ g(x), X ∈ {$, ε}, x ∈ V ∗, by the principle of induction.

The proof of the equivalence of G and G′ can easily be derived from above: By the
definition of g we have g(a) = {a} for all a ∈ T . Thus, we have for any x ∈ T ∗: S ⇒∗

G x
if and only if S ′ ⇒∗

G′ @rXs, where X ∈ {$, ε}, rs = x. If X = ε, then @x ⇒G′ x [(@ →
ε,N ∪W ∪{$})]. If X = $, then @r$s ⇒G′ @x [($ → ε,W)] ⇒G′ x [(@ → ε,N ∪W ∪{$})].
Hence,

S ⇒+
G x if and only if S ′ ⇒+

G′ x

for all x ∈ T ∗, and so L(G) = L(G′). Thus, RE = GF(2). �

Theorem 20. GF(2) = GF = RE.

Proof. It follows immediately from the definitions and Theorem 19. �

Note that in G′ in the proof of Theorem 19 only certain types of productions are used,
establishing the following normal form.

Corollary 8. Every recursively enumerable language L over some alphabet T can be gen-
erated by a gf-grammar G = (V, T, P ∪ {p1, p2}, S) of degree 2 such that

(i) (A → x, For) ∈ P implies |x| = 2 and the cardinality of For is at most 1;

(ii) pi = (Ai → ε, Fori), i = 1, 2, where Fori ⊆ V ; that is, max(Fori) ≤ 1.

42 CHAPTER 4.

In fact, the above corollary represents one of the reduced forms of gf-grammars of
degree 2. Perhaps most importantly, it reduces the cardinality of the sets of forbidding
conditions so that if a production contains a condition of length two, this condition is
the only context condition attached to the production. Next, we study another reduced
form of gf-grammars of degree 2. We show that we can simultaneously reduce the number
of conditional productions and the number of nonterminals in gf-grammars of degree 2
without any decrease of their generative power (see [136]).

Theorem 21. Every recursively enumerable language can be defined by a generalized for-
bidding grammar of degree 2 with no more than 13 forbidding productions and 15 nonter-
minals.

Proof. Let L be a recursively enumerable language. By Geffert [69], without loss of gen-
erality we can assume that L is generated by a grammar G of the form

G = (V, T, P ∪ {AB → ε, CD → ε}, S)

such that P contains only context-free productions and

V − T = {S,A,B,C,D}.

We construct a gf -grammar G′ of degree 2 as follows:

G′ = (V ′, T, P ′, S′), where
V ′ = V ∪ W,

W = {S′,@, Ã, B̃, 〈εA〉, $, C̃, D̃, 〈εC 〉,#}, V ∩ W = ∅.

Let
N ′ = (V ′ − T) − {S′,@}.

Informally, N ′ denotes the set of all nonterminals in G′ except S′ and @. Then, the set of
productions P ′ is defined in the following way:

1. if H → y ∈ P , H ∈ V − T , y ∈ V ∗, then add (H → y, ∅) to P ′;

2. add (S′ → @S@, ∅) and (@ → ε,N ′) to P ′;

3. add
(A → Ã, {Ã}),

(B → B̃, {B̃}),

(Ã → 〈εA〉, {Ãa : a ∈ V ′ − {B̃}}),

(B̃ → $, {aB̃ : a ∈ V ′ − {〈εA〉}}),

(〈εA〉 → ε, {B̃}),
($ → ε, {〈εA〉})

to P ′;

4. add
(C → C̃, {C̃}),

(D → D̃, {D̃}),

(C̃ → 〈εC〉, {C̃a : a ∈ V ′ − {D̃}}),

(D̃ → #, {aD̃ : a ∈ V ′ − {〈εC〉}}),

(〈εC〉 → ε, {D̃}),
(# → ε, {〈εC 〉})

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 43

to P ′.

Next, we prove that L(G′) = L(G).

Basic Idea. Notice that G′ has degree 2 and contains only 13 forbidding productions
and 15 nonterminals. The productions of (3) simulate the application of AB → ε in G ′

and the productions of (4) simulate the application of CD → ε in G′.

Let us describe the simulation of AB → ε. First, one occurence of A and one occurence
of B are rewritten with Ã and B̃, respectively (no sentential form contains more than one
occurence of Ã or B̃). The right neighbor of Ã is checked to be B̃ and Ã is rewritten with
〈εA〉. Then, analogously, the left neighbor of B̃ is checked to be 〈εA〉 and B̃ is rewritten
with $. Finally, 〈εA〉 and $ are erased. The simulation of CD → ε is analogical.

To establish L(G) = L(G′), we first prove the following claims.

Claim 9. S ′ ⇒+
G′ w′ implies that w′ has one of the following two forms:

(I) w′ = @x′@, x′ ∈ (N ′ ∪ T)∗, alph(x′) ∩ N ′ 6= ∅;

(II) w′ = Xx′Y , x′ ∈ T ∗, X,Y ∈ {@, ε}.

Proof. Axiom S ′ is always rewritten with @S@. After this initial step, @ can be erased in
a sentential form provided that any nonterminal occuring in the sentential form belongs to
{@, S′} (see N ′ and (2) in the definition of P ′). In addition, notice that only productions
of (2) contain @ and S ′. Thus, any sentential form containing some nonterminals from N ′

is of the form (I).

Case (II) covers sentential forms containing no nonterminal from N ′. At this point, @
can be erased, and we obtain a word from L(G′).

Claim 10. S ′ ⇒∗
G′ w′ implies # eX

w′ ≤ 1 for all X̃ ∈ {Ã, B̃, C̃, D̃} and some w′ ∈ (V ′)∗.

Proof. By inspection of productions in P ′, the only production that can generate X̃ is
of the form (X → X̃, {X̃}). This production can be applied only when no X̃ occurs
in the rewritten sentential form. Thus, it is impossible to derive w ′ from S′ such that
eX

w′ ≥ 2.

Informally, next claim says that every occurence of 〈εA〉 in derivations from S ′ is always
followed either by B̃ or $, and every occurence of 〈εC〉 is always followed either by D̃ or #.

Claim 11. It holds that

(I) S′ ⇒∗
G′ y′1〈εA〉y

′
2 implies y′2 ∈ (V ′)+ and first(y′2) ∈ {B̃, $} for any y′1 ∈ (V ′)∗;

(II) S′ ⇒∗
G′ y′1〈εC〉y

′
2 implies y′2 ∈ (V ′)+ and first(y′2) ∈ {D̃,#} for any y′1 ∈ (V ′)∗.

Proof. We establish the proof by examination of all possible forms of derivations that may
occur when deriving a sentential form containing 〈εA〉 or 〈εC〉.

44 CHAPTER 4.

(I) By the definition of P ′, the only production that can generate 〈εA〉 is p = (Ã →
〈εA〉, {Ãa : a ∈ V ′ − {B̃}}). The production can be used provided that Ã occurs in
a sentential form. It also holds that Ã has always a right neighbor (as follows from
Claim 9) and, according to the set of forbidding conditions in p, the only allowed
right neighbor of Ã is B̃. Furthermore, by Claim 10, no other occurence of Ã or B̃
can appear in the given sentential form. Consequently, we obtain a derivation

S′ ⇒∗
G′ u′

1ÃB̃u′
2 ⇒G′ u′

1〈εA〉B̃u′
2 [p]

for some u′
1, u

′
2 ∈ (V ′)∗, Ã, B̃ 6∈ sub(u′

1u
′
2). Obviously, 〈εA〉 is always followed by B̃

in u′
1〈εA〉B̃u′

2.

Next, we discuss how G′ can rewrite the subword 〈εA〉B̃ in u′
1〈εA〉B̃u′

2. There are

only two productions having the nonterminals 〈εA〉 or B̃ on their left-hand side,
p1 = (B̃ → $, {aB̃ : a ∈ V ′ − {〈εA〉}}) and p2 = (〈εA〉 → ε, {B̃}). G′ cannot use
p2 to erase 〈εA〉 in u′

1〈εA〉B̃u′
2 because p2 forbids an occurence of B̃ in the rewritten

string. But we can use p1 to rewrite B̃ with $ because its set of forbidding conditions
defines that the left neighbor of B̃ must be just 〈εA〉. Hence, we obtain a derivation
of the form

S′ ⇒∗
G′ u′

1ÃB̃u′
2 ⇒G′ u′

1〈εA〉B̃u′
2 [p]

⇒∗
G′ v′1〈εA〉B̃v′2 ⇒G′ v′1〈εA〉$v

′
2 [p1].

Notice that during this derivation, G′ may rewrite u′
1 and u′

2 with some v′1 and v′2,

respectively (v′1, v
′
2 ∈ (V ′)∗); however, 〈εA〉B̃ remains unchanged after this rewriting.

In this derivation we obtained the second symbol, $, that can appear as the right
neighbor of 〈εA〉. It suffices to show that there is no other symbol that could appear
immediately after 〈εA〉. By inspection of P ′, only ($ → ε, {〈εA〉}) can rewrite $.
However, this production cannot be applied when 〈εA〉 occurs in the given sentential
form. In other words, the occurence of $ in the subword 〈εA〉$ cannot be rewritten
before 〈εA〉 is erased by p2. Hence, 〈εA〉 is always followed either by B̃ or $ and,
thus, the first part of Claim 11 holds.

(II) By inspection of productions simulating AB → ε and CD → ε in G′ (see (3) and (4)
in the definition of P ′), these two sets of productions work analogously. Thus,
part (II) of Claim 11 can be proven by analogy with part (I).

Let us return to the main part of the proof. Let g be a finite substitution from (N ′∪T)∗

to V ∗ defined as follows:

1. for all X ∈ V : g(X) = {X};

2. g(Ã) = {A}, g(B̃) = {B}, g(〈εA〉) = {A}, g($) = {B,AB};

3. g(C̃) = {C}, g(D̃) = {D}, g(〈εC 〉) = {C}, g(#) = {C,CD}.

Having this substitution, we can now prove the following claim:

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 45

Claim 12. S ⇒∗
G x if and only if S ′ ⇒+

G′ @x′@ for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (N ′∪T)∗.

Proof. The claim is proven by induction on the length of derivations.

Only if : We show that
S ⇒m

G x implies S ′ ⇒+
G′ @x@,

where m ≥ 0, x ∈ V ∗; clearly x ∈ g(x). This is established by induction on m.

Basis: Let m = 0. That is, S ⇒0
G S. Clearly, S ′ ⇒G′ @S@.

Induction Hypothesis: Suppose that the claim holds for all derivations of length m or less,
for some m ≥ 0.

Induction Step: Let us consider a derivation S ⇒m+1
G x, x ∈ V ∗. Since m + 1 ≥ 1, there

is some y ∈ V + and p ∈ P ∪ {AB → ε, CD → ε} such that S ⇒m
G y ⇒G x [p]. By the

induction hypothesis, there is a derivation S ′ ⇒+
G′ @y@.

There are three cases that cover all possible forms of p:

(i) p = H → y2 ∈ P, H ∈ V − T, y2 ∈ V ∗. Then, y = y1Hy3 and x = y1y2y3, y1, y3 ∈
V ∗. Because we have (H → y2, ∅) ∈ P ′, S′ ⇒+

G′ @y1Hy3@ ⇒G′ @y1y2y3@ [(H →
y2, ∅)] and y1y2y3 = x.

(ii) p = AB → ε. Then, y = y1ABy3 and x = y1y3, y1, y3 ∈ V ∗. In this case, there is
the following derivation:

S′ ⇒+
G′ @y1ABy3@

⇒G′ @y1ÃBy3@ [(A → Ã, {Ã})]

⇒G′ @y1ÃB̃y3@ [(B → B̃, {B̃})]

⇒G′ @y1〈εA〉B̃y3@ [(Ã → 〈εA〉, {Ãa : a ∈ V ′ − {B̃}})]

⇒G′ @y1〈εA〉$y3@ [(B̃ → $, {aB̃ : a ∈ V ′ − {〈εA〉}})]

⇒G′ @y1$y3@ [(〈εA〉 → ε, {B̃})]
⇒G′ @y1y3@ [($ → ε, {〈εA〉})].

(iii) p = CD → ε. Then, y = y1CDy3 and x = y1y3, y1, y3 ∈ V ∗. In this case, there
exists the following derivation:

S′ ⇒+
G′ @y1CDy3@

⇒G′ @y1C̃Dy3@ [(C → C̃, {C̃})]

⇒G′ @y1C̃D̃y3@ [(D → D̃, {D̃})]

⇒G′ @y1〈εC〉D̃y3@ [(C̃ → 〈εC〉, {C̃a : a ∈ V ′ − {D̃}})]

⇒G′ @y1〈εC〉#y3@ [(D̃ → #, {aD̃ : a ∈ V ′ − {〈εC 〉}})]

⇒G′ @y1#y3@ [(〈εC 〉 → ε, {D̃})]
⇒G′ @y1y3@ [(# → ε, {〈εC 〉})].

If : By induction on the length n of derivations in G′, we prove that

S′ ⇒n
G′ @x′@ implies S ⇒∗

G x

for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (N ′ ∪ T)∗, n ≥ 1.

46 CHAPTER 4.

Basis: Let n = 1. According to the definition of P ′, the only production rewriting S ′ is
(S′ → @S@, ∅) and, thus, S ′ ⇒G′ @S@. It is obvious that S ⇒0

G S and S ∈ g(S).

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 1.

Induction Step: Consider a derivation S ′ ⇒n+1
G′ @x′@, x′ ∈ (N ′ ∪ T)∗. Since n + 1 ≥ 2,

there is some y′ ∈ (N ′ ∪ T)+ and p′ ∈ P ′ such that S ′ ⇒n
G′ @y′@ ⇒G′ @x′@ [p′] and, by

the induction hypothesis, there is also a derivation S ⇒∗
G y such that y ∈ g(y′).

By inspection of P ′, the following cases (i) through (xiii) cover all possible forms of p′:

(i) p′ = (H → y2, ∅) ∈ P ′, H ∈ V − T , y2 ∈ V ∗. Then, y′ = y′1Hy′3, x′ = y′1y2y
′
3,

y′1, y
′
3 ∈ (N ′ ∪ T)∗, and y has the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3),

and Z ∈ g(H). Because for all X ∈ V − T : g(X) = {X}, the only Z is H; thus,
y = y1Hy3. By the definition of P ′ (see (1)), there exists a production p = H → y2

in P and we can construct the derivation S ⇒∗
G y1Hy3 ⇒G y1y2y3 [p] such that

y1y2y3 = x, x ∈ g(x′).

(ii) p′ = (A → Ã, {Ã}). Then, y′ = y′1Ay′3, x′ = y′1Ãy′3, y′1, y
′
3 ∈ (N ′∪T)∗ and y = y1Zy3,

where y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(A). Because g(A) = {A}, the only Z is A,
so we can express y = y1Ay3. Having the derivation S ⇒∗

G y such that y ∈ g(y′), it

is easy to see that also y ∈ g(x′) because A ∈ g(Ã).

(iii) p′ = (B → B̃, {B̃}). By analogy with (ii), y′ = y′1By′3, x′ = y′1B̃y′3, y = y1By3,

where y′1, y
′
3 ∈ (N ′ ∪ T)∗, y1 ∈ g(y′1), y3 ∈ g(y′3); thus, y ∈ g(x′) because B ∈ g(B̃).

(iv) p′ = (Ã → 〈εA〉, {Ãa : a ∈ V ′ − {B̃}}). In this case, it holds that:

(a) application of p′ implies Ã ∈ y′; moreover, by Claim 10, # eA
y′ ≤ 1;

(b) clearly, Ã has always a right neighbor in @y′@;

(c) according to the set of forbidding conditions in p′, it is easy to see that the only
allowed right neighbor of Ã is B̃.

Hence, y′ must be of the form y′ = y′1ÃB̃y′3, where y′1, y
′
3 ∈ (N ′ ∪ T)∗ and Ã 6∈

sub(y′1y
′
3). Then, x′ = y′1〈εA〉B̃y′3 and y is of the form y = y1Zy3, where y1 ∈

g(y′1), y3 ∈ g(y′3) and Z ∈ g(ÃB̃). Because g(ÃB̃) = {AB}, the only Z is AB; thus,
we obtain y = y1ABy3. By the induction hypothesis, we have a derivation S ⇒∗

G

y such that y ∈ g(y′). According to the definition of g, y ∈ g(x′) as well because
A ∈ g(〈εA〉) and B ∈ g(B̃).

(v) p′ = (B̃ → $, {aB̃ : a ∈ V ′ − {〈εA〉}}). Then, it holds that:

(a) B̃ ∈ y′ and, by Claim 10, # eB
y′ ≤ 1;

(b) B̃ has always a left neighbor in @y′@;

(c) by the set of forbidding conditions in p′, the only allowed left neighbor of B̃ is
〈εA〉.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 47

Therefore, we can express y′ = y′1〈εA〉B̃y′3, where y′1, y
′
3 ∈ (N ′ ∪ T)∗ and B̃ 6∈

sub(y′1y
′
3). Then, x′ = y′1〈εA〉$y

′
3 and y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3),

and Z ∈ g(〈εA〉B̃). By the definition of g, g(〈εA〉B̃) = {AB}, so Z = AB and
y = y1ABy3. By the induction hypothesis, we have a derivation S ⇒∗

G y such that
y ∈ g(y′). Because A ∈ g(〈εA〉) and B ∈ g($), y ∈ g(x′) as well.

(vi) p′ = (〈εA〉 → ε, {B̃}). An application of (〈εA〉 → ε, {B̃}) implies that 〈εA〉 occurs
in y′. Claim 11 says that 〈εA〉 has either B̃ or $ as its right neighbor. Since the
forbidding condition of p′ forbids an occurence of B̃ in y′, the right neighbor of
〈εA〉 must be $. As a result, we obtain y′ = y′1〈εA〉$y

′
3 where y′1, y

′
3 ∈ (N ′ ∪ T)∗.

Then, x′ = y′1$y
′
3 and y is of the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3),

and Z ∈ g(〈εA〉$). By the definition of g, g(〈εA〉$) = {AB,AAB}. If Z = AB,
y = y1ABy3. Having the derivation S ⇒∗

G y, it holds that y ∈ g(x′) because
AB ∈ g($).

(vii) p′ = ($ → ε, {〈εA〉}). Then, y′ = y′1$y
′
3 and x′ = y′1y

′
3, where y′1, y

′
3 ∈ (N ′ ∪ T)∗.

Express y = y1Zy3 so that y1 ∈ g(y′1), y3 ∈ g(y′3), and Z ∈ g($), where g($) =
{B,AB}. Let Z = AB. Then, y = y1ABy3 and there exists the derivation S ⇒∗

G

y1ABy3 ⇒G y1y3 [AB → ε], where y1y3 = x, x ∈ g(x′).

In cases (ii) through (vii) we discussed all six productions simulating the application
of AB → ε in G′ (see (3) in the definition of P ′). Cases (viii) – (xiii) should cover the
productions simulating the application of CD → ε in G′ (see (4)). However, by inspection
of these two sets of productions, it is easy to see that they work analogously. Therefore,
we leave this part of the proof to the reader.

We have completed the proof and established Claim 12 by the principle of induction.

Observe that L(G) = L(G′) can be easily derived from the above claim. According to
the definition of g, we have g(a) = {a} for all a ∈ T . Thus, from Claim 12, we have for
any x ∈ T ∗:

S ⇒∗
G x if and only if S ′ ⇒+

G′ @x@.

Since @x@ ⇒2
G′ x [(@ → ε,N ′)(@ → ε,N ′)], we obtain for any x ∈ T ∗:

S ⇒∗
G x if and only if S ′ ⇒+

G′ x.

Consequently, L(G) = L(G′), so the theorem holds. �

4.1.4 Semi-Conditional Grammars

A semi-conditional grammar is a context-conditional grammar in which the cardinality of
any context-conditional set is no more than one. These grammars were introduced and
studied by Paun in [146].

Definition 14. Let G = (V, T, P, S) be a context-conditional grammar. G is called a semi-
conditional grammar (an sc-grammar for short) provided that every (A → x, Per, For) ∈
P satisfies |Per| ≤ 1 and |For| ≤ 1.

48 CHAPTER 4.

Convention 3. Let G = (V, T, P, S) be a semi-conditional grammar and let (A →
x, Per, For) ∈ P . In each (A → x, Per, For) ∈ P , we omit braces and instead of ∅,
we write 0. For instance, we write (A → x,BC, 0) instead of (A → x, {BC}, ∅).

The families of languages generated by sc-grammars and propagating sc-grammars
of degree (r, s) are denoted by SC(r, s) and prop-SC(r, s), respectively. The families
of languages generated by sc-grammars and propagating sc-grammars of any degree are
defined as

SC =
∞⋃

r=0

∞⋃

s=0

SC(r, s)

and

prop-SC =

∞⋃

r=0

∞⋃

s=0

prop-SC(r, s).

First, we give examples of sc-grammars with degrees (1,0), (0,1) and (1,1).

Example 3 ([146]). Let us consider an sc-grammar

G = ({S,A,B,A′, B′, a, b}, {a, b}, P, S),

where
P = {(S → AB, 0, 0), (A → A′A′, B, 0),

(B → bB′, 0, 0), (A′ → A,B′, 0),
(B′ → B, 0, 0), (B → b, 0, 0),
(A′ → a, 0, 0), (A → a, 0, 0)}.

Observe that A can be replaced by A′A′ only if B occurs in the rewritten string, and A′

can be replaced by A only if B ′ occurs in the rewritten string. If there is an occurence
of B, the number of occurences of A and A′ can be doubled. However, the application of
(B → bB′, 0, 0) implies an introduction of one occurence of b. As a result,

L(G) = {anbm : m ≥ 1, 1 ≤ n ≤ 2m}

which is not a context-free language.

Example 4 ([146]). Let

G = ({S,A,B,A′, A′′, B′, a, b, c}, {a, b, c}, P, S)

where
P = {(S → AB, 0, 0), (A → A′, 0, B′),

(A′ → A′′A′′, 0, c), (A′′ → A, 0, B),
(B → bB′, 0, 0), (B ′ → B, 0, 0),
(B → c, 0, 0), (A → a, 0, 0),
(A′′ → a, 0, 0)}.

In this case, we get a non-context-free language

L(G) = {anbmc : m ≥ 0, 1 ≤ n ≤ 2m+1}.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 49

Example 5. Let

G = ({S, P,Q,R,X, Y, Z, a, b, c, d, e, f}, {a, b, c, d, e, f}, P, S)

be an sc-grammar, where the set of productions is defined as follows:

P = {(S → PQR, 0, 0),
(P → aXb,Q,Z),
(Q → cY d,X,Z),
(R → eZf,X,Q),
(X → P,Z,Q),
(Y → Q,P,R),
(Z → R,P, Y),
(P → ε,Q,Z),
(Q → ε,R, P),
(R → ε, 0, Y)}.

Note that this grammar is an sc-grammar of degree (1, 1). Consider aabbccddeeff . For
this word, G makes the following derivation:

S ⇒ PQR ⇒ aXbQR ⇒ aXbcY dR ⇒ aXbcY deZf ⇒
aPbcY deZf ⇒ aPbcQdeZf ⇒ aPbcQdeRf ⇒
aaXbbcQdeRf ⇒ aaXbbccY ddeRf ⇒ aaXbbccY ddeeZff ⇒
aaPbbccY ddeeZff ⇒ aaPbbccQddeeZff ⇒ aaPbbccQddeeRff ⇒
aabbccQddeeRff ⇒ aabbccddeeRff ⇒ aabbccddeeff .

Clearly, G generates the following language:

L(G) = {anbncndnenfn : n ≥ 0}.

As obvious, this language is non-context-free.

The following theorems deal with the generative power of semi-conditional grammars.

Theorem 22. prop-SC(0, 0) = SC(0, 0) = CF.

Proof. Follows trivially from the definitions. �

Theorem 23. CF ⊂ prop-SC(1, 0), CF ⊂ prop-SC(0, 1).

Proof. In Examples 3 and 4, we show propagating sc-grammars of degrees (1,0) and (0,1)
which generate non-context-free languages. Therefore, the theorem holds. �

Theorem 24. prop-SC(1, 1) ⊂ CS.

Proof. Consider a propagating sc-grammar of degree (1,1), G = (V, T, P, S). If (A →
x,A, β) ∈ P , then the permitting condition A does not impose any restriction. Hence, we
can replace this production by (A → x, 0, β). If (A → x, α,A) ∈ P , then this production
cannot ever by applied; thus, we can remove it from P . Let T ′ = {a′ : a ∈ T} and
V ′ = V ∪ T ′ ∪ {S′, X, Y }. Define a homomorphism, τ , from V ∗ to ((V − T) ∪ (T ′))∗ as
τ(a) = a′ for all a ∈ T and τ(A) = A for every A ∈ V − T . Furthermore, introduce

50 CHAPTER 4.

a mapping, ω, from V ∪ {0} to 2((V −T)∪T ′) as g(0) = ∅, g(a) = {a′} for all a ∈ T , and
g(A) = {A} for all A ∈ V − T . Next, construct a propagating random context grammar
with appearance checking

G′ = (V ′, T ∪ {c}, P ′, S′),

where
P ′ = {(S′ → SX, ∅, ∅), (X → Y, 0, 0), (Y → c, 0, 0)} ∪

{(A → τ(x), ω(α) ∪ {X}, ω(β)) : (A → x, α, β) ∈ P} ∪
{(a′ → a, {Y }, ∅) : a ∈ T}.

It is obvious that L(G′) = L(G){c}. Therefore, L(G){c} ∈ prop-RC(ac). Because
prop-RC(ac) is closed under restricted homomorphisms (see [43], page 48) and by The-
orem 14 it holds that prop-RC(ac) ⊂ CS, we obtain prop-SC(1, 1) ⊂ CS. �

The following corollary summarizes the generative power of propagating sc-grammars
of degrees (1,0), (0,1), and (1,1); that is, propagating sc-grammars containing only symbols
as their context conditions.

Corollary 9.

CF ⊂ prop-SC(0, 1) ⊆ prop-SC(1, 1).
CF ⊂ prop-SC(1, 0) ⊆ prop-SC(1, 1).
prop-SC(1, 1) ⊆ prop-RC(ac) ⊂ CS.

Next theorem says that propagating sc-grammars of degrees (1,2), (2,1), and propagat-
ing sc-grammars of any degree generate exactly the family of context-sensitive languages.
Furthermore, if we allow erasing productions, these grammars generate even the family
of recursively enumerable languages. Note that in the next section, we prove a stronger
result in terms of a special variant of sc-grammars—simple semi-conditional grammars.
Therefore, we omit the proof here; for a rigorous proof, see Theorems 28 and 29 in Sec-
tion 4.1.5.

Theorem 25.

CF
⊂

prop-SC(2, 1) = prop-SC(1, 2) = prop-SC = CS
⊂

SC(2, 1) = SC(1, 2) = SC = RE.

4.1.5 Simple Semi-Conditional Grammars

Simple semi-conditional grammars, a special case of semi-conditional grammars, have been
introduced by Meduna and Gopalaratnam in 1994 (see [129]). Informally, a simple semi-
conditional grammar is defined as an sc-grammar in which every production has no more
than one condition.

Definition 15. Let G = (V, T, P, S) be a semi-conditional grammar. G is a simple semi-
conditional grammar (an ssc-grammar for short) if (A → x, α, β) ∈ P implies 0 ∈ {α, β}.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 51

The families of languages generated by ssc-grammars and propagating ssc-grammars
of degree (r, s) are denoted by SSC(r, s) and prop-SSC(r, s), respectively. Furthermore,

SSC =

∞⋃

r=0

∞⋃

s=0

SSC(r, s)

and

prop-SSC =
∞⋃

r=0

∞⋃

s=0

prop-SSC(r, s).

The following proposition provides an alternative definition based on context-conditional
grammars.

Proposition 1. Let G = (V, T, P, S) be a context-conditional grammar. G is a simple
semi-conditional grammar if and only if every (A → x, Per, For) ∈ P satisfies |Per| +
|For| ≤ 1.

Example 6. Let

G = ({S,A,X,C, Y, a, b}, {a, b}, P, S)

be an ssc-grammar, where
P = {(S → AC, 0, 0),

(A → aXb, Y, 0),
(C → Y,A, 0),
(Y → Cc, 0, A),
(A → ab, Y, 0),
(Y → c, 0, A),
(X → A,C, 0)}.

Notice that G is propagating, and it has degree (1, 1). Consider aabbcc. G derives this
word as follows:

S ⇒ AC ⇒ AY ⇒ aXbY ⇒ aXbCc ⇒
aAbCc ⇒ aAbY c ⇒ aabbY c ⇒ aabbcc

Obviously, L(G) = {anbncn : n ≥ 1}.

Example 7. Let

G = ({S,A,B,X, Y, a}, {a}, P, S)

be an ssc-grammar, where P is defined as follows:

P = {(S → a, 0, 0),
(S → X, 0, 0),
(X → Y B, 0, A),
(X → aB, 0, A),
(Y → XA, 0, B),
(Y → aA, 0, B),
(A → BB,XA, 0),
(B → AA, Y B, 0),
(B → a, a, 0)}.

52 CHAPTER 4.

G is a propagating ssc-grammar of degree (2, 1). Consider the word aaaaaaaa. G derives
this word as follows:

S ⇒ X ⇒ Y B ⇒ Y AA ⇒ XAAA ⇒ XBBAA ⇒ XBBABB ⇒ XBBBBBB ⇒
aBBBBBBB ⇒ aBBaBBBB ⇒6 aaaaaaaa.

It is obvious that G generates the following language L(G) = {a2n

: n ≥ 0}. Recall that
{a2n

: n ≥ 0} is not a context-free language.

Theorem 26. prop-SSC(2, 1) = CS.

Proof. Because prop-SSC(2, 1) ⊆ prop-CG and by Lemma 6 prop-CG ⊆ CS, it suffices
to prove the converse inclusion.

Let G = (V, T, P, S) be a context-sensitive grammar in Penttonen normal form (see
Lemma 2). We construct an ssc-grammar, G′ = (V ∪ W,T, P ′, S), that generates L(G).
Let

W = {B̃ : AB → AC ∈ P, A,B,C ∈ V − T}.

Define P ′ in the following way:

1. if A → x ∈ P , A ∈ V − T , x ∈ T ∪ (V − T)2, then add (A → x, 0, 0) to P ′;

2. if AB → AC ∈ P , A,B,C ∈ V − T , then add (B → B̃, 0, B̃), (B̃ → C,AB̃, 0),
(B̃ → B, 0, 0) to P ′.

Notice that G′ is a propagating ssc-grammar of degree (2, 1). Moreover, from (2), we have
for any B̃ ∈ W ,

S ⇒∗
G′ w implies # eB

w ≤ 1

for all w ∈ (V ′)∗, because the only production that can generate B̃ is of the form (B →
B̃, 0, B̃).

Let g be a finite substitution from V ∗ into (V ∪W)∗ defined as follows: for all D ∈ V ,

1. if D̃ ∈ W , then g(D) = {D, D̃};

2. if D̃ 6∈ W , then g(D) = {D}.

Claim 13. For any x ∈ V +, m,n ≥ 0, S ⇒m
G x if and only if S ⇒n

G′ x′ with x′ ∈ g(x).

Proof.

Only if : This is proven by induction on m, m ≥ 0.

Basis: Let m = 0. The only x is S as S ⇒0
G S. Clearly, S ⇒n

G′ S for n = 0 and S ∈ g(S).

Induction Hypothesis: Assume that the claim holds for all derivations of length m or less,
for some m ≥ 0.

Induction Step: Consider a derivation S ⇒m+1
G x, where x ∈ V +. because m+1 ≥ 1, there

is some y ∈ V ∗ and p ∈ P such that S ⇒m
G y ⇒G′ x [p]. By the induction hypothesis,

S ⇒n
G′ y′ for some y′ ∈ g(y) and n ≥ 0. Next, we distinguish two cases, case (i) considers p

with one nonterminal on its left-hand side, and case (ii) considers p with two nonterminals
on its left-hand side.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 53

(i) Let p = D → y2 ∈ P , D ∈ V − T , y2 ∈ T ∪ (V − T)2, y = y1Dy3, y1, y3 ∈
V ∗, x = y1y2y3, y′ = y′1Xy′3, y′1 ∈ g(y1), y′3 ∈ g(y3), and X ∈ g(D). By (1)
in the definition of P ′, (D → y2, 0, 0) ∈ P . If X = D, then S ⇒n

G′ y′1Dy′3 ⇒G′

y′1y2y
′
3 [(D → y2, 0, 0)]. Because y′

1 ∈ g(y1), y′3 ∈ g(y3), and y2 ∈ g(y2), we obtain

y′1y2y
′
3 ∈ g(y1y2y3) = g(x). If X = D̃, we have (X → D, 0, 0) in P ′, so S ⇒n

G′

y′1Xy′3 ⇒G′ y′1Dy′3 ⇒G′ y′1y2y
′
3 [(X → D, 0, 0)(D → y2, 0, 0)], and y′1y2y

′
3 ∈ g(x).

(ii) Let p = AB → AC ∈ P , A,B,C ∈ V − T , y = y1ABy2, y1, y2 ∈ V ∗, x = y1ACy2,
y′ = y′1XY y′2, y′1 ∈ g(y1), y′2 ∈ g(y2), X ∈ g(A), and Y ∈ g(B). Recall that for any

B̃, # eB
y′ ≤ 1 and (B̃ → B, 0, 0) ∈ P ′. Then, y′ ⇒i

G′ y′1ABy′2 for some i ∈ {0, 1, 2}.
At this point, we have

S ⇒∗
G′ y′1ABy′2

⇒G′ y′1AB̃y′2 [(B → B̃, 0, B̃)]

⇒G′ y′1ACy′2 [(B̃ → C,AB̃, 0)]

where y′1ACy′2 ∈ g(x).

If : This is established by induction on n ≥ 0; in other words, we demonstrate that if
S ⇒n

G′ x′ with x′ ∈ g(x) for some x ∈ V +, then S ⇒∗
G x.

Basis: For n = 0, x′ surely equals S as S ⇒0
G′ S. Because S ∈ g(S), we have x = S.

Clearly, S ⇒0
G S.

Induction Hypothesis: Assume that the claim holds for all derivations of length n of less,
for some n ≥ 0.

Induction Step: Consider a derivation, S ⇒n+1
G′ x′, x′ ∈ g(x), x ∈ V +. As n+1 ≥ 1, there

exists some y ∈ V + such that S ⇒n
G′ y′ ⇒G′ x′ [p], y′ ∈ g(y). By the induction hypothesis,

S ⇒∗
G y. Let y′ = y′1B

′y′2, y = y1By2, y′1 ∈ g(y1), y′2 ∈ g(y2), y1, y2 ∈ V ∗, B′ ∈ g(B),
B ∈ V − T , x′ = y′1z

′y′2, and p = (B ′ → z′, α, β) ∈ P ′. The following three cases cover all
possible forms of the derivation step y ′ ⇒G′ x′ [p].

(i) z′ ∈ g(B). Then, S ⇒∗
G y1By2, where y′1z

′y′2 ∈ g(y1By2); that is, x′ ∈ g(y1By2).

(ii) B′ = B ∈ V − T , z′ ∈ T ∪ (V − T)2, α = β = 0. Then, there exists a production,
B → z′ ∈ P , so S ⇒∗

G y1By2 ⇒G y1z
′y2 [B → z′]. Since z′ ∈ g(z′), we have

x = y1z
′y2 such that x′ ∈ g(x).

(iii) B′ = B̃, z′ = C, α = AB̃, β = 0, A,B,C ∈ V − T . Then, there exists a production
of the form AB → AC ∈ P . Since #Zy′ ≤ 1, Z = B̃, and AB̃ ∈ sub(y′), we
have y′1 = u′A, y1 = uA, u′ ∈ g(u) for some u ∈ V ∗. Thus, S ⇒∗

G uABy2 ⇒G

uACy2 [AB → AC], where uACy2 = y1Cy2. Because C ∈ g(C), we get x = y1Cy2

such that x′ ∈ g(x).

As cases (i) through (iii) cover all possible forms of a derivation step in G ′, we have
completed the induction step and established Claim 13 by the principle of induction.

The statement of Theorem 26 follows immediately from Claim 13. Because for all
a ∈ T , g(a) = {a}, we have for every w ∈ T +,

S ⇒∗
G w if and only if S ⇒∗

G′ w.

54 CHAPTER 4.

Therefore, L(G) = L(G′), so the theorem holds. �

Corollary 10. prop-SSC(2, 1) = prop-SSC = prop-SC(2, 1) = prop-SC = CS.

Proof. It follows from Theorem 26 and the definitions of propagating ssc-grammars.

Next, we turn our investigation to the ssc-grammars of degree (2, 1) with erasing
productions. We prove that these grammars generate precisely the family of recursively
enumerable languages.

Theorem 27. SSC(2, 1) = RE.

Proof. Clearly, we have SSC(2, 1) ⊆ RE; hence, it suffices to show RE ⊆ SSC(2, 1).
Every recursively enumerable language, L ∈ RE, can be generated by a phrase-structure
grammar G in Penttonen normal form (see Lemma 3). That is, G’s productions are of the
form AB → AC or A → x, where A,B,C ∈ V − T , x ∈ {ε} ∪ T ∪ (V − T)2. Thus, the
inclusion RE ∈ SSC(2, 1) can be proven by analogy with the proof of Theorem 26. The
details are left to the reader. �

Corollary 11. SSC(2, 1) = SSC = SC(2, 1) = SC = RE.

To demonstrate that propagating ssc-grammars of degree (1, 2) characterize CS, we
first establish a normal form for context-sensitive grammars.

Lemma 9. Every L ∈ CS can be generated by a context-sensitive grammar, G = ({S} ∪
NCF ∪ NCS ∪ T, T, P, S), where {S}, NCF , NCS, T are pairwise disjoint alphabets, and
every production in P is either of the form S → aD or AB → AC or A → x, where a ∈ T ,
D ∈ NCF ∪ {ε}, B ∈ NCS, A,C ∈ NCF , x ∈ NCS ∪ T ∪ (

⋃2
i=1 N i

CF).

Proof. Let L be a context-sensitive language over an alphabet, T . Without loss of gener-
ality, we can express L as L = L1 ∪ L2, where L1 ⊆ T and L2 ⊆ TT+. Thus, by analogy
with the proofs of Theorems 1 and 2 in [146], L2 can be represented as L2 =

⋃
a∈T aLa,

where each La is a context-sensitive language. Let La be generated by a context-sensitive
grammar, Ga = (NCFa ∪ NCSa ∪ T, T, Pa, Sa), of the form of Lemma 4. Clearly, we can
assume that for all as, the nonterminal alphabets NCFa and NCSa are pairwise disjoint.
Let S be a new start symbol. Consider the context-sensitive grammar

G = ({S} ∪ NCF ∪ NCS ∪ T, T, P, S)

defined as:

NCF =
⋃

a∈T NCFa;
NCS =

⋃
a∈T NCSa ;

P =
⋃

a∈T Pa ∪ {S → aSa : a ∈ T} ∪ {S → a : a ∈ L1}.

Obviously, G satisfies the required form, and we have

L(G) = L1 ∪ (
⋃

a∈T aL(Ga)) = L1 ∪ (
⋃

a∈T aLa) = L1 ∪ L2 = L.

Consequently, the lemma holds.

We are now ready to characterize CS by propagating ssc-grammars of degree (1, 2).

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 55

Theorem 28. CS = prop-SSC(1, 2).

Proof. By Lemma 6, prop-SSC(1, 2) ⊆ prop-CG ⊆ CS; thus, it suffices to prove the
converse inclusion.

Let L be a context-sensitive language. Without loss of generality, we can assume that
L is generated by a context-sensitive grammar, G = ({S}∪NCF ∪NCS ∪T, T, P, S) of the
form of Lemma 9. Set V = {S} ∪ NCF ∪ NCS ∪ T. Let q be the cardinality of V ; q ≥ 1.
Furthermore, let f be an arbitrary fixed bijection from V onto {1, . . . , q}, and let f −1 be
the inverse of f . Let G̃ = (Ṽ , T, P̃ , S) be a propagating ssc-grammar of degree (1, 2), in
which

Ṽ =
(4⋃

i=1

Wi

)
∪ V,

where

W1 = {〈a,AB → AC, j〉 : a ∈ T, AB → AC ∈ P, 1 ≤ j ≤ 5},
W2 = {[a,AB → AC, j] : a ∈ T, AB → AC ∈ P, 1 ≤ j ≤ q + 3},

W3 = {B̂, B′, B′′ : B ∈ NCS},
W4 = {ā : a ∈ T},

and P̃ is defined as follows:

1. if S → aA ∈ P , a ∈ T , A ∈ (NCF ∪ {ε}), then add (S → āA, 0, 0) to P̃ ;

2. if a ∈ T , A → x ∈ P , A ∈ NCF , x ∈ (V − {S}) ∪ (NCF)2, then add (A → x, ā, 0) to
P̃ ;

3. if a ∈ T , AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , then add the following productions
to P ′ (an informal explanation of these productions can be found below):

(a) (ā → 〈a,AB → AC, 1〉, 0, 0);

(b) (B → B′, 〈a,AB → AC, 1〉, 0);

(c) (B → B̂, 〈a,AB → AC, 1〉, 0);

(d) (〈a,AB → AC, 1〉 → 〈a,AB → AC, 2〉, 0, B);

(e) (B̂ → B′′, 0, B′′);

(f) (〈a,AB → AC, 2〉 → 〈a,AB → AC, 3〉, 0, B̂);

(g) (B′′ → [a,AB → AC, 1], 〈a,AB → AC, 3〉, 0);

(h) ([a,AB → AC, j] → [a,AB → AC, j + 1], 0, f−1(j)[a,AB → AC, j]), for all
j = 1 . . . q, f(A) 6= j;

(i) ([a,AB → AC, f(A)] → [a,AB → AC, f(A) + 1], 0, 0);

(j) ([a,AB → AC, q + 1] → [a,AB → AC, q + 2], 0, B ′[a,AB → AC, q + 1]);

(k) ([a,AB → AC, q + 2] → [a,AB → AC, q + 3], 0, 〈a,AB → AC, 3〉[a,AB →
AC, q + 2]);

(l) (〈a,AB → AC, 3〉 → 〈a,AB → AC, 4〉, [a,AB → AC, q + 3], 0);

(m) (B′ → B, 〈a,AB → AC, 4〉, 0);

56 CHAPTER 4.

(n) (〈a,AB → AC, 4〉 → 〈a,AB → AC, 5〉, 0, B ′);

(o) ([a,AB → AC, q + 3] → C, 〈a,AB → AC, 5〉, 0);

(p) (〈a,AB → AC, 5〉 → ā, 0, [a,AB → AC, q + 3]).

4. if a ∈ T , then add (ā → a, 0, 0) to P̃ .

Basic Idea. Let us informally explain the basic idea behind (3)—the heart of all the
construction. The productions introduced in (3) simulate the application of productions
of the form AB → AC in G as follows: an occurence of B is chosen, and its left neighbor
is checked not to belong to Ṽ − {A}; at this point, the left neighbor necessarily equals A,
so B is rewritten with C.

Formally, we define a finite letter-to-letters substitution g from V ∗ into Ṽ ∗ as follows:

(a) if D ∈ V , then add D to g(D);

(b) if 〈a,AB → AC, j〉 ∈ W1, a ∈ T , AB → AC ∈ P , B ∈ NCS , A,C ∈ NCF ,
j ∈ {1, . . . , 5}, then add 〈a,AB → AC, j〉 to g(a);

(c) if [a,AB → AC, j] ∈ W2, a ∈ T , AB → AC ∈ P , B ∈ NCS , A,C ∈ NCF ,
j ∈ {1, . . . , q + 3}, then add [a,AB → AC, j] to g(B);

(d) if {B̂, B′, B′′} ⊆ W3, B ∈ NCS , then include {B̂, B′, B′′} to g(B);

(e) if ā ∈ W4, a ∈ T , then add ā to g(a).

Let g−1 be the inverse of g. To show that L(G) = L(G̃), we first prove three claims.

Claim 14. S ⇒+
G x, x ∈ V ∗, implies x ∈ T (V − {S})∗.

Proof. Observe that the start symbol, S, does not appear on the right side of any produc-
tion and that S → x ∈ P implies x ∈ T ∪ T (V − {S}). Hence, the claim holds.

Claim 15. If S ⇒+
eG

x, x ∈ Ṽ ∗, then x has one of the following seven forms:

(i) x = ay, where a ∈ T , y ∈ (V − {S})∗;

(ii) x = āy, where ā ∈ W4, y ∈ (V − {S})∗;

(iii) x = 〈a,AB → AC, 1〉y with 〈a,AB → AC, 1〉 ∈ W1, y ∈ ((V −{S})∪ {B ′, B̂, B′′})∗,
#B′′y ≤ 1;

(iv) x = 〈a,AB → AC, 2〉y, where 〈a,AB → AC, 2〉 ∈ W1, y ∈ ((V − {S,B}) ∪
{B′, B̂, B′′})∗, #B′y ≤ 1;

(v) x = 〈a,AB → AC, 3〉y, where 〈a,AB → AC, 3〉 ∈ W1, y ∈ ((V − {S,B}) ∪ {B ′})∗

({[a,AB → AC, j] : 1 ≤ j ≤ q + 3} ∪ {ε,B ′′})((V − {S,B}) ∪ {B ′})∗;

(vi) x = 〈a,AB → AC, 4〉y, where 〈a,AB → AC, 4〉 ∈ W1, y ∈ ((V − {S}) ∪ {B ′})∗

[a,AB → AC, q + 3]((V − {S}) ∪ {B ′})∗;

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 57

(vii) x = 〈a,AB → AC, 5〉y, where 〈a,AB → AC, 5〉 ∈ W1,
y ∈ (V − {S})∗{[a,AB → AC, q + 3], ε}(V − {S})∗;

Proof. The claim is proven by induction on the length of derivations.

Basis: Consider S ⇒ eG
x, x ∈ Ṽ ∗. By inspection of the productions, we have S ⇒ eG

āA [(S → āA, 0, 0)] for some ā ∈ W4, A ∈ ({ε} ∪ NCF). Therefore, x = ā or x = āA; in
either case, x is a word of the required form.

Induction Hypothesis: Assume that the claim holds for all derivations of length at most
n, for some n ≥ 1.

Induction Step: Consider a derivation of the form S ⇒n+1
eG

x, where x ∈ Ṽ ∗. Since n ≥ 1,

we have n + 1 ≥ 2. Thus, there is some z of the required form, z ∈ Ṽ ∗, such that S ⇒n
eG

z ⇒ eG
x [p] for some p ∈ P̃ .

Let us first prove by contradiction that the first symbol of z does not belong to T .
Assume that the first symbol of z belongs to T . As z is of the required form, we have
z = ay for some a ∈ (V − {S})∗. By inspection of P̃ , there is no p ∈ P̃ such that ay ⇒ eG

x [p], where x ∈ Ṽ ∗. We have thus obtained a contradiction, so the first symbol of z is
not in T .

Because the first symbol of z does not belong to T , z cannot have form (i); as a result,
z has one of forms (ii) through (vii). The following cases (I) through (VI) demonstrate
that if z has one of these six forms, then x has one of the required forms, too.

(I) Assume that z is of form (ii); that is, z = āy, ā ∈ W4, and y ∈ (V − {S})∗. By
inspecton of the productions in P̃ , we see that p has one of the following forms (a),
(b), and (c):

(a) p = (A → u, ā, 0), where A ∈ NCF and u ∈ (V − {S}) ∪ N 2
CF ;

(b) p = (ā → 〈a,AB → AC, 1〉, 0, 0), where 〈a,AB → AC, 1〉 ∈ W1;

(c) p = (ā → a, 0, 0), where a ∈ T .

Note that productions of forms (a), (b), and (c) are introduced in construction steps
(2), (3), and (4), respectively. If p has form (a), then x has form (ii). If p has form
(b), then x has form (iii). Finally, if p has form (c), then x has form (i). In any of
these three cases, we obtain x that has one of the required forms.

(II) Assume that z has form (iii); that is, z = 〈a,AB → AC, 1〉y for some 〈a,AB →
AC, 1〉 ∈ W1, y ∈ ((V − {S}) ∪ {B ′, B̂, B′′})∗, and #B′′y ≤ 1. By the inspection of
P̃ , we see that z can be rewritten by productions of these four forms:

(a) (B → B′, 〈a,AB → AC, 1〉, 0);

(b) (B → B̂, 〈a,AB → AC, 1〉, 0);

(c) (B̂ → B′′, 0, B′′) if B′′ 6∈ alph(y); that is, #B′′y = 0;

(d) (〈a,AB → AC, 1〉 → 〈a,AB → AC, 2〉, 0, B) if B 6∈ alph(y); that is, #By = 0;

Clearly, in cases (a) and (b), we obtain x of form (iii). If z ⇒ eG
x [p], where p is of

form (c), then #B′′x = 1, so we get x of form (iii). Finally, if we use the production
of form (d), then we obtain x of form (iv) because #Bz = 0.

58 CHAPTER 4.

(III) Assume that z is of form (iv); that is, z = 〈a,AB → AC, 2〉y, where 〈a,AB →
AC, 2〉 ∈ W1, y ∈ ((V −{S,B})∪{B ′, B̂, B′′})∗, and #B′′y ≤ 1. By inspection of P̃ ,
we see that the following two productions can be used to rewrite z:

(a) (B̂ → B′′, 0, B′′) if B′′ 6∈ alph(y);

(b) (〈a,AB → AC, 2〉 → 〈a,AB → AC, 3〉, 0, B̂) if B̂ 6∈ alph(y);

In case (a), we get x of form (iv). In case (b), we have # bB
y = 0, so # bB

x =
0. Moreover, notice that #B′′x ≤ 1 in this case. Indeed, the symbol B ′′ can be
generated only if there exists no occurence of B ′′ in a given rewritten word, so no
more than one occurence of B ′′ appears in any sentential form. As a result, we have
#B′′〈a,AB → AC, 3〉y ≤ 1; that is, #B′′x ≤ 1. In other words, we get x of form (v).

(IV) Assume that z is of form (v); that is, z = 〈a,AB → AC, 3〉y for some 〈a,AB →
AC, 3〉 ∈ W1, y ∈ ((V − {S,B}) ∪ {B ′})∗({[a,AB → AC, j] : 1 ≤ j ≤ q + 3} ∪
{B′′, ε})((V −{S,B})∪{B ′})∗. Assume that y = y1Y y2 with y1, y2 ∈ ((V −{S,B})∪
{B′})∗. If Y = ε, then we can use no production from P̃ to rewrite z. Because z ⇒ eG

x, we have Y 6= ε. The following cases (A) through (F) cover all possible forms of
Y .

(A) Assume Y = B ′′. By inspection of P̃ , we see that the only production that can
rewrite z has the form (B ′′ → [a,AB → AC, 1], 〈a,AB → AC, 3〉, 0). In this
case, we get x of form (v).

(B) Assume Y = [a,AB → AC, j]w, j ∈ {1, . . . , q}, and f(A) 6= j. Then, z can
be rewritten only according to the production ([a,AB → AC, j] → [a,AB →
AC, j + 1], 0, f−1(j)[a,AB → AC, j]), which can be used unless the rightmost
symbol of 〈a,AB → AC, 3〉y1 is f−1(j). Clearly, in this case we again get x of
form (v).

(C) Assume Y = [a,AB → AC, j], j ∈ {1, . . . , q}, f(A) = j. This case forms
an analogy to case (B), except that the production of the form ([a,AB →
AC, f(A)] → [a,AB → AC, f(A) + 1], 0, 0) is now used.

(D) Assume Y = [a,AB → AC, q + 1]. This case forms an analogy to case (B);
the only change is the application of the production ([a,AB → AC, q + 1] →
[a,AB → AC, q + 2], 0, B ′[a,AB → AC, q + 1]).

(E) Assume Y = [a,AB → AC, q+2]. This case forms an analogy to case (B) except
that the production ([a,AB → AC, q + 2] → [a,AB → AC, q + 3], 0, 〈a,AB →
AC, 3〉[a,AB → AC, q + 2]) is used.

(F) Assume Y = [a,AB → AC, q+3]. By inspection of P̃ , we see that the only pro-
duction that can rewrite z is (〈a,AB → AC, 3〉 → 〈a,AB → AC, 4〉, [a,AB →
AC, q + 3], 0). If this production is used, we get x of form (vi).

(V) Assume that z is of form (vi); that is, z = 〈a,AB → AC, 4〉y, where 〈a,AB →
AC, 4〉 ∈ W1 and y ∈ ((V − {S}) ∪ {B ′})∗[a,AB → AC, q + 3]((V − {S}) ∪ {B ′})∗.
By inspection of P̃ , these two productions can rewrite z:

(a) (B′ → B, 〈a,AB → AC, 4〉, 0);

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 59

(b) (〈a,AB → AC, 4〉 → 〈a,AB → AC, 5〉, 0, B ′) if B′ 6∈ alph(y).

Clearly, in case (a), we get x of form (vi). In case (b), we get x of form (vii) because
#B′y = 0, so y ∈ (V − {S})∗{[a,AB → AC, q + 3], ε}(V − {S})∗.

(VI) Assume that z is of form (vii); that is, z = 〈a,AB → AC, 5〉y, where 〈a,AB →
AC, 5〉 ∈ W1 and y ∈ (V − {S})∗{[a,AB → AC, q + 3], ε}(V − {S})∗. By inspection
of P̃ , one of the following two productions can be used to rewrite z:

(a) ([a,AB → AC, q + 3] → C, 〈a,AB → AC, 5〉, 0);

(b) (〈a,AB → AC, 5〉 → ā, 0, [a,AB → AC, q+3]) if [a,AB → AC, q+3] 6∈ alph(z).

In case (a), we get x of form (vii). Case (b) implies #[a,AB→AC,q+3]y = 0; thus, x is
of form (ii).

This completes the induction step and establishes Claim 15.

Claim 16. It holds that

S ⇒m
G w if and only if S ⇒n

eG
v

where v ∈ g(w) and w ∈ V +, for some m,n ≥ 0.

Proof.

Only if : The only-if part is established by induction on m; that is, we have to demonstrate
that S ⇒m

G w implies S ⇒∗
eG

v for some v ∈ g(w) and w ∈ V +.

Basis: Let m = 0. The only w is S because S ⇒0
G S. Clearly, S ⇒0

eG
S, and S ∈ g(S).

Induction Hypothesis: Suppose that our claim holds form all derivations of length m or
less, for some m ≥ 0.

Induction Step: Let us consider a derivation, S ⇒m+1
G x, where x ∈ V +. Because m+1 ≥ 1,

there are y ∈ V + and p ∈ P such that S ⇒m
G y ⇒G x [p], and by the induction hypothesis,

there is also a derivation S ⇒n
eG

ỹ for some ỹ ∈ g(y). The following cases (i) through (iii)
cover all possible forms of p.

(i) Let p = S → aA ∈ P for some a ∈ T , A ∈ NCF ∪ {ε}. Then, by Claim 14, m = 0,
so y = S and x = aA. By (1) in the construction of G̃, (S → āA, 0, 0) ∈ P̃ . Hence,
S ⇒ eG

ãA, where ãA ∈ g(aA).

(ii) Let us assume that p = D → y2 ∈ P , D ∈ NCF , y2 ∈ (V − {S}) ∪ N 2
CF , y = y1Dy3,

y1, y3 ∈ V ∗, and x = y1y2y3. From the definition of g, it is clear that g(Z) = {Z} for
all Z ∈ NCF ; therefore, we can express ỹ = z1Dz3, where z1 ∈ g(y1) and z3 ∈ g(y3).
Without loss of generality, we can also assume that y1 = au, a ∈ T , u ∈ (V − {S})∗

(see Claim 14), so z1 = a′′u′′, a′′ ∈ g(a), and u′′ ∈ g(u). Moreover, by (2) in the
construction, we have (D → y2, ā, 0) ∈ P̃ . The following cases (a) through (e) cover
all possible forms of a′′.

(a) Let a′′ = ā (see (ii) in Claim 15). Then, S ⇒n
eG

āu′′Dz3 ⇒ eG
āu′′y2z3 [(D →

y2, ā, 0)], and āu′′y2z3 = z1y2z3 ∈ g(y1y2y3) = g(x).

60 CHAPTER 4.

(b) Let a′′ = a (see (i) in Claim 15). By (4) in the construction of G̃, we can express
the derivation S ⇒n

eG
au′′Dz3 as S ⇒n−1

eG
āu′′Dz3 ⇒ eG

au′′Dz3 [(ā → a, 0, 0)];

thus, there exists the derivation S ⇒n−1
eG

āu′′Dz3 ⇒ eG
āu′′y2z3 [(D → y2, ā, 0)]

with āu′′y2z3 ∈ g(x).

(c) Let a′′ = 〈a,AB → AC, 5〉 for some AB → AC ∈ P (see (vii) in Claim 15), and
let u′′Dz3 ∈ (V − {S})∗; that is, [a,AB → AC, q + 3] 6∈ alph(u′′Dz3). Then,
there exists the derivation

S ⇒n
eG

〈a,AB → AC, 5〉u′′Dz3

⇒ eG
āu′′Dz3 [(〈a,AB → AC, 5〉 → ā, 0, [a,AB → AC, q + 3])]

⇒ eG
āu′′y2z3 [(D → y2, ā, 0)],

and āu′′y2z3 ∈ g(x).

(d) Let a′′ = 〈a,AB → AC, 5〉 (see (vii) in Claim 15). Let [a,AB → AC, q + 3] ∈
alph(u′′Dz3). Without loss of generality, we can assume that ỹ = 〈a,AB →
AC, 5〉u′′Do′′[a,AB → AC, q + 3]t′′, where o′′[a,AB → AC, q + 3]t′′ = z3,
oBt = y3, o′′ ∈ g(t), o, t ∈ (V − {S})∗. By inspection of P̃ (see (3) in the
construction of G̃), we can express the derivation S ⇒n

eG
ỹ as

S ⇒∗
eG

āu′′Do′′Bt′′

⇒ eG
〈a,AB → AC, 1〉u′′Do′′Bt′′

[(ā → 〈a,AB → AC, 1〉, 0, 0)]

⇒
1+|m3|
eG

〈a,AB → AC, 1〉u′Do′B̂t′

[m1(B → B̂, 〈a,AB → AC, 1〉, 0)m2]

⇒ eG
〈a,AB → AC, 2〉u′Do′B̂t′

[(〈a,AB → AC, 1〉 → 〈a,AB → AC, 2〉, 0, B)]
⇒ eG

〈a,AB → AC, 2〉u′Do′B′′t′

[B̂ → B′′, 0, B′′]
⇒ eG

〈a,AB → AC, 3〉u′Do′B′′t′

[(〈a,AB → AC, 2〉 → 〈a,AB → AC, 3〉, 0, B̂)]
⇒ eG

〈a,AB → AC, 3〉u′Do′[a,AB → AC, 1]t′

[(B′′ → [a,AB → AC, 1], 〈a,AB → AC, 3〉, 0)]

⇒q+2
eG

〈a,AB → AC, 3〉u′Do′[a,AB → AC, q + 3]t′

[ω]
⇒ eG

〈a,AB → AC, 4〉u′Do′[a,AB → AC, q + 3]t′

[(〈a,AB → AC, 3〉 → 〈a,AB → AC, 4〉, [a,AB → AC, q + 3], 0)]

⇒
|m3|
eG

〈a,AB → AC, 4〉u′′Do′′[a,AB → AC, q + 3]t′′

[m3]
⇒ eG

〈a,AB → AC, 5〉u′′Do′′[a,AB → AC, q + 3]t′′

[(〈a,AB → AC, 4〉 → 〈a,AB → AC, 5〉, 0, B ′)]

where m1,m2 ∈ {(B → B′, 〈a,AB → AC, 1〉, 0)}∗ , m3 ∈ {(B′ → B, 〈a,AB →
AC, 4〉, 0)}∗ , |m3| = |m1m2|, ω = ([a,AB → AC, 1] → [a,AB → AC, 2], 0,
f−1(1)[a,AB → AC, 1]) . . . ([a,AB → AC, f(A) − 1] → [a,AB → AC, f(A)], 0,
f−1(f(A) − 1)[a,AB → AC, f(A) − 1])([a,AB → AC, f(A)] → [a,AB →

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 61

AC, f(A) + 1], 0, 0)([a,AB → AC, f(A) + 1] → [a,AB → AC, f(A) + 2], 0,
f−1(f(A)+1)[a,AB → AC, f(A)+1]) . . . ([a,AB → AC, q] → [a,AB → AC, q+
1], 0, f−1(q)[a,AB → AC, q])([a,AB → AC, q + 1] → [a,AB → AC, q + 2], 0,
B′[a,AB → AC, q + 1])([a,AB → AC, q + 2] → [a,AB → AC, q + 3]), 0,
〈a,AB → AC, 3〉[a,AB → AC, q + 2]), u′ ∈ ((alph(u′′) − {B}) ∪ {B ′})∗,
g−1(u′) = u, o′ ∈ ((alph(o′′) − {B}) ∪ {B ′′})∗, g−1(o′) = g−1(o′′) = o, t′ ∈
((alph(t′′) − {B}) ∪ {B ′})∗, g−1(t′) = g−1(t′′) = t.

Clearly, āu′′Do′′Bt′′ ∈ g(auDoBt) = g(auDy3) = g(y). Thus, there exists the
derivation S ⇒∗

eG
āu′′Do′′Bt′′ ⇒ eG

āu′′y2o
′′Bt′′ [(D → y2, ā, 0)] where z1y2z3 =

āu′′y2o
′′Bt′′ ∈ g(auy2oBt) = g(y1y2y3) = g(x).

(e) Let a′′ = 〈a,AB → AC, i〉 for some AB → AC ∈ P and i ∈ {1, . . . , 4} (see
(iii) – (vi) in Claim 15). By analogy with (d), we can construct the derivation
S ⇒∗

eG
āu′′Do′′Bt′′ ⇒ eG

āu′′y2o
′′Bt′′ [(D → y2, ā, 0)] such that āu′′y2o

′′Bt′′ ∈

g(y1y2y3) = g(x) (the details are left to the reader).

(iii) Let p = AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , y = y1ABy3, y1, y3 ∈ V ∗,
x = y1ACy3, ỹ = z1AY z3, Y ∈ g(B), zi ∈ g(yi) where i ∈ {1, 3}. Moreover, let
y1 = au (see Claim 14), z1 = a′′u′′, a′′ ∈ g(a), u′′ ∈ g(u). The following cases (a)
through (e) cover all possible forms of a′′.

(a) Let a′′ = ā. Then, by Claim 15, Y = B. By (3) in the construction of G̃, there
exists the following derivation:

S ⇒n
eG

āu′′ABz3

⇒ eG
〈a,AB → AC, 1〉u′′ABz3

[(ā → 〈a,AB → AC, 1〉, 0, 0)]

⇒
1+|m1|
eG

〈a,AB → AC, 1〉u′AB̂u3

[m1(B → B̂, 〈a,AB → AC, 1〉, 0)]

⇒ eG
〈a,AB → AC, 2〉u′AB̂u3

[(〈a,AB → AC, 1〉 → 〈a,AB → AC, 2〉, 0, B)]

⇒ eG
〈a,AB → AC, 2〉u′AB′′u3

[(B̂ → B′′, 0, B′′)]

⇒ eG
〈a,AB → AC, 3〉u′AB′′u3

[(〈a,AB → AC, 2〉 → 〈a,AB → AC, 3〉, 0, B̂)]

⇒ eG
〈a,AB → AC, 3〉u′A[a,AB → AC, 1]u3

[(B′′ → [a,AB → AC, 1], 〈a,AB → AC, 3〉, 0)]

⇒q+2
eG

〈a,AB → AC, 3〉u′A[a,AB → AC, q + 3]u3

[ω]

⇒ eG
〈a,AB → AC, 4〉u′A[a,AB → AC, q + 3]u3

[(〈a,AB → AC, 3〉 → 〈a,AB → AC, 4〉, [a,AB → AC, q + 3], 0)]

⇒
|m2|
eG

〈a,AB → AC, 4〉u′′A[a,AB → AC, q + 3]z3

62 CHAPTER 4.

[m2]

⇒ eG
〈a,AB → AC, 5〉u′′A[a,AB → AC, q + 3]z3

[(〈a,AB → AC, 4〉 → 〈a,AB → AC, 5〉, 0, B ′)]

⇒ eG
〈a,AB → AC, 5〉u′′ACz3

[([a,AB → AC, q + 3] → C, 〈a,AB → AC, 5〉, 0)]

where m1 ∈ {(B → B′, 〈a,AB → AC, 1〉, 0)}∗ , m2 ∈ {(B′ → B, 〈a,AB →
AC, 4〉, 0)}∗ , |m1| = |m2|, ω = ([a,AB → AC, 1] → [a,AB → AC, 2], 0,
f−1(1)[a,AB → AC, 1]) . . . ([a,AB → AC, f(A) − 1] → [a,AB → AC, f(A)], 0,
f−1(f(A) − 1)[a,AB → AC, f(A) − 1])([a,AB → AC, f(A)] → [a,AB →
AC, f(A) + 1], 0, 0)([a,AB → AC, f(A) + 1] → [a,AB → AC, f(A) + 2], 0,
f−1(f(A)+1)[a,AB → AC, f(A)+1]) . . . ([a,AB → AC, q] → [a,AB → AC, q+
1], 0, f−1(q)[a,AB → AC, q])([a,AB → AC, q + 1] → [a,AB → AC, q + 2], 0,
B′[a,AB → AC, q + 1])([a,AB → AC, q + 2] → [a,AB → AC, q + 3]), 0,
〈a,AB → AC, 3〉[a,AB → AC, q + 2]), u3 ∈ ((alph(z3) − {B}) ∪ {B ′})∗,
g−1(u3) = g−1(z3) = y3, u′ ∈ ((alph(u′′) − {B}) ∪ {B ′})∗, g−1(u′) = g−1(u′′) =
u.

It is clear that 〈a,AB → AC, 5〉 ∈ g(a); thus, 〈a,AB → AC, 5〉u′′ACz3 ∈
g(auACy3) = g(x).

(b) Let a′′ = a. Then, by Claim 15, Y = B. By analogy with (ii.b) and (iii.a) in
the proof of this claim (see above), we obtain S ⇒n−1

eG
āu′′ABz3 ⇒∗

eG
〈a,AB →

AC, 5〉u′′ACz3 so 〈a,AB → AC, 5〉u′′ACz3 ∈ g(x).

(c) Let a′′ = 〈a,AB → AC, 5〉 for some AB → AC ∈ P (see (vii) in Claim 15),
and let u′′AY z3 ∈ (V − {S})∗. At this point, Y = B. By analogy with (ii.c)
and (iii.a) in the proof of this claim (see above), we can construct S ⇒n+1

eG

āu′′ABz3 ⇒∗
eG
〈a,AB → AC, 5〉u′′ACz3 so 〈a,AB → AC, 5〉u′′ACz3 ∈ g(x).

(d) Let a′′ = 〈a,AB → AC, 5〉 for some AB → AC ∈ P (see (vii) in Claim 15),
and let [a,AB → AC, q + 3] ∈ alph(u′′AY z3). By analogy with (ii.d) and
(iii.a) in the proof of this claim (see above), we can construct S ⇒∗

eG
āu′′ABz3

and, then, S ⇒∗
eG

āu′′ABz3 ⇒∗
eG
〈a,AB → AC, 5〉u′′ACz3 so that 〈a,AB →

AC, 5〉u′′ACz3 ∈ g(auACy3) = g(x).

(e) Let a′′ = 〈a,AB → AC, i〉 for some AB → AC ∈ P , i ∈ {1, . . . , 4}, see (III) –
(IV) in Claim 15. By analogy with (ii.e) and (iii.d) in the proof of this claim,
we can construct S ⇒∗

eG
āu′′ACz3, where āu′′ACz3 ∈ g(x).

If : By induction on n, we next prove that if S ⇒n
eG

v with v ∈ g(w) and w ∈ V ∗ for some
n ≥ 0, then S ⇒∗

G w.

Basis: For n = 0, the only v is S as S ⇒0
eG

S. Because {S} = g(S), we have w = S.

Clearly, S ⇒0
G S.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0. Let us show that it is also true for n + 1.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 63

Induction Step: For n + 1 = 1, there only exists a direct derivation of the form S ⇒ eG

āA [(S → āA, 0, 0)] where A ∈ NCF ∪ {ε}, a ∈ T , and āA ∈ g(aA). By (1), we have in P
a production of the form S → aA and, thus, a direct derivation S ⇒G aA.

Suppose n + 1 ≥ 2 (that is, n ≥ 1). Consider a derivation S ⇒n+1
G x′ where x′ ∈ g(x),

x ∈ V ∗. As n + 1 ≥ 2, there exist ā ∈ W4, A ∈ NCF , y ∈ V +, such that S ⇒ eG
āA ⇒n−1

eG

y′ ⇒ eG
x′ [p], where p ∈ P̃ , y′ ∈ g(y), and by the induction hypothesis, S ⇒∗

G y.
Let us assume that y′ = z1Zz2, y = y1Dy2, zj ∈ g(yj), yj ∈ (V − {S})∗, j = 1, 2,

Z ∈ g(D), D ∈ V − {S}, p = (Z → u′, α, β) ∈ P ′, α = 0 or β = 0, x′ = z1u
′z2, u′ ∈ g(u)

for some u ∈ V ∗; that is, x′ ∈ g(y1uy2). The following cases (i) through (iii) cover all
possible forms of y′ ⇒ eG

x′ [p].

(i) Let Z ∈ NCF . By inspection of P̃ , we see that Z = D, p = (D → u′, ā, 0) ∈ P̃ ,
D → u ∈ P and u = u′. Thus, S ⇒∗

G y1By2 ⇒G y1uy2 [B → u].

(ii) Let u = D. Then, by induction hypothesis, we have the derivation S ⇒∗
G y1Dy2 and

y1Dy2 = y1uy2 in G.

(iii) Let p = ([a,AB → AC, q + 3] → C, 〈a,AB → AC, 5〉, 0), Z = [a,AB → AC, q + 3].
Thus, u′ = C and D = B ∈ NCS . By case (VI) in Claim 15 and the form of p, we
have z1 = 〈a,AB → AC, 5〉t and y1 = ao, where t ∈ g(o), 〈a,AB → AC, 5〉 ∈ g(a),
o ∈ (V − {S})∗, and a ∈ T . From (3) in the construction of G̃, it follows that there
exists a production of the form AB → AC ∈ P . Moreover, (3) and Claim 15 imply
that the derivation

S ⇒ eG
āA ⇒n−1

eG
y′ ⇒ eG

x′ [p]

can be expressed in the form

S ⇒ eG
āA

⇒∗
eG

ātBz2

⇒ eG
〈a,AB → AC, 1〉vtBz2

[(ā → 〈a,AB → AC, 1〉, 0, 0)]

⇒
|ω′|
eG

〈a,AB → AC, 1〉vB̂w2

[ω′]

⇒ eG
〈a,AB → AC, 1〉vB ′′w2

[(B̂ → B′′, 0, B′′)]

⇒ eG
〈a,AB → AC, 2〉vB ′′w2

[(〈a,AB → AC, 1〉 → 〈a,AB → AC, 2〉, 0, B)]

⇒ eG
〈a,AB → AC, 3〉vB ′′w2

[(〈a,AB → AC, 2〉 → 〈a,AB → AC, 3〉, 0, B̂)]

⇒ eG
〈a,AB → AC, 3〉v[a,AB → AC, 1]w2

[(B′′ → [a,AB → AC, 1], 〈a,AB → AC, 3〉, 0)]

⇒
|ω|
eG

〈a,AB → AC, 3〉v[a,AB → AC, q + 3]w2

[ω]

64 CHAPTER 4.

⇒ eG
〈a,AB → AC, 4〉v[a,AB → AC, q + 3]w2

[(〈a,AB → AC, 3〉 → 〈a,AB → AC, 4〉, [a,AB → AC, q + 3], 0)]

⇒
|ω′|−1
eG

〈a,AB → AC, 4〉t[a,AB → AC, q + 3]z2

[ω′′]

⇒ eG
〈a,AB → AC, 5〉t[a,AB → AC, q + 3]z2

[(〈a,AB → AC, 4〉 → 〈a,AB → AC, 5〉, 0, B ′)]

⇒ eG
〈a,AB → AC, 5〉tCz2

[([a,AB → AC, q + 3] → C, 〈a,AB → AC, 5〉, 0)]

where ω′ ∈ {(B → B′, 〈a,AB → AC, 1〉, 0)}∗{(B → B̂, 〈a,AB → AC, 1〉, 0)}{(B →
B′, 〈a,AB → AC, 1〉, 0)}∗ , g(B) ∩ alph(vw2) ⊆ {B′}, g−1(v) = g−1(t), g−1(w2) =
g−1(z2), ω = ω1([a,AB → AC, f(A)] → [a,AB → AC, f(A) + 1], 0, 0)ω2([a,AB →
AC, q + 1] → [a,AB → AC, q + 2], 0, B ′[a,AB → AC, q + 1])([a,AB → AC, q + 2] →
[a,AB → AC, q + 3], 0, 〈a,AB → AC, 3〉[a,AB → AC, q + 2]), ω1 = ([a,AB →
AC, 1] → [a,AB → AC, 2], 0, f−1(1)[a,AB → AC, 1]) . . . ([a,AB → AC, f(A) −
1] → [a,AB → AC, f(A)], 0, f−1(f(A) − 1)[a,AB → AC, f(A) − 1]), where f(A)
implies q1 = ε, ω2 = ([a,AB → AC, f(A) + 1] → [a,AB → AC, f(A) + 2], 0,
f−1(f(A)+1)[a,AB → AC, f(A)+1]) . . . ([a,AB → AC, q] → [a,AB → AC, q+1], 0,
f−1(q)[a,AB → AC, q]), where f(A) = q implies q2 = ε, ω′′ ∈ {(B′ → B, 〈a,AB →
AC, 4〉, 0)}∗ .

The above derivation implies that the rightmost symbol of t must be A. As t ∈ g(o),
the rightmost symbol of o must be A as well. That is, t = s′A, o = sA and s′ ∈ g(s)
for some s ∈ (V −{S})∗. By the induction hypothesis, there exists a derivation S ⇒∗

G

asABy2. Because AB → AC ∈ P , we get S ⇒∗
G asABy2 ⇒G asACy2 [AB → AC],

where asACy2 = y1uy2.

By (i), (ii), and (iii) and inspection of P̃ , we see we have considered all possible derivations
of the form S ⇒n+1

eG
x′, so we have established Claim 16 by the principle of induction.

The equivalence of G and G̃ can be easily derived from Claim 16. By the definition of
g, we have g(a) = {a} for all a ∈ T . Thus, by Claim 16, we have for all x ∈ T ∗:

S ⇒∗
G x if and only if S ⇒∗

eG
x.

Consequently, L(G) = L(G̃) and the theorem holds. �

Corollary 12. prop-SSC(1, 2) = prop-SSC = prop-SC(1, 2) = prop-SC = CS.

We now turn to the investigation of ssc-grammars of degree (1, 2) with erasing pro-
ductions.

Theorem 29. SSC(1, 2) = RE.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 65

Proof. Clearly, we have SSC(1, 2) ⊆ RE. Thus, it suffices to show RE ⊆ SSC(1, 2).
Every language L ∈ RE can be generated by a grammar G = (V, T, P, S) in which
each production is of the form AB → AC or A → x, where A,B,C ∈ V − T , x ∈
{ε}∪T ∪ (V −T)2 (see Lemma 3). Thus, the inclusion can be established by analogy with
the proof of Theorem 28 (the details are left to the reader). �

Corollary 13. SSC(1, 2) = SSC = SC(1, 2) = SC = RE.

Corollaries 10, 11, 12, and 13 imply the following relationships of language families
generated by simple semi-conditional grammars:

Corollary 14.

CF
⊂

prop-SSC = prop-SSC(2, 1) = prop-SSC(1, 2) =
prop-SC = prop-SC(2, 1) = prop-SC(1, 2) = CS

⊂
SSC = SSC(2, 1) = SSC(1, 2) = SC = SC(2, 1) = SC(1, 2) = RE.

Next, we turn or attention to reduced versions of ssc-grammars. More specifically, we
demonstrate that there exist several normal forms of ssc-grammars with a limited number
of conditional productions and nonterminals.

Theorem 30 ([135]). Every recursively enumerable language can be defined by a simple
semi-conditional grammar of degree (2, 1) with no more than 12 conditional productions
and 13 nonterminals.

Proof. Let L be a recursively enumerable language. By Geffert [69], we can assume that
L is generated by a grammar G of the form

G = (V, T, P ∪ {AB → ε, CD → ε}, S)

such that P contains only context-free productions and

V − T = {S,A,B,C,D}.

Construct an ssc-grammar G′ of degree (2,1), G′ = (V ′, T, P ′, S), where

V ′ = V ∪ W,

W = {Ã, B̃, 〈εA〉, $, C̃, D̃, 〈εC〉,#}, V ∩ W = ∅.

The set of productions P ′ is defined in the following way:

1. if H → y ∈ P , H ∈ V − T , y ∈ V ∗, then add (H → y, 0, 0) to P ′;

2. add the following six productions to P ′:

(A → Ã, 0, Ã),

(B → B̃, 0, B̃),

(Ã → 〈εA〉, ÃB̃, 0),

(B̃ → $, 〈εA〉B̃, 0),

(〈εA〉 → ε, 0, B̃),
($ → ε, 0, 〈εA〉);

66 CHAPTER 4.

3. add the following six productions to P ′:

(C → C̃, 0, C̃),

(D → D̃, 0, D̃),

(C̃ → 〈εC〉, C̃D̃, 0),

(D̃ → #, 〈εC〉D̃, 0),

(〈εC 〉 → ε, 0, D̃),
(# → ε, 0, 〈εC 〉).

Basic Idea. Notice that G′ has degree (2,1) and contains only 12 conditional productions
and 13 nonterminals. The productions of (2) simulate the application of AB → ε in G ′

and the productions of (3) simulate the application of CD → ε in G′.

Let us describe the simulation of AB → ε. First, one occurence of A and one occurence
of B are rewritten to Ã and B̃, respectively (no more than one Ã and one B̃ appear in
any sentential form). The right neighbor of Ã is checked to be B̃ and Ã is rewritten to
〈εA〉. Then, analogously, the left neighbor of B̃ is checked to be 〈εA〉 and B̃ is rewritten
to $. Finally, 〈εA〉 and $ are erased. The simulation of CD → ε is analogous.

To establish L(G) = L(G′), we first prove the following two claims.

Claim 17. S ⇒∗
G′ x′ implies # eX

x′ ≤ 1 for all X̃ ∈ {Ã, B̃, C̃, D̃} and some x′ ∈ (V ′)∗.

Proof. By inspection of productions in P ′, the only production that can generate X̃ is
of the form (X → X̃, 0, X̃). This production can be applied only when no X̃ occurs
in the rewritten sentential form. Thus, it is not possible to derive x′ from S such that
eX

x′ ≥ 2.

Informally, next claim says that every occurence of 〈εA〉 in derivations from S is always
followed either by B̃ or $, and every occurence of 〈εC〉 is always followed either by D̃ or #.

Claim 18. It holds that

(I) S ⇒∗
G′ y′1〈εA〉y

′
2 implies y′2 ∈ (V ′)+ and first(y′2) ∈ {B̃, $} for any y′1 ∈ (V ′)∗;

(II) S ⇒∗
G′ y′1〈εC〉y

′
2 implies y′2 ∈ (V ′)+ and first(y′2) ∈ {D̃,#} for any y′1 ∈ (V ′)∗.

Proof. We establish the proof by the examination of all possible forms of derivations that
may occur when deriving a sentential form containing 〈εA〉 or 〈εC〉.

(I) By the definition of P ′, the only production that can generate 〈εA〉 is p = (Ã →
〈εA〉, ÃB̃, 0). This production has the permitting condition ÃB̃, so it can be used
provided that ÃB̃ occurs in a sentential form. Furthermore, by Claim 17, no other
occurence of Ã or B̃ can appear in the given sentential form. Consequently, we
obtain a derivation

S ⇒∗
G′ u′

1ÃB̃u′
2 ⇒G′ u′

1〈εA〉B̃u′
2 [p]

for some u′
1, u

′
2 ∈ (V ′)∗, Ã, B̃ 6∈ sub(u′

1u
′
2), which represents the only way how to get

〈εA〉. Obviously, 〈εA〉 is always followed by B̃ in u′
1〈εA〉B̃u′

2.

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 67

Next, we discuss how G′ can rewrite the subword 〈εA〉B̃ in u′
1〈εA〉B̃u′

2. There are

only two productions having the nonterminals 〈εA〉 or B̃ on their left-hand side,
p1 = (B̃ → $, 〈εA〉B̃, 0) and p2 = (〈εA〉 → ε, 0, B̃). G′ cannot use p2 to erase 〈εA〉 in
u′

1〈εA〉B̃u′
2 because p2 forbids an occurence of B̃ in the rewritten string. Production

p1 has also a context condition, but 〈εA〉B̃ ∈ sub(u′
1〈εA〉B̃u′

2) and, thus, p1 can be

used to rewrite B̃ with $. Hence, we obtain a derivation of the form

S ⇒∗
G′ u′

1ÃB̃u′
2 ⇒G′ u′

1〈εA〉B̃u′
2 [p]

⇒∗
G′ v′1〈εA〉B̃v′2 ⇒G′ v′1〈εA〉$v

′
2 [p1].

Notice that during this derivation, G′ may rewrite u′
1 and u′

2 to some v′1 and v′2,

respectively (v′1, v
′
2 ∈ (V ′)∗); however, 〈εA〉B̃ remains unchanged after this rewriting.

In this derivation we obtained the second symbol, $, that can appear as the right
neighbor of 〈εA〉. It suffices to show that there is no other symbol that could appear
immediately after 〈εA〉. By inspection of P ′, only ($ → ε, 0, 〈εA〉) can rewrite $.
However, this production cannot be applied when 〈εA〉 occurs in the given sentential
form. In other words, the occurence of $ in the subword 〈εA〉$ cannot be rewritten
before 〈εA〉 is erased by the production p2. Hence, 〈εA〉 is always followed either by
B̃ or $ and thus the first part of Claim 18 holds.

(II) By inspection of productions simulating AB → ε and CD → ε in G′ (see (2) and
(3) in the definition of P ′), these two sets of productions work analogously. Thus,
part (II) of Claim 18 can be proven by analogy with part (I).

Let us return to the main part of the proof. Let g be a finite substitution from (V ′)∗

to V ∗ defined as follows:

1. for all X ∈ V : g(X) = {X};

2. g(Ã) = {A}, g(B̃) = {B}, g(〈εA〉) = {A}, g($) = {B,AB};

3. g(C̃) = {C}, g(D̃) = {D}, g(〈εC 〉) = {C}, g(#) = {C,CD}.

Having this substitution, we can now prove the following claim:

Claim 19. S ⇒∗
G x if and only if S ⇒∗

G′ x′ for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Proof. The claim is proven by induction on the length of derivations.

Only if : We show that

S ⇒m
G x implies S ⇒∗

G′ x,

where m ≥ 0, x ∈ V ∗; clearly x ∈ g(x). This is established by induction on m.

Basis: Let m = 0. That is, S ⇒0
G S. Clearly, S ⇒0

G′ S.

Induction Hypothesis: Suppose that the claim holds for all derivations of length m or less,
for some m ≥ 0.

68 CHAPTER 4.

Induction Step: Let us consider a derivation S ⇒m+1
G x, x ∈ V ∗. Since m + 1 ≥ 1, there

is some y ∈ V + and p ∈ P ∪ {AB → ε, CD → ε} such that S ⇒m
G y ⇒G x [p]. By the

induction hypothesis, there is a derivation S ⇒∗
G′ y. The following three cases cover all

possible forms of p:

(i) p = H → y2 ∈ P, H ∈ V − T, y2 ∈ V ∗. Then, y = y1Hy3 and x = y1y2y3, y1, y3 ∈
V ∗. Because we have (H → y2, 0, 0) ∈ P ′, S ⇒∗

G′ y1Hy3 ⇒G′ y1y2y3 [(H → y2, 0, 0)]
and y1y2y3 = x.

(ii) p = AB → ε. Then, y = y1ABy3 and x = y1y3, y1, y3 ∈ V ∗. In this case, there is
the following derivation:

S ⇒∗
G′ y1ABy3

⇒G′ y1ÃBy3 [(A → Ã, 0, Ã)]

⇒G′ y1ÃB̃y3 [(B → B̃, 0, B̃)]

⇒G′ y1〈εA〉B̃y3 [(Ã → 〈εA〉, ÃB̃, 0)]

⇒G′ y1〈εA〉$y3 [(B̃ → $, 〈εA〉B̃, 0)]

⇒G′ y1$y3 [(〈εA〉 → ε, 0, B̃)]
⇒G′ y1y3 [($ → ε, 0, 〈εA〉)].

(iii) p = CD → ε. Then, y = y1CDy3 and x = y1y3, y1, y3 ∈ V ∗. By analogy with (ii),
there exists the derivation

S ⇒∗
G′ y1CDy3

⇒G′ y1C̃Dy3 [(C → C̃, 0, C̃)]

⇒G′ y1C̃D̃y3 [(D → D̃, 0, D̃)]

⇒G′ y1〈εC〉D̃y3 [(C̃ → 〈εC〉, C̃D̃, 0)]

⇒G′ y1〈εC〉#y3 [(C̃ → #, 〈εC〉D̃, 0)]

⇒G′ y1#y3 [(〈εC〉 → ε, 0, D̃)]
⇒G′ y1y3 [(# → ε, 0, 〈εC 〉)].

If : By induction on the length n of derivations in G′, we prove that

S ⇒n
G′ x′ implies S ⇒∗

G x

for some x ∈ g(x′), x ∈ V ∗, x′ ∈ (V ′)∗.

Basis: Let n = 0. That is, S ⇒0
G′ S. It is obvious that S ⇒0

G S and S ∈ g(S).

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
G′ x′, x′ ∈ (V ′)∗. Since n + 1 ≥ 1, there

is some y′ ∈ (V ′)+ and p′ ∈ P ′ such that S ⇒n
G′ y′ ⇒G′ x′ [p′], and by the induction

hypothesis, there is also a derivation S ⇒∗
G y such that y ∈ g(y′).

By inspection of P ′, the following cases (i) through (xiii) cover all possible forms of p′:

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 69

(i) p′ = (H → y2, 0, 0) ∈ P ′, H ∈ V − T, y2 ∈ V ∗. Then, y′ = y′1Hy′3, x′ = y′1y2y
′
3,

y′1, y
′
3 ∈ (V ′)∗ and y has the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3) and

Z ∈ g(H). Because for all X ∈ V − T : g(X) = {X}, the only Z is H and, thus,
y = y1Hy3. By the definition of P ′ (see (1)), there exists a production p = H → y2

in P and we can construct the derivation S ⇒∗
G y1Hy3 ⇒G y1y2y3 [p] such that

y1y2y3 = x, x ∈ g(x′).

(ii) p′ = (A → Ã, 0, Ã). Then, y′ = y′1Ay′3, x′ = y′1Ãy′3, y′1, y
′
3 ∈ (V ′)∗ and y = y1Zy3,

where y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(A). Because g(A) = {A}, the only Z is A,
so we can express y = y1Ay3. Having the derivation S ⇒∗

G y such that y ∈ g(y′), it

is easy to see that also y ∈ g(x′) because A ∈ g(Ã).

(iii) p′ = (B → B̃, 0, B̃). By analogy with (ii), y′ = y′1By′3, x′ = y′1B̃y′3, y = y1By3,

where y′1, y
′
3 ∈ (V ′)∗, y1 ∈ g(y′1), y3 ∈ g(y′3) and thus y ∈ g(x′) because B ∈ g(B̃).

(iv) p′ = (Ã → 〈εA〉, ÃB̃, 0). By the permitting condition of this production, ÃB̃ surely
occurs in y′. By Claim 17, no more than one Ã can occur in y′. Therefore, y′

must be of the form y′ = y′1ÃB̃y′3, where y′1, y
′
3 ∈ (V ′)∗ and Ã 6∈ sub(y′1y

′
3). Then,

x′ = y′1〈εA〉B̃y′3 and y is of the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3)

and Z ∈ g(ÃB̃). Because g(ÃB̃) = {AB}, the only Z is AB; thus, we obtain
y = y1ABy3. By the induction hypothesis, we have a derivation S ⇒∗

G y such that
y ∈ g(y′). According to the definition of g, y ∈ g(x′) as well because A ∈ g(〈εA〉)
and B ∈ g(B̃).

(v) p′ = (B̃ → $, 〈εA〉B̃, 0). This production can be applied provided that 〈εA〉B̃ ∈
sub(y′). Moreover, by Claim 17, # eB

y′ ≤ 1. Hence, we can express y′ = y′1〈εA〉B̃y′3,

where y′1, y
′
3 ∈ (V ′)∗ and B̃ 6∈ sub(y′1y

′
3). Then, x′ = y′1〈εA〉$y

′
3 and y = y1Zy3, where

y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(〈εA〉B̃). By the definition of g, g(〈εA〉B̃) = {AB},
so Z = AB and y = y1ABy3. By the induction hypothesis, we have a derivation
S ⇒∗

G y such that y ∈ g(y′). Because A ∈ g(〈εA〉) and B ∈ g($), y ∈ g(x′) as well.

(vi) p′ = (〈εA〉 → ε, 0, B̃). Application of (〈εA〉 → ε, 0, B̃) implies that 〈εA〉 occurs in y′.
Claim 18 says that 〈εA〉 has either B̃ or $ as its right neighbor. Since the forbidding
condition of p′ forbids an occurence of B̃ in y′, the right neighbor of 〈εA〉 must be
$. As a result, we obtain y′ = y′1〈εA〉$y

′
3 where y′1, y

′
3 ∈ (V ′)∗. Then, x′ = y′1$y

′
3

and y is of the form y = y1Zy3, where y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g(〈εA〉$). By
the definition of g, g(〈εA〉$) = {AB,AAB}. If Z = AB, y = y1ABy3. Having the
derivation S ⇒∗

G y, it holds that y ∈ g(x′) because AB ∈ g($).

(vii) p′ = ($ → ε, 0, 〈εA〉). Then, y′ = y′1$y
′
3 and x′ = y′1y

′
3, where y′1, y

′
3 ∈ (V ′)∗. Express

y = y1Zy3 so that y1 ∈ g(y′1), y3 ∈ g(y′3) and Z ∈ g($), where g($) = {B,AB}. Let
Z = AB. Then, y = y1ABy3 and there exists the derivation S ⇒∗

G y1ABy3 ⇒G

y1y3 [AB → ε], where y1y3 = x, x ∈ g(x′).

In cases (ii) through (vii) we discussed all six productions simulating the application of
AB → ε in G′ (see (2) in the definition of P ′). Cases (viii) – (xiii) should cover productions
simulating the application of CD → ε in G′ (see (3)). However, by inspection of these two

70 CHAPTER 4.

sets of productions, it is easy to see that they work analogously. Therefore, we leave this
part of the proof to the reader.

We have completed the proof and established Claim 19 by the principle of induction.

Observe that L(G) = L(G′) follows from Claim 19. Indeed, according to the definition
of g, we have g(a) = {a} for all a ∈ T . Thus, from Claim 19, we have for any x ∈ T ∗:

S ⇒∗
G x if and only if S ⇒∗

G′ x.

Consequently, L(G) = L(G′) and the theorem holds. �

Let us note that very recently Vaszil has improved Theorem 30 by demonstrating that
even 10 conditional productions and 12 nonterminals suffice to generate every recursively
enumerable language (see [174]):

Theorem 31. Every recursively enumerable language can be generated by a simple semi-
conditional grammar of degree (2,1) having no more than 10 conditional productions and
12 nonterminals.

Continuing with the investigation of reduced ssc-grammars, Vaszil also proved that if
we allow permitting conditions of length 3—that is, ssc-grammars of degree (3,1)—the
number of conditional productions and nonterminals can be further decreased.

Theorem 32. Every recursively enumerable language can be generated by a simple semi-
conditional grammar of degree (3,1) with no more than 8 conditional productions and 11
nonterminals.

Proof. Let L by a recursively enumerable language. Without any loss of generality, we
can assume that L is generated by a phrase-structure grammar,

G = (V, T, P ∪ {ABC → ε}, S),

where
V − T = {S, S ′, A,B,C}

and P contains only context-free productions of the forms S → zSx, z ∈ {A,B}∗, x ∈ T ,
S → S′, S′ → uS′v, u ∈ {A,B}∗, v ∈ {B,C}∗, S′ → ε (see [68]). Every successful
derivation in G consists of the following two phases:

1. S ⇒∗
G zn . . . z1Sx1 . . . xn ⇒G zn . . . z1S

′x1 . . . xn, where zi ∈ {A,B}∗, 1 ≤ i ≤ n;

2. zn . . . z1S
′x1 . . . xn ⇒∗

G zn . . . z1um . . . u1S
′v1 . . . vmx1 . . . xn ⇒G zn . . . z1um . . . u1v1 . . .

vmx1 . . . xn, where uj ∈ {A,B}∗, vj ∈ {B,C}∗, 1 ≤ j ≤ m, and the terminal word
x1 . . . xn is generated by G if and only if by using the erasing production ABC → ε,
the substring zn . . . z1um . . . u1v1 . . . vm can be deleted.

Next, we introduce the ssc-grammar, G′ = (V ′, T, P ′, S), of degree (3,1), where

V ′ = {S, S′, A,A′, A′′, B,B′, B′′, C, C ′, C ′′} ∪ T

and P ′ constructed as

4.1. SEQUENTIAL CONDITIONAL GRAMMARS 71

1. for every H → y ∈ P , add (H → y, 0, 0) to P ′;

2. for every X ∈ {A,B,C}, add (X → X ′, 0, X ′) to P ′;

3. add the following six productions to P ′:

(C ′ → C ′′, A′B′C ′, 0),
(A′ → A′′, A′B′C ′′, 0),
(B′ → B′′, A′′B′C ′′, 0),
(A′′ → ε, 0, C ′′),
(C ′′ → ε, 0, B′),
(B′′ → ε, 0, 0)

Observe that G′ satisfies all the requirements of this theorem; that is, it contains only
8 conditional productions and 11 nonterminals. G′ reproduces the first two phases of
generating a terminal word in G by using the productions of the form (H → y, 0, 0) ∈
P ′. The third phase, during which ABC → ε is applied, is simulated by the additional
productions. Examine these productions to see that all words generated by G can also be
generated by G′. Indeed, for every derivation step y1ABCy2 ⇒G y1y2 [ABC → ε] in G,
y1, y2 ∈ V ∗, there exists the following derivation in G′:

y1ABCy2 ⇒G′ y1A
′BCy2 [(A → A′, 0, A′)]

⇒G′ y1A
′B′Cy2 [(B → B′, 0, B′)]

⇒G′ y1A
′B′C ′y2 [(C → C ′, 0, C ′)]

⇒G′ y1A
′B′C ′′y2 [(C ′ → C ′′, A′B′C ′, 0)]

⇒G′ y1A
′′B′C ′′y2 [(A′ → A′′, A′B′C ′′, 0)]

⇒G′ y1A
′′B′′C ′′y2 [(B′ → B′′, A′′B′C ′′, 0)]

⇒G′ y1A
′′B′′y2 [(C ′′ → ε, 0, B′)]

⇒G′ y1B
′′y2 [(A′′ → ε, 0, C ′′)]

⇒G′ y1y2 [(B′′ → ε, 0, 0)]

As a result, L(G) ⊆ L(G′). In the following, we show that G′ does not generate words
that cannot be generated by G; thus, L(G′) − L(G) = ∅, so L(G′) = L(G).

Let us study how G′ can generate a terminal word. All derivations start from S.
While the sentential form contains S or S ′, its form is zSw or zuS ′vw, w ∈ T ∗, z, u, v ∈
{A,B,C,A′, B′, C ′}∗, where if g(X ′) = X for X ∈ {A,B,C} and g(X) = X for all other
symbols of V , then g(zSw) or g(zuS ′vw) are valid sentential forms of G. Furthermore,
zu contains at most one occurence of A′, v contains at most one occurence of C ′, and
zuv contains at most one occurence of B ′ (see (2) in the construction of P ′). After
(S′ → ε, 0, 0) is used, we get a sentential form zuvw with z, u, v, and w as above, such
that S ⇒∗

G g(zuvw). Next, we demonstrate that

zuv ⇒∗
G′ ε implies g(zuv) ⇒∗

G ε.

More specifically, we investigate all possible derivations rewriting a sentential form con-
taining a single occurence of each of the letters A′, B′, and C ′.

Consider a sentential form zuvw, where z, u, v ∈ {A,B,C,A′, B′, C ′}∗, w ∈ T ∗, and
#A′zu = #B′zuv = #C′v = 1. By the definition of productions rewriting A′, B′, and C ′,

72 CHAPTER 4.

(see (3) in the construction of P ′), we see that these three symbols must form a substring
A′B′C ′; otherwise, no next derivation step can be made. That is, zuvw = zūA′B′C ′v̄w
for some ū, v̄ ∈ {A,B,C}∗. Next, observe that the only applicable production is (C ′ →
C ′′, A′B′C ′, 0). Thus, we get

zūA′B′C ′v̄w ⇒G′ zūA′B′C ′′v̄w.

This sentential form can be rewritten in two ways. First, we can rewrite A′ to A′′ by
(A′ → A′′, A′B′C ′′, 0). Second, we can replace another occurence of C with C ′. Let
us investigate the derivation zūA′B′C ′′v̄w ⇒G′ zūA′′B′C ′′v̄w [(A′ → A′′, A′B′C ′′, 0)]. As
before, we can either rewrite another occurence of A to A′, or rewrite an occurence of
C to C ′, or rewrite B ′ to B′′ by using (B ′ → B′′, A′′B′C ′′, 0). Taking into account all
possible combinations of the above described steps, we see that after the first application
of (B′ → B′′, A′′B′C ′′, 0), the whole derivation is of the form:

zūA′B′C ′v̄w ⇒+
G′ zu1Xu2A

′′B′′C ′′v1Y v2w

where X ∈ {A′, ε}, Y ∈ {C ′, ε}, u1g(X)u2 = ū, and v1g(Y)v2 = v̄. Let zu1Xu2 = x
and v1Y v2 = y. Next derivation step can be made in four ways. By an application of
(B → B′, 0, B′), we can rewrite an occurence of B in x or y. In both cases, this derivation
is blocked in the next step. The remaining two derivations are

xA′′B′′C ′′yw ⇒G′ xA′′C ′′yw [(B′′ → ε, 0, 0)]

and

xA′′B′′C ′′yw ⇒G′ xA′′B′′yw [(C ′′ → ε, 0, B′)].

Let us examine how G′ can rewrite xA′′C ′′yw. The following three cases cover all possible
steps:

(i) xA′′C ′′yw ⇒G′ x1B
′x2A

′′C ′′yw [(B → B′, 0, B′)], where x1Bx2 = x, and the deriva-
tion is blocked;

(ii) xA′′C ′′yw ⇒G′ xA′′B′′y1B
′y2w [(B → B′, 0, B′)], where y1By2 = y. As before, no

next derivation step can be made;

(iii) xA′′C ′′yw ⇒G′ xA′′yw [(C ′′ → ε, 0, B′)]. In this case, all the following derivations
xA′′yw ⇒G′ xyw, xA′′yw ⇒G′ x1B

′x2A
′′yw ⇒G′ x1B

′x2yw, where x1Bx2 = x, and
xA′′yw ⇒G′ xA′′y1B

′y2w ⇒G′ xy1B
′y2w, where y1By2 = y, produce a sentential

form in which the substring A′′B′′C ′′ is erased and this sentential form contains at
most one occurence of A′, B′, and C ′.

Return to xA′′B′′C ′′yw ⇒G′ xA′′B′′yw. Observe that, by analogy with case (iii), any
rewriting of xA′′B′′yw removes the substring A′′B′′ and produce a sentential form con-
taining at most one occurence of A′, B′, and C ′.

To summarize the above considerations, the reader can see that as long as there exists
an occurence of A′′, B′′, or C ′′ in the sentential form, only the erasing productions or
(B → B′, 0, B′) can be applied. The derivation either enters a sentential form that blocks

4.2. PARALLEL CONDITIONAL GRAMMARS 73

the derivation or the substring A′B′C ′ is completely erased and new occurences of A, B,
and C can be changed to A′, B′, and C ′. That is,

zūA′B′C ′v̄w ⇒+
G′ xyw implies g(zūA′B′C ′v̄w) ⇒G g(xyw),

where z, ū, v̄ ∈ {A,B,C}∗, x, y ∈ {A,B,C,A′, B′, C ′}∗, w ∈ T ∗, and zū = g(x), v̄w =
g(yw). In other words, the productions constructed in (2) and (3) correctly simulate the
application of the only non-context-free production ABC → ε. Recall that g(a) = a for
all a ∈ T . Hence, g(xyw) = g(xy)w. Thus, L(G′) − L(G) = ∅.

Having L(G) ⊆ L(G′) and L(G′) − L(G) = ∅, we get L(G) = L(G′) and the theorem
holds. �

Open Problems. Let us state several open problems regarding ssc-grammars. In The-
orems 26, 27, 28, and 29, we proved that ssc-grammars of degrees (1,2) and (2,1) gen-
erate the family of recursively enumerable languages and propagating ssc-grammars of
degrees (1,2) and (2,1) generate the family of context-sensitive languages. However, we
discussed no ssc-grammars of degree (1,1). By Penttonen (see Theorem 24), propagating
sc-grammars of degree (1,1) generate a proper subfamily of context-sensitive languages.
That is, prop-SSC(1, 1) ⊆ prop-SC(1, 1) ⊂ CS. Are propagating ssc-grammars of de-
gree (1,1) as powerful as propagating sc-grammars of degree (1,1)? Furthermore, consider
ssc-grammars of degree (1,1) with erasing productions. Are they more powerful than prop-
agating ssc-grammars of degree (1,1)? Do they generate the family of all context-sensitive
languages or, even more, the family of recursively enumerable languages?

In Theorems 30 through 32, several reduced normal forms of these grammars were
presented. These normal forms give rise to the following questions. Can any of the above
results be further improved with respect to the number of conditional productions or
nonterminals? Are there analogical reduced forms of ssc-grammars with degrees (2,1) and
(3,1)? Moreover, reconsider these results in terms of propagating ssc-grammars. Is it
possible to achieve analogical results if we disallow erasing productions?

4.2 Parallel Conditional Grammars

In this section, we study parallel grammars with permitting and forbidding context con-
ditions. As ET0L grammars represent a very important type of parallel grammars in
modern theoretical computer science (see [149], [150], [155], [156], [166]), we base our
discussion on these grammars extended by context conditions. By analogy with sequen-
tial context-conditional grammars, we first define context-conditional ET0L grammars as
ET0L grammars with finite sets of permitting and forbidding conditions. Then, we inves-
tigate the generative power of their two specific cases—forbidding ET0L grammars and
simple semi-conditional ET0L grammars.

4.2.1 Context-Conditional ET0L Grammars

Definition 16. A context-conditional ET0L grammar (a CET0L grammar for short) is
defined as a t+3-tuple, G = (V, T, P1, . . . , Pt, S), where V , T , and S are the total alphabet,
the terminal alphabet (T ⊂ V), and the axiom (S ∈ V − T), respectively. Every Pi,

74 CHAPTER 4.

1 ≤ i ≤ t, for some t ≥ 1, is a finite set of productions of the form (a → x, Per, For)
with a ∈ V , x ∈ V ∗, and Per, For ⊆ V + are finite languages. A CET0L grammar
without erasing productions is said to be propagating (a CEPT0L grammar for short).
G has degree (r, s), where r and s are natural numbers, if for every i = 1, . . . , t and
(a → x, Per, For) ∈ Pi, max(Per) ≤ r and max(For) ≤ s (see Section 2.1 for the
definition of max). Let u, v ∈ V ∗, u = a1a2 . . . aq, v = v1v2 . . . vq, q = |u|, aj ∈ V , vj ∈ V ∗,
and p1, p2, . . . , pq is a sequence of productions pj = (aj → vj, P erj , F orj) ∈ Pi for all
j = 1, . . . , q and some i ∈ {1, . . . , t}. If for every pj , Perj ⊆ sub(u) and Forj ∩ sub(u) = ∅,
then u directly derives v according to p1, p2, . . . , pq in G, denoted by

u ⇒G v [p1, p2, . . . , pq].

The language of G is defined as

L(G) = {x ∈ T ∗ : S ⇒∗
G x}.

If t = 1, then G is called a context-conditional E0L grammar (a CE0L grammar for
short). If G is a propagating CE0L grammar, then G is said to be a CEP0L grammar.
The families of languages defined by CEPT0L, CET0L, CEP0L, and CE0L grammars of
degree (r, s) are denoted by CEPT0L(r, s), CET0L(r, s), CEP0L(r, s), and CE0L(r, s),
respectively. Set

CEPT0L =

∞⋃

r=0

∞⋃

s=0

CEPT0L(r, s), CET0L =

∞⋃

r=0

∞⋃

s=0

CET0L(r, s),

CEP0L =

∞⋃

r=0

∞⋃

s=0

CEP0L(r, s), CE0L =

∞⋃

r=0

∞⋃

s=0

CE0L(r, s).

The following lemmas and theorems establish several general results concering the
generative power of context-conditional ET0L grammars.

Lemma 10. CEP0L ⊆ CEPT0L ⊆ CET0L, CEP0L ⊆ CE0L ⊆ CET0L. For any
r, s ≥ 0, CEP0L(r, s) ⊆ CEPT0L(r, s) ⊆ CET0L(r, s), CEP0L(r, s) ⊆ CE0L(r, s) ⊆
CET0L(r, s).

Proof. Follows trivially from the definitions.

Theorem 33.

CF
⊂

CE0L(0, 0) = CEP0L(0, 0) = E0L = EP0L
⊂

CET0L(0, 0) = CEPT0L(0, 0) = ET0L = EPT0L
⊂
CS

4.2. PARALLEL CONDITIONAL GRAMMARS 75

Proof. Clearly, CEP0L and CE0L grammars of degree (0, 0) are ordinary EP0L and E0L
grammars, respectively. Analogously, CEPT0L and CET0L grammars of degree (0, 0) are
EPT0L and ET0L grammars, respectively. Because CF ⊂ E0L = EP0L ⊂ ET0L =
EPT0L ⊂ CS (see Theorem 2), we get CF ⊂ CE0L(0, 0) = CEP0L(0, 0) = E0L ⊂
CET0L(0, 0) = CEPT0L(0, 0) = ET0L ⊂ CS; therefore, the theorem holds. �

Lemma 11. CEPT0L(r, s) ⊆ CS, for any r ≥ 0, s ≥ 0.

Proof. For r = 0 and s = 0, we have CEPT0L(0, 0) = EPT0L ⊂ CS. The following
proof demonstrates that the inclusion holds for any r and s such that r + s ≥ 1.

Let L be a language generated by a CEPT0L grammar, G = (V, T, P1, . . . , Pt, S), of
degree (r, s), for some r, s ≥ 0, r + s ≥ 1, t ≥ 1. Let k be the greater number of r
and s. Let M = {x ∈ V + : |x| ≤ k}. For every Pi, 1 ≤ i ≤ t, set cf(Pi) = {a → z :
(a → z, Per, For) ∈ Pi, a ∈ V, z ∈ V +}. Then, set

NF = {〈X,x〉 : X ⊆ M, x ∈ M ∪ {ε}},
NT = {bXc : X ⊆ M},
NB = {dQe : Q ⊆ cf(Pi), 1 ≤ i ≤ t},
V ′ = NF ∪ NT ∪ NB ∪ {B,C, $, S ′},
T ′ = T ∪ {#}.

Construct the context-sensitive grammar, G′ = (V ′, T ′, P ′, S′), with the finite set of pro-
ductions, P ′, defined in the following way:

1. add S′ → B〈∅, ε〉SC to P ′;

2. for all X ⊆ M , x ∈ (V k ∪ {ε}) and y ∈ V k, add 〈X,x〉y → y〈X ∪ sub(xy, k), y〉 to
P ′;

3. for all X ⊆ M , x ∈ (V k ∪ {ε}) and y ∈ V +, |y| ≤ k, add 〈X,x〉yC → ybX ∪
sub(xy, k)cC to P ′;

4. for all X ⊆ M and Q ⊆ cf(Pi), where i ∈ {1, . . . , t}, such that for every a → z ∈ Q,
there exists (a → z, Per, For) ∈ Pi satisfying Per ⊆ X and For ∩ X = ∅, add
bXcC → dQeC to P ′;

5. for every Q ⊆ cf(Pi) for some i ∈ {1, . . . , t}, a ∈ V and z ∈ V + such that a → z ∈ Q,
add adQe → dQez to P ′;

6. for all Q ⊆ cf(Pi) for some i = {1, . . . , t}, add BdQe → B〈∅, ε〉 to P ′;

7. add B〈∅, ε〉 → #$, $C → ##, and $a → a$, for all a ∈ T , to P ′.

Claim 20. Every successful derivation in G′ has the form

S′ ⇒G′ B〈∅, ε〉SC

⇒+
G′ B〈∅, ε〉xC

⇒G′ #$xC

⇒
|x|
G′ #x$C

⇒G′ #x##

such that x ∈ T + and during B〈∅, ε〉SC ⇒+
G′ B〈∅, ε〉xC, every sentential form w satisfies

w ∈ {B}H+{C}, where H ⊆ V ′ − {B,C,#, $, S ′};

76 CHAPTER 4.

Proof. Observe that the only production that can rewrite the axiom is S ′ → B〈∅, ε〉SC;
thus, S′ ⇒G′ B〈∅, ε〉SC. After that, every sentential form that occurs in B〈∅, ε〉SC ⇒+

G′

B〈∅, ε〉xC can be rewritten by using any of the productions (2) through (6) from the
construction of P ′. By inspection of these productions, it is obvious that the edge symbols
B and C remain unchanged and no other occurences of them appear inside the sentential
form. Moreover, there is no production generating a symbol from {#, $, S ′}. Therefore,
all these sentential forms belong to {B}H+{C}.

Next, let us explain how G′ generates a word from L(G′). Only B〈∅, ε〉 → #$ can
rewrite B to a symbol from T (see (7) in the definition of P ′). According to the left-hand
side of this production, we obtain

S′ ⇒G′ B〈∅, ε〉SC ⇒∗
G′ B〈∅, ε〉xC ⇒G′ #$xC,

where x ∈ H+. To rewrite C, G′ uses $C → ##. Thus, G′ needs $ as the left neighbor
of C. Suppose that x = a1a2 . . . aq, where q = |x| and ai ∈ T , for all i ∈ {1, . . . , q}. Since
for every a ∈ T there is $a → a$ ∈ P ′ (see (7)), we can construct

#$a1a2 . . . anC ⇒G′ #a1$a2 . . . anC

⇒G′ #a1a2$. . . anC

⇒
|x|−2
G′ #a1a2 . . . an$C.

Notice that this derivation can be constructed only for x that belong to T +. Then, $C is
rewritten to ##. As a result,

S′ ⇒G′ B〈∅, ε〉SC ⇒+
G′ B〈∅, ε〉xC ⇒G′ #$xC ⇒

|x|
G′ #x$C ⇒G′ #x##

with the required properties. Thus, the claim holds.

The following claim demonstrates how G′ simulates a direct derivation from G—the
heart of the construction.

Let x ⇒⊕
G′ y denote the derivation x ⇒+

G′ y such that x = B〈∅, ε〉uC, y = B〈∅, ε〉vC,
u, v ∈ V +, and there is no other occurence of a string of the form B〈∅, ε〉zC, z ∈ V ∗,
during x ⇒+

G′ y.

Claim 21. For every u, v ∈ V ∗,

B〈∅, ε〉uC ⇒⊕
G′ B〈∅, ε〉vC if and only if u ⇒G v.

Proof.

Only if : Let us show how G′ rewrites B〈∅, ε〉uC to B〈∅, ε〉vC. The simulation consists of
two phases.

During the first, forward phase, G′ scans u to get all nonempty substrings of length k
or less. By repeatedly using productions 〈X,x〉y → y〈X ∪ sub(xy, k), y〉, where X ⊆ M ,
x ∈ (V k∪{ε}), y ∈ V k (see (2) in the definition of P ′), the occurence of a symbol with form
〈X,x〉 is moved towards the end of the sentential form. Simultaneously, the substrings of
u are collected in X. The forward phase is finished by 〈X,x〉yC → ybX ∪ sub(xy, k)cC,
where x ∈ (V k ∪ {ε}), y ∈ V +, |y| ≤ k (see (3)); the production reaches the end of u and
completes X = sub(u, k). Formally,

B〈∅, ε〉uC ⇒+
G′ BubXcC

4.2. PARALLEL CONDITIONAL GRAMMARS 77

such that X = sub(u, k). Then, bXc is changed to dQe, where

Q = {a → z : (a → z, Per, For) ∈ Pi, a ∈ V, z ∈ V +,
P er, For ⊆ M, Per ⊆ X, For ∩ X = ∅},

for some i ∈ {1, . . . , t}, by bXcC → dQeC (see (4)). In other words, G′ selects a subset of
productions from Pi that could be used to rewrite u in G.

The second, backward phase simulates rewriting of all symbols in u in parallel. Since
adQe → dQez ∈ P ′ for all a → z ∈ Q, a ∈ V , z ∈ V + (see (5)),

BudQeC ⇒
|u|
G′ BdQevC

such that dQe moves left and every symbol a ∈ V in u is rewritten to some z provided
that a → z ∈ Q. Finally, dQe is rewritten to 〈∅, ε〉 by BdQe → B〈∅, ε〉. As a result, we
obtain

B〈∅, ε〉uC ⇒+
G′ BubXcC ⇒G′ BudQeC

⇒
|u|
G′ BdQevC ⇒G′ B〈∅, ε〉vC.

Observe that this is the only way of deriving B〈∅, ε〉uC ⇒⊕
G′ B〈∅, ε〉vC.

Let us show that u ⇒G v. Indeed, because we have (a → z, Per, For) ∈ Pi for
every adQe → dQez ∈ P used in the backward phase, where Per ⊆ sub(u, k) and For ∩
sub(u, k) = ∅ (see the construction of Q), there exists a derivation u ⇒G v [p1 . . . pq],
where |u| = q, and pj = (a → z, Per, For) ∈ Pi such that adQe → dQez has been applied

in the (q − j + 1)-th derivation step in BudQeC ⇒
|u|
G′ BdQevC, where a ∈ V , z ∈ V +,

1 ≤ j ≤ q.

If : The converse implication is similar to the only-if part, so we leave it to the reader.

Claim 22. S ′ ⇒+
G′ B〈∅, ε〉xC if and only if S ⇒∗

G x, for all x ∈ V +.

Proof.

Only if : The only-if part is proven by induction on the ith occurence of the sentential
form w satisfying w = B〈∅, ε〉uC, u ∈ V +, during the derivation in G′.

Basis: Let i = 1. Then, S ′ ⇒G′ B〈∅, ε〉SC and S ⇒0
G S.

Induction Hypothesis: Suppose that the claim holds for all i ≤ h, for some h ≥ 1.

Induction Step: Let i = h+1. Since h+1 ≥ 2, we can express S ′ ⇒+
G′ B〈∅, ε〉xiC as S′ ⇒+

G′

B〈∅, ε〉xi−1C ⇒⊕
G′ B〈∅, ε〉xiC, where xi−1, xi ∈ V +. By the induction hypothesis, S ⇒∗

G

xi−1. Claim 21 says that B〈∅, ε〉xi−1C ⇒⊕
G′ B〈∅, ε〉xiC if and only if xi−1 ⇒G xi. Hence,

S ⇒∗
G xi−1 ⇒G xi and the only-if part holds.

If : By induction on n, we prove that

S ⇒n
G x implies S ′ ⇒+

G′ B〈∅, ε〉xC

for all n ≥ 0, x ∈ V +.

Basis: For n = 0, S ⇒0
G S and S′ ⇒G′ B〈∅, ε〉SC.

78 CHAPTER 4.

Induction Hypothesis: Assume that the claim holds for all n or less, for some n ≥ 0.

Induction Step: Let S ⇒n+1
G x, x ∈ V +. Because n + 1 ≥ 1, there exists y ∈ V +

such that S ⇒n
G y ⇒G x and, by the induction hypothesis, there is also a derivation

S′ ⇒+
G′ B〈∅, ε〉yC. From Claim 21, we have B〈∅, ε〉yC ⇒⊕

G′ B〈∅, ε〉xC. Therefore, S ′ ⇒+
G′

B〈∅, ε〉yC ⇒⊕
G′ B〈∅, ε〉xC and the converse implication holds as well.

From Claims 20 and 22, we see that any successful derivation in G′ is of the form
S′ ⇒+

G′ B〈∅, ε〉xC ⇒+
G′ #x## such that S ⇒∗

G x, x ∈ T +. Therefore, we have for each
x ∈ T+,

S′ ⇒+
G′ #x## if and only if S ⇒∗

G x.

Define the homomorphism h over (T ∪ {#})∗ as h(#) = ε and h(a) = a for all a ∈ T .
Observe that h is 4-linear erasing with respect to L(G′) (see page 98 in [161]). Furthermore,
notice that h(L(G′)) = L(G). Because CS is closed under linear erasing (see Theorem
10.4 on page 98 in [161]), L ∈ CS. Thus, Lemma 11 holds.

Theorem 34. CEPT0L = CS.

Proof. By Lemma 11, CEPT0L ⊆ CS. Later in this chapter, we define two special cases
of CEPT0L grammars and prove that they generate all the family of context-sensitive
languages (see Theorems 38 and 41). Therefore, CS ⊆ CEPT0L and, hence, CEPT0L =
CS. �

Lemma 12. CET0L ⊆ RE.

Proof. This lemma follows from Church’s thesis. To obtain an algorithm converting any
CET0L grammar to an equivalent phrase-structure grammar, use the technique presented
in Lemma 11.

Theorem 35. CET0L = RE.

Proof. By Lemma 12, CET0L ⊆ RE. In Sections 4.2.2 and 4.2.3 later in this study,
we introduce two special cases of CET0L grammars and demonstrate that even these
grammars generate RE (see Theorems 39 and 40) and, therefore, RE ⊆ CET0L. As a
result, CET0L = RE. �

4.2.2 Forbidding ET0L Grammars

In this section, we discuss forbidding ET0L grammars (see [137]). First, we define forbid-
ding ET0L grammars. Then, we establish their generative power.

Definition 17. Let G = (V, T, P1, . . . , Pt, S) be a CET0L grammar. If every p = (a →
x, Per, For) ∈ Pi, where i = 1, . . . , t, satisfies Per = ∅, then G is said to be forbidding
ET0L grammar (an FET0L grammar for short). If G is a propagating FET0L grammar,
than G is said to be an FEPT0L grammar. If t = 1, G is called an FE0L grammar. If G
is a propagating FE0L grammar, G is called an FEP0L grammar.

Convention 4. Let G = (V, T, P1, . . . , Pt, S) be an FET0L grammar of degree (r, s).
Clearly, (a → x, Per, For) ∈ Pi implies Per = ∅ for all i = 1, . . . , t. By analogy with
sequential forbidding grammars, we thus omit the empty set in the productions. For
simplicity, we also say that G’s degree is s instead of (r, s).

4.2. PARALLEL CONDITIONAL GRAMMARS 79

The families of languages defined by FE0L grammars, FEP0L grammars, FET0L
grammars, and FEPT0L grammars of degree s are denoted by FE0L(s), FEP0L(s),
FET0L(s), and FEPT0L(s), respectively. Moreover,

FEPT0L =

∞⋃

s=0

FEPT0L(s), FET0L =

∞⋃

s=0

FET0L(s),

FEP0L =
∞⋃

s=0

FEP0L(s), FE0L =
∞⋃

s=0

FE0L(s).

Example 8. Let
G = ({S,A,B,C, a, ā, b}, {a, b}, P, S)

be an FEP0L grammar, where

P = {(S → ABA, ∅),
(A → aA, {ā}),
(B → bB, ∅),
(A → ā, {ā}),
(ā → a, ∅),
(B → C, ∅),
(C → bC, {A}),
(C → b, {A}),
(a → a, ∅),
(b → b, ∅)}.

Obviously, G is an FEP0L grammar of degree 1. Observe that for every word from L(G),
there exists a derivation of the form

S ⇒G ABA
⇒G aAbBaA
⇒+

G am−1Abm−1Bam−1A
⇒G am−1ābm−1Cam−1ā
⇒G ambmCam

⇒+
G ambn−1Cam

⇒G ambnam,

with 1 ≤ m ≤ n. Hence, L(G) = {ambnam : 1 ≤ m ≤ n}. Note that L(G) 6∈ E0L
(see page 268 in Volume 1 of [157]); however, L(G) ∈ FEP0L(1). As a result, FEP0L
grammars (of degree 1) are more powerful than ordinary E0L grammars.

Next, we investigate the generative power of FET0L grammars of all degrees.

Theorem 36. FEPT0L(0) = EPT0L, FET0L(0) = ET0L, FEP0L(0) = EP0L, and
FE0L(0) = E0L.

Proof. It follows from the definition of FET0L grammars.

Lemmas 13, 14, 15, and 16 inspect the generative power of forbidding ET0L grammars
of degree 1. As a conclusion, in Theorem 37, we demonstrate that both FEPT0L(1) and
FET0L(1) grammars generate precisely the family of ET0L languages.

80 CHAPTER 4.

Lemma 13. EPT0L ⊆ FEP0L(1).

Proof. Let G = (V, T, P1, . . . , Pt, S) be an EPT0L grammar, where t ≥ 1. Set W = {〈a, i〉 :
a ∈ V, i = 1, . . . , t} and F (i) = {〈a, j〉 ∈ W : j 6= i}. Then, construct an FEP0L grammar
of degree 1,

G′ = (V ′, T, P ′, S),

where V ′ = V ∪ W, (V ∩ W = ∅), and the set of productions P ′ is defined as follows:

1. for each a ∈ V and i = 1, . . . , t, add (a → 〈a, i〉, ∅) to P ′;

2. if a → z ∈ Pi for some i ∈ {1, . . . , t}, a ∈ V , z ∈ V +, add (〈a, i〉 → z, F (i)) to P ′.

Let us demonstrate that L(G) = L(G′).

Claim 23. For each derivation S ⇒n
G′ x, n ≥ 0,

(I) if n = 2k + 1 for some k ≥ 0, x ∈ W +;

(II) if n = 2k for some k ≥ 0, x ∈ V +.

Proof. The claim follows from the definition of P ′. Indeed, every production in P ′ is
either of the form (a → 〈a, i〉, ∅) or (〈a, i〉 → z, F (i)), where a ∈ V , 〈a, i〉 ∈ W , z ∈ V +,
i ∈ {1, . . . , t}. Since S ∈ V , S ⇒2k+1

G′ x implies x ∈ W + and S ⇒2k
G′ x implies x ∈ V +;

thus, the claim holds.

Define the finite substitution g from V ∗ to (V ′)∗ such that for every a ∈ V ,

g(a) = {a} ∪ {〈a, i〉 ∈ W : i = 1, . . . , t}.

Claim 24. S ⇒∗
G x if and only if S ⇒∗

G′ x′ for some x′ ∈ g(x), x ∈ V +, x′ ∈ (V ′)+.

Proof.

Only If : By induction on n ≥ 0, we show that for all x ∈ V +,

S ⇒n
G x implies S ⇒2n

G′ x.

Basis: Let n = 0. Then, the only x is S; therefore, S ⇒0
G S and also S ⇒0

G′ S.

Induction Hypothesis: Suppose that S ⇒n
G x implies S ⇒2n

G′ x for all derivations of length
n or less, for some n ≥ 0.

Induction Step: Consider S ⇒n+1
G x. Because n+1 ≥ 1, we can express S ⇒n+1

G x as S ⇒n
G

y ⇒G x [p1, p2, . . . , pq] such that y ∈ V +, q = |y|, and pj ∈ Pi for all j = 1, . . . , q and
some i ∈ {1, . . . , t}. By the induction hypothesis, S ⇒2n

G′ y. Suppose that y = a1a2 . . . aq,
aj ∈ V . Let G′ make the derivation

S ⇒2n
G′ a1a2 . . . aq

⇒G′ 〈a1, i〉〈a2, i〉 . . . 〈aq, i〉 [p′1, p
′
2, . . . , p

′
q]

⇒G′ z1z2 . . . zq [p′′1, p
′′
2 , . . . , p

′′
q]

4.2. PARALLEL CONDITIONAL GRAMMARS 81

where p′j = (aj → 〈aj , i〉, ∅) and p′′j = (〈aj , i〉 → zj , F (i)) such that pj = aj → zj , zj ∈ V +,

for all j = 1, . . . , q. Then, z1z2 . . . zq = x and, therefore, S ⇒
2(n+1)
G′ x.

If : The converse implication is established by induction on the length of derivations in
G′. We prove that

S ⇒n
G′ x′ implies S ⇒∗

G x

for some x′ ∈ g(x), n ≥ 0.

Basis: For n = 0, S ⇒0
G′ S and S ⇒0

G S; clearly, S ∈ g(S).

Induction Hypothesis: Assume that there exists a natural number m such that the claim
holds for every 0 ≤ n ≤ m.

Induction Step: Let S ⇒m+1
G′ x′. Express this derivation as S ⇒m

G′ y′ ⇒G′ x′ [p′1, p
′
2, . . . , p

′
q],

where y′ ∈ (V ′)+, q = |y′|, and p′1, p
′
2, . . . , p

′
q is a sequence of productions from P ′. By the

induction hypothesis, S ⇒∗
G y, where y ∈ V +, y′ ∈ g(y). Claim 23 says that there exist

the following two cases:

(i) Let m = 2k for some k ≥ 0. Then, y′ ∈ V +, x′ ∈ W+, and every production
p′j = (aj → 〈aj , i〉, ∅), where aj ∈ V , 〈aj , i〉 ∈ W , i ∈ {1, . . . , t}. In this case,
〈aj , i〉 ∈ g(aj) for every aj and any i (see the definition of g); hence, x′ ∈ g(y) as
well.

(ii) Let m = 2k +1. Then, y′ ∈ W+, x′ ∈ V +, and each p′j is of the form p′j = (〈aj , i〉 →
zj , F (i)), where 〈aj , i〉 ∈ W , zj ∈ V +. Moreover, according to the forbidding condi-
tions of p′j , all 〈aj , i〉 in y′ have the same i. Thus, y′ = 〈a1, i〉〈a2, i〉 . . . 〈aq, i〉 for some

i ∈ {1, . . . , t}, y = g−1(y′) = a1a2 . . . aq, and x′ = z1z2 . . . zq. By the definition of
P ′, (〈aj , i〉 → zj , F (i)) ∈ P ′ implies aj → zj ∈ Pi. Therefore, S ⇒∗

G a1a2 . . . aq ⇒G

z1z2 . . . zq [p1, p2, . . . , pq], where pj = aj → zj ∈ Pi such that p′j = (〈aj , i〉 → zj , F (i)).
Obviously, z1z2 . . . zq = x = x′.

This completes the induction and establishes Claim 24.

By Claim 24, for any x ∈ T +,

S ⇒∗
G x if and only if S ⇒∗

G′ x

Therefore, L(G) = L(G′), so the lemma holds.

In order to simplify the notation in the following lemma, for a set of productions P ⊆
{(a → z, F) : a ∈ V, z ∈ V ∗, F ⊆ V }, define left(P) = {a : (a → z, F) ∈ P}. Informally,
left(P) denotes the set of left-hand sides of all productions in P .

Lemma 14. FEPT0L(1) ⊆ EPT0L.

Proof. Let G = (V, T, P1, . . . , Pt, S) be an FEPT0L grammar of degree 1, t ≥ 1. Let Q be
the set of all subsets O ⊆ Pi, 1 ≤ i ≤ t, such that every (a → z, F) ∈ O, a ∈ V , z ∈ V +,
F ⊆ V , satisfies F ∩ left(O) = ∅. Create a new set, Q′, so that for each O ∈ Q, add
{a → z : (a → z, F) ∈ O} to Q′. Express Q′ = {Q′

1, . . . , Q
′
m}, where m is the cardinality

of Q′. Then, construct the EPT0L grammar

G′ = (V, T,Q′
1, . . . , Q

′
m, S).

82 CHAPTER 4.

Basic Idea. To see the basic idea behind the construction of G′, consider a pair of
productions p1 = (a1 → z1, F1) and p2 = (a2 → z2, F2) from Pi, for some i ∈ {1, . . . , t}.
During a single derivation step, p1 and p2 can concurrently rewrite a1 and a2 provided that
a2 6∈ F1 and a1 6∈ F2, respectively. Consider any O ⊆ Pi containing no pair of productions
(a1 → z1, F1) and (a2 → z2, F2) such that a1 ∈ F2 or a2 ∈ F1. Observe that for any
derivation step based on O, no production from O is blocked by its forbidding conditions;
thus, the conditions can be omitted. Formal proof is given next.

Claim 25. S ⇒n
G x if and only if S ⇒n

G′ x, x ∈ V ∗, n ≥ 0.

Proof. The claim is proven by induction on the length of derivations.

Only If : By induction on n, n ≥ 0, we prove that

S ⇒n
G x implies S ⇒n

G′ x

for all x ∈ V ∗.

Basis: Let n = 0. Then, S ⇒0
G S and S ⇒0

G′ S.

Induction Hypothesis: Suppose that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
G x. Because n + 1 ≥ 1, there exists y ∈

V +, q = |y|, and a sequence p1, . . . , pq, where pj ∈ Pi for all j = 1, . . . , q and some
i ∈ {1, . . . , t}, such that S ⇒n

G y ⇒G x [p1, . . . , pq]. By the induction hypothesis, S ⇒n
G′

y. Let O = {pj : 1 ≤ j ≤ q}. Observe that y ⇒G x [p1, . . . , pq] implies alph(y) = left(O).
Moreover, every pj = (a → z, F) ∈ O, a ∈ V , z ∈ V +, F ⊆ V , statisfies F ∩ alph(y) = ∅.
Hence, (a → z, F) ∈ O implies F ∩ left(O) = ∅. Inspect the definition of G′ to see that
there exists Q′

r = {a → z : (a → z, F) ∈ O} for some r, 1 ≤ r ≤ m. Therefore, S ⇒n
G′

y ⇒G′ x [p′1, . . . , p
′
q], where p′j = a → z ∈ Q′

r such that pj = (a → z, F) ∈ O, for all
j = 1, . . . , q.

If : The if-part demonstrates for every n ≥ 0,

S ⇒n
G′ x implies S ⇒n

G x,

where x ∈ V ∗.

Basis: Suppose that n = 0. Then, S ⇒0
G′ S and S ⇒0

G S.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Let S ⇒n+1
G′ x. As n + 1 ≥ 1, there exists a derivation S ⇒n

G′ y ⇒G′

x [p′1, . . . , p
′
q] such that y ∈ V +, q = |y|, each p′i ∈ Q′

r for some r ∈ {1, . . . ,m}, and, by the
induction hypothesis, S ⇒n

G y. Then, by the definition of Q′
r, there exists Pi and O ⊆ Pi

such that every (a → z, F) ∈ O, a ∈ V , z ∈ V +, F ⊆ V , statisfies a → z ∈ Q′
r and

F ∩ left(O) = ∅. Since alph(y) ⊆ left(O), (a → z, F) ∈ O implies F ∩ alph(y) = ∅. Hence,
S ⇒n

G y ⇒G x [p1, . . . , pq], where pj = (a → z, F) ∈ O for all j = 1, . . . , q.

4.2. PARALLEL CONDITIONAL GRAMMARS 83

From the above claim,

S ⇒∗
G x if and only if S ⇒∗

G′ x

for all x ∈ T ∗. Consequently, L(G) = L(G′).

The following two lemmas can be proven by analogy with Lemmas 13 and 14. The
details are left to the reader.

Lemma 15. ET0L ⊆ FE0L(1).

Lemma 16. FET0L(1) ⊆ ET0L.

Theorem 37. FEP0L(1) = FEPT0L(1) = FE0L(1) = FET0L(1) = EPT0L =
ET0L.

Proof. By Lemmas 13 and 14, EPT0L ⊆ FEP0L(1) and FEPT0L(1) ⊆ EPT0L, re-
spectively. Since FEP0L(1) ⊆ FEPT0L(1), FEP0L(1) = FEPT0L(1) = EPT0L.
Analogously, from Lemmas 15 and 16, FE0L(1) = FET0L(1) = ET0L. However,
EPT0L = ET0L (see Theorem V.1.6 on page 239 in [155]). Therefore, FEP0L(1) =
FEPT0L(1) = FE0L(1) = FET0L(1) = EPT0L = ET0L; thus, the theorem holds.

Next, we investigate the generative power of FEPT0L grammars of degree 2. The
following lemma establishes a normal form for context-sensitive grammars so that the
grammars satisfying this form generate only sentential forms containing no nonterminal
from NCS as the leftmost symbol of the string. We make use of this normal form in
Lemma 18.

Lemma 17. Every context-sensitive language, L ∈ CS, can be generated by a context-
sensitive grammar, G = (N1 ∪NCF ∪NCS ∪T, T, P, S1), where N1, NCF , NCS, and T are
pairwise disjoint alphabets, S1 ∈ N1, and every production in P has one of the following
forms:

(i) AB → AC, where A ∈ (N1 ∪ NCF), B ∈ NCS, C ∈ NCF ;

(ii) A → B, where A ∈ NCF , B ∈ NCS;

(iii) A → a, where A ∈ (N1 ∪ NCF), a ∈ T ;

(iv) A → C, where A,C ∈ NCF ;

(v) A1 → C1, where A1, C1 ∈ N1;

(vi) A → DE, where A,D,E ∈ NCF ;

(vii) A1 → D1E, where A1, D1 ∈ N1, E ∈ NCF .

Proof. Let G′ = (NCF ∪ NCS ∪ T, T, P ′, S) be a context-sensitive grammar of the form
defined in Lemma 4. From this grammar, we construct a grammar G = (N1 ∪ NCF ∪
NCS ∪ T, T, P, S1), where

N1 = {X1 : X ∈ NCF},
P = P ′ ∪ {A1B → A1C : AB → AC ∈ P ′, A,C ∈ NCF , B ∈ NCS, A1 ∈ N1}

∪ {A1 → a : A → a ∈ P ′, A ∈ NCF , A1 ∈ N1, a ∈ T}
∪ {A1 → C1 : A → C ∈ P ′, A,C ∈ NCF , A1, C1 ∈ N1}
∪ {A1 → D1E : A → DE ∈ P ′, A,D,E ∈ NCF , A1, D1 ∈ N1}.

84 CHAPTER 4.

Basic Idea. G works by analogy with G′ except that in G′ every sentential form starts
with a symbol from N1 ∪T followed by symbols that are not in N1. Notice, however, that
by AB → AC, G′ can never rewrite the leftmost symbol of any sentential form. Based
on these observations, it is rather easy to see that L(G) = L(G′); a formal proof of this
identity is left to the reader. As G is of the required form, Lemma 17 holds.

Lemma 18. CS ⊆ FEP0L(2).

Proof. Let L be a context-sensitive language generated by a grammar G = (N1 ∪ NCF ∪
NCS ∪ T, T, P, S1) of the form of Lemma 17. Let

V = N1 ∪ NCF ∪ NCS ∪ T,
PCS = {AB → AC : AB → AC ∈ P,A ∈ (N1 ∪ NCF), B ∈ NCS , C ∈ NCF },
PCF = P − PCS .

Informally, PCS and PCF are the sets of context-sensitive and context-free productions in
P , respectively, and V denotes the total alphabet of G.

Let f be an arbitrary bijection from V to {1, . . . ,m}, where m is the cardinality of V ,
and let f−1 be the inverse of f .

Construct an FEP0L grammar of degree 2, G′ = (V ′, T, P ′, S1), with V ′ defined as

W0 = {〈A,B,C〉 : AB → AC ∈ PCS},
WS = {〈A,B,C, j〉 : AB → AC ∈ PCS , 1 ≤ j ≤ m + 1},
W = W0 ∪ WS ,
V ′ = V ∪ W.

where V , W0, and WS are pairwise disjoint alphabets. The set of productions P ′ is defined
as follows:

1. for every X ∈ V , add (X → X, ∅) to P ′;

2. for every A → u ∈ PCF , add (A → u,W) to P ′;

3. for every AB → AC ∈ PCS , add the following productions to P ′:

(a) (B → 〈A,B,C〉,W);

(b) (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉});

(c) (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}) for all 1 ≤ j ≤ m such
that f(A) 6= j;

(d) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(e) (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

Basic Idea. Let us informally explain how G′ simulates the non-context-free productions
of the form AB → AC (see productions of (3) in the construction of P ′). First, chosen
occurences of B are rewritten with 〈A,B,C〉 by (B → 〈A,B,C〉,W). The forbidding
condition of this production guarantees that there is no simulation already in process.
After that, left neighbors of all occurences of 〈A,B,C〉 are checked not to be any symbols
from V − {A}. In more detail, G′ rewrites 〈A,B,C〉 with 〈A,B,C, i〉 for i = 1. Then, in

4.2. PARALLEL CONDITIONAL GRAMMARS 85

every 〈A,B,C, i〉, G′ increments i by one as long as i is less or equal to the cardinality
of V ; simultaneously, it verifies that the left neighbor of every 〈A,B,C, i〉 differs from
the symbol that f maps to i except for the case when f(A) = i. Finally, G′ checks that
there are no two adjoining symbols 〈A,B,C,m + 1〉. At this point, the left neighbors
of 〈A,B,C,m + 1〉 are necessarily equal to A, so every occurence of 〈A,B,C,m + 1〉 is
rewritten to C.

Observe that the other symbols remain unchanged during the simulation. Indeed, by
the forbidding conditions, the only productions that can rewrite symbols X 6∈ W are of the
form (X → X, ∅). Moreover, the forbidding condition of (〈A,B,C〉 → 〈A,B,C, 1〉,W −
{〈A,B,C〉}) implies that it is not possible to simulate two different non-context-free pro-
ductions at the same time.

To establish the identity of languages generated by G and G′, we first prove Claims 26
through 30.

Claim 26. S1 ⇒n
G′ x′ implies first(x′) ∈ (N1 ∪ T) for every n ≥ 0, x′ ∈ (V ′)∗.

Proof. The claim is proven by induction on n.

Basis: Let n = 0. Then, S1 ⇒0
G′ S1 and S1 ∈ N1.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation S1 ⇒n+1
G′ x′, where x′ ∈ (V ′)∗. Because n + 1 ≥ 1,

there is a derivation S1 ⇒
n
G′ y′ ⇒G′ x′ [p1, . . . , pq], y

′ ∈ (V ′)∗, q = |y′|, and, by the induction
hypothesis, first(y′) ∈ (N1 ∪T). Inspect P ′ to see that the production p1 that rewrites the
leftmost symbol of y′ is one of the following forms: (A1 → A1, ∅), (a → a, ∅), (A1 → a,W),
(A1 → C1,W), or (A1 → D1E,W), where A1, C1, D1 ∈ N1, a ∈ T , E ∈ NCF (see (1) and
(2) in the definition of P ′ and Lemma 17). It is obvious that the leftmost symbols of the
right-hand sides of these productions belong to (N1 ∪ T). Hence, first(x′) ∈ (N1 ∪ T), so
the claim holds.

Claim 27. S1 ⇒n
G′ y′1Xy′3, X ∈ WS, implies y′1 ∈ (V ′)+ for any y′3 ∈ (V ′)∗.

Proof. Informally, the claim says that every occurence of a symbol from WS has always a
left neighbor. Clearly, this claim follows from the statement of Claim 26. Since WS∩(N1∪
T) = ∅, X cannot be the leftmost symbol in a sentential form and the claim holds.

Claim 28. S1 ⇒n
G′ x′, n ≥ 0, implies that x′ has one of the following three forms:

(I) x′ ∈ V ∗;

(II) x′ ∈ (V ∪ W0)
∗ and #W0

x′ > 0;

(III) x′ ∈ (V ∪ {〈A,B,C, j〉})∗, #{〈A,B,C,j〉}x
′ > 0, and {f−1(k)〈A,B,C, j〉 : 1 ≤ k < j,

k 6= f(A)} ∩ sub(x′) = ∅, where 〈A,B,C, j〉 ∈ WS, A ∈ (N1 ∪ NCF), B ∈ NCS,
C ∈ NCF , 1 ≤ j ≤ m + 1.

86 CHAPTER 4.

Proof. We prove the claim by the induction on n ≥ 0.

Basis: Let n = 0. Clearly, S1 ⇒0
G′ S1 and S1 is of type (I).

Induction Hypothesis: Suppose that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Let us consider any derivation of the form S1 ⇒n+1
G′ x′. Because n+1 ≥ 1,

there exists y′ ∈ (V ′)∗ and a sequence of productions p1, . . . , pq, where pi ∈ P ′, 1 ≤ i ≤ q,
q = |y′|, such that S1 ⇒n

G′ y′ ⇒G′ x′ [p1, . . . , pq]. Let y′ = a1a2 . . . aq, ai ∈ V ′.

By the induction hypothesis, y′ can only be of forms (I) through (III). Thus, the
following three cases cover all possible forms of y ′:

(i) Let y′ ∈ V ∗ (form (I)). In this case, every production pi can be either of the form
(ai → ai, ∅), ai ∈ V , or (ai → u,W) such that ai → u ∈ PCF , or (ai → 〈A, ai, C〉,W),
ai ∈ NCS , 〈A, ai, C〉 ∈ W0 (see the definition of P ′).

Suppose that for every i ∈ {1, . . . , q}, pi has one of the first two listed forms. Ac-
cording to the right-hand sides of these productions, we obtain x′ ∈ V ∗; that is, x′

is of form (I).

If there exists i such that pi = (ai → 〈A, ai, C〉,W) for some A ∈ (N1 ∪ NCF),
ai ∈ NCS , C ∈ NCF , 〈A, ai, C〉 ∈ W0, we get x′ ∈ (V ∪W0)

∗ with #W0
x′ > 0. Thus,

x′ belongs to (II).

(ii) Let y′ ∈ (V ∪ W0)
∗ and #W0

y′ > 0 (form (II)). At this point, pi is either (ai →
ai, ∅) (rewriting ai ∈ V to itself) or (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉})
rewriting ai = 〈A,B,C〉 ∈ W0 to 〈A,B,C, 1〉 ∈ WS, where A ∈ (N1 ∪ NCF),
B ∈ NCS , C ∈ NCF . Since #W0

y′ > 0, there exists at least one i such that
ai = 〈A,B,C〉 ∈ W0. The corresponding production pi can be used provided that
#(W−{〈A,B,C〉})y

′ = 0. Therefore, y′ ∈ (V ∪ {〈A,B,C〉})∗ and hence x′ ∈ (V ∪
{〈A,B,C, 1〉})∗ , #{〈A,B,C,1〉}x

′ > 0; that is, x′ is of type (III).

(iii) Assume that y′ ∈ (V ∪ {〈A,B,C, j〉})∗ , #{〈A,B,C,j〉}y
′ > 0, and sub(y′) ∩ {f−1(k)

〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅, where 〈A,B,C, j〉 ∈ WS , A ∈ (N1 ∪ NCF),
B ∈ NCS , C ∈ NCF , 1 ≤ j ≤ m + 1 (form (III)). By inspection of P ′, we see that
the following four forms of productions can be used to rewrite y ′ to x′:

(a) (ai → ai, ∅), ai ∈ V ;

(b) (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}), 1 ≤ j ≤ m, j 6= f(A);

(c) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(d) (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

Let 1 ≤ j ≤ m, j 6= f(A). Then, symbols from V are rewritten to themselves
(case (a)) and every occurence of 〈A,B,C, j〉 is rewritten to 〈A,B,C, j + 1〉 by (b).
Clearly, we obtain x′ ∈ (V ∪ {〈A,B,C, j + 1〉})∗ such that #{〈A,B,C,j+1〉}x

′ > 0.
Furthermore, (b) can be used only when f−1(j)〈A,B,C, j〉 6∈ sub(y′). As sub(y′) ∩
{f−1(k)〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅, it holds that sub(y ′) ∩ {f−1(k)
〈A,B,C, j〉 : 1 ≤ k ≤ j, k 6= f(A)} = ∅. Since every occurence of 〈A,B,C, j〉 is

4.2. PARALLEL CONDITIONAL GRAMMARS 87

rewritten to 〈A,B,C, j + 1〉 and other symbols are unchanged, sub(x′) ∩ {f−1(k)
〈A,B,C, j + 1〉 : 1 ≤ k < j + 1, k 6= f(A)} = ∅; therefore, x′ is of form (III).

Assume that j = f(A). Then, all occurences of 〈A,B,C, j〉 are rewritten to 〈A,B,C,
j + 1〉 by (c) and symbols from V are rewritten to themselves. As before, we obtain
x′ ∈ (V ∪ {〈A,B,C, j + 1〉})∗ and #{〈A,B,C,j+1〉}x

′ > 0. Moreover, because sub(y′)∩
{f−1(k)〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅ and j is just f(A), sub(x′) ∩
{f−1(k)〈A,B,C, j + 1〉 : 1 ≤ k < j + 1, k 6= f(A)} = ∅ and x′ belongs to (III) as
well.

Finally, let j = m + 1. Then, every occurence of 〈A,B,C, j〉 is rewritten to C (case
(d)) and, therefore, x′ ∈ V ∗; that is, x′ has form (I).

In (i), (ii), and (iii), we have considered all derivations that rewrite y ′ to x′, and in each
of these cases, we have shown that x′ has one of the requested forms. Therefore, Claim 28
holds.

To prove the following claims, we need a finite letter-to-letters substitution g from V ∗

into (V ′)∗ defined as

g(X) = {X} ∪ {〈A,X,C〉 : 〈A,X,C〉 ∈ W0}
∪ {〈A,X,C, j〉 : 〈A,X,C, j〉 ∈ WS , 1 ≤ j ≤ m + 1}

for all X ∈ V , A ∈ (N1 ∪ NCF), C ∈ NCF . Let g−1 be the inverse of g.

Claim 29. Let y′ = a1a2 . . . aq, ai ∈ V ′, q = |y′|, and g−1(ai) ⇒hi

G g−1(ui) for all
i ∈ {1, . . . , q} and some hi ∈ {0, 1}, ui ∈ (V ′)+. Then, g−1(y′) ⇒r

G g−1(x′) such that
x′ = u1u2 . . . uq, r =

∑q
i=1 hi, r ≤ q.

Proof. First, consider a derivation g−1(X) ⇒h
G g−1(u), X ∈ V ′, u ∈ (V ′)+, h ∈ {0, 1}.

If h = 0 then g−1(X) = g−1(u). Let h = 1. Then, there surely exists a production
p = g−1(X) → g−1(u) ∈ P such that g−1(X) ⇒G g−1(u) [p].

Return to the statement of this claim. We can construct a derivation

g−1(a1)g
−1(a2) . . . g−1(aq) ⇒h1

G g−1(u1)g
−1(a2) . . . g−1(aq)

⇒h2

G g−1(u1)g
−1(u2) . . . g−1(aq)

...

⇒
hq

G g−1(u1)g
−1(u2) . . . g−1(uq)

where g−1(y′) = g−1(a1) . . . g−1(aq) and g−1(u1) . . . g−1(uq) = g−1(u1 . . . uq) = g−1(x′).
In such a derivation, each g−1(ai) is either left unchanged (if hi = 0) or rewritten to
g−1(ui) by the corresponding production g−1(ai) → g−1(ui). Obviously, the length of this
derivation is

∑q
i=1 hi.

Claim 30. S1 ⇒∗
G x if and only if S1 ⇒∗

G′ x′, where x ∈ V ∗, x′ ∈ (V ′)∗, x′ ∈ g(x).

Proof.

Only if : The only-if part is established by induction on the length of derivations in G.
That is, we show that

S1 ⇒n
G x implies S1 ⇒∗

G′ x

88 CHAPTER 4.

where x ∈ V ∗, for n ≥ 0.

Basis: Let n = 0. Then, S1 ⇒0
G S1 and S1 ⇒0

G′ S1 as well.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation S1 ⇒n+1
G x. Because n + 1 > 0, there exists y ∈ V ∗

and p ∈ P such that S1 ⇒n
G y ⇒G x [p], and, by the induction hypothesis, there is also a

derivation S1 ⇒∗
G′ y. Let y = a1a2 . . . aq, ai ∈ V , 1 ≤ i ≤ q, q = |y|. The following cases

(i) and (ii) cover all possible forms of p.

(i) p = A → u ∈ PCF , A ∈ (N1 ∪ NCF), u ∈ V ∗. Then, y = y1Ay3 and x = y1uy3,
y1, y3 ∈ V ∗. Let s = |y1| + 1. Since we have (A → u,W) ∈ P ′, we can construct a
derivation S1 ⇒∗

G′ y ⇒G′ x [p1, . . . , pq] such that ps = (A → u,W) and pi = (ai →
ai, ∅) for all i ∈ {1, . . . , q}, i 6= s.

(ii) p = AB → AC ∈ PCS , A ∈ (N1 ∪ NCF), B ∈ NCS , C ∈ NCF . Then, y = y1ABy3

and x = y1ACy3, y1, y3 ∈ V ∗. Let s = |y1| + 2. In this case, there is the following
derivation:

S1 ⇒∗
G′ y1ABy3

⇒G′ y1A〈A,B,C〉y3 [ps = (B → 〈A,B,C〉,W)]
⇒G′ y1A〈A,B,C, 1〉y3 [ps = (〈A,B,C〉 → 〈A,B,C, 1〉,

W − {〈A,B,C〉})]
⇒G′ y1A〈A,B,C, 2〉y3 [ps = (〈A,B,C, 1〉 → 〈A,B,C, 2〉,

{f−1(1)〈A,B,C, j〉})]
...

⇒G′ y1A〈A,B,C, f(A)〉y3 [ps = (〈A,B,C, f(A) − 1〉 → 〈A,B,C, f(A)〉,
{f−1(f(A) − 1)〈A,B,C, f(A) − 1〉})]

⇒G′ y1A〈A,B,C, f(A) + 1〉y3 [ps = (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅)]
⇒G′ y1A〈A,B,C, f(A) + 2〉y3 [ps = (〈A,B,C, f(A) + 1〉 → 〈A,B,C, f(A) + 2〉,

{f−1(f(A) + 1)〈A,B,C, f(A) + 1〉})]
...

⇒G′ y1A〈A,B,C,m + 1〉y3 [ps = (〈A,B,C,m〉 → 〈A,B,C,m + 1〉,
{f−1(m)〈A,B,C,m〉})]

⇒G′ y1ACy3 [ps = (〈A,B,C,m + 1〉 → C,

{〈A,B,C,m + 1〉2})]

such that pi = (ai → ai, ∅) for all i ∈ {1, . . . , q}, i 6= s.

If : By induction on n, we prove that

S1 ⇒n
G′ x′ implies S1 ⇒∗

G x,

where x′ ∈ (V ′)∗, x ∈ V ∗ and x′ ∈ g(x).

Basis: Let n = 0. The only x′ is S1 because S1 ⇒0
G′ S1. Obviously, S1 ⇒0

G S1 and
S1 ∈ g(S1).

4.2. PARALLEL CONDITIONAL GRAMMARS 89

Induction Hypothesis: Suppose that the claim holds for any derivation of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation of the form S1 ⇒n+1
G′ x′. Since n+1 ≥ 1, there exists

y′ ∈ (V ′)∗ and a sequence of productions p1, . . . , pq from P ′, q = |x′|, such that S1 ⇒n
G′

y′ ⇒G′ x′ [p1, . . . , pq]. Let y′ = a1a2 . . . aq, ai ∈ V ′, 1 ≤ i ≤ q. By the induction hypothesis,
we have S1 ⇒∗

G y, where y ∈ V ∗, such that y′ ∈ g(y).
From Claim 28, y′ can have one of the following forms:

(i) Let y′ ∈ (V ′)∗ (see (I) in Claim 28). Inspect P ′ to see that there are three forms of
productions rewriting symbols ai in y′:

(a) pi = (ai → ai, ∅) ∈ P ′, ai ∈ V . In this case, g−1(ai) ⇒0
G g−1(ai).

(b) pi = (ai → ui,W) ∈ P ′ such that ai → ui ∈ PCF . Because ai = g−1(ai),
ui = g−1(ui) and ai → ui ∈ P , g−1(ai) ⇒G g−1(ui) [ai → ui].

(c) pi = (ai → 〈A, ai, C〉,W) ∈ P ′, ai ∈ NCS, A ∈ (N1 ∪ NCF), C ∈ NCF . Since
g−1(ai) = g−1(〈A, ai, C〉), we have g−1(ai) ⇒0

G g−1(〈A, ai, C〉).

We see that for all ai, there exists a derivation g−1(ai) ⇒hi

G g−1(zi) for some hi ∈
{0, 1}, where zi ∈ (V ′)+, x′ = z1z2 . . . zq. Therefore, by Claim 29, we can construct
S1 ⇒∗

G y ⇒r
G x, where 0 ≤ r ≤ q, x = g−1(x′).

(ii) Let y′ ∈ (V ∪W0)
∗ and #W0

y′ > 0 (see (II)). At this point, the following two forms
of productions can be used to rewrite ai in y′:

(a) pi = (ai → ai, ∅) ∈ P ′, ai ∈ V . As in case (i.a), g−1(ai) ⇒0
G g−1(ai).

(b) pi = (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉}), ai = 〈A,B,C〉 ∈ W0, A ∈
(N1 ∪ NCF), B ∈ NCS , C ∈ NCF . Because g−1(〈A,B,C〉) = g−1(〈A,B,C, 1〉),
g−1(〈A,B,C〉) ⇒0

G g−1(〈A,B,C, 1〉).

Thus, there exists a derivation S1 ⇒∗
G y ⇒0

G x, where x = g−1(x′).

(iii) Let y′ ∈ (V ∪ {〈A,B,C, j〉})∗ , #{〈A,B,C,j〉}y
′ > 0, and sub(y′)∩ {f−1(k)〈A,B,C, j〉 :

1 ≤ k < j, k 6= f(A)} = ∅, where 〈A,B,C, j〉 ∈ WS, A ∈ (N1 ∪ NCF), B ∈ NCS ,
C ∈ NCF , 1 ≤ j ≤ m +1 (see (III)). By inspection of P ′, the following four forms of
productions can be used to rewrite y ′ to x′:

(a) pi = (ai → ai, ∅), ai ∈ V ;

(b) pi = (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}), 1 ≤ j ≤ m, j 6=
f(A);

(c) pi = (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(d) pi = (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

Let 1 ≤ j ≤ m. G′ can rewrite such y′ using only the productions (a) through (c).
Because g−1(〈A,B,C, j〉) = g−1(〈A,B,C, j + 1〉) and g−1(ai) = g−1(ai), by analogy
with (ii), we obtain a derivation S1 ⇒∗

G y ⇒0
G x such that x = g−1(x′).

Let j = m + 1. In this case, only the productions (a) and (d) can be used. Since
#{〈A,B,C,j〉}y

′ > 0, there is at least one occurence of 〈A,B,C,m + 1〉 in y ′ and, by

90 CHAPTER 4.

the forbidding condition of the production (c), 〈A,B,C,m + 1〉2 6∈ sub(y′). Observe
that for j = m + 1,

{f−1(k)〈A,B,C,m + 1〉 : 1 ≤ k < j, k 6= f(A)} =

{X〈A,B,C,m + 1〉 : X ∈ V, X 6= A}

and, thus, sub(y′) ∩ {X〈A,B,C,m + 1〉 : X ∈ V, X 6= A} = ∅. According to
Claim 27, 〈A,B,C,m + 1〉 has always a left neighbor in y ′. As a result, the left
neighbor of every occurence of 〈A,B,C,m + 1〉 is A. Therefore, we can express:

y′ = y1A〈A,B,C,m + 1〉y2A〈A,B,C,m + 1〉y3 . . . yrA〈A,B,C,m + 1〉yr+1,
y = g−1(y1)ABg−1(y2)ABg−1(y3) . . . g−1(yr)ABg−1(yr+1),
x′ = y1ACy2ACy3 . . . yrACyr+1,

where r ≥ 1, ys ∈ V ∗, 1 ≤ s ≤ r + 1. Since we have p = AB → AC ∈ P , there is a
derivation:

S1 ⇒∗
G g−1(y1)ABg−1(y2)ABg−1(y3) . . . g−1(yr)ABg−1(yr+1)

⇒G g−1(y1)ACg−1(y2)ABg−1(y3) . . . g−1(yr)ABg−1(yr+1) [p]
⇒G g−1(y1)ACg−1(y2)ACg−1(y3) . . . g−1(yr)ABg−1(yr+1) [p]

...
⇒G g−1(y1)ACg−1(y2)ACg−1(y3) . . . g−1(yr)ACg−1(yr+1) [p]

where g−1(y1)ACg−1(y2)ACg−1(y3) . . . g−1(yr)ACg−1(yr+1) = g−1(x′) = x.

Because cases (i), (ii) and (iii) cover all possible forms of y ′, we have completed the
induction and established Claim 30.

The equivalence of G and G′ follows from Claim 30. Indeed, observe that by the
definition of g, we have g(a) = {a} for all a ∈ T . Therefore, by Claim 30, we have for any
x ∈ T ∗:

S1 ⇒∗
G x if and only if S1 ⇒∗

G′ x.

Thus, L(G) = L(G′) and the lemma holds.

Theorem 38. CS = FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L.

Proof. By Lemma 18, CS ⊆ FEP0L(2) ⊆ FEPT0L(2) ⊆ FEPT0L. From Lemma 11
and the definition of FET0L grammars, it follows that FEPT0L(s) ⊆ FEPT0L ⊆
CEPT0L ⊆ CS for any s ≥ 0. Moreover, FEP0L(s) ⊆ FEP0L ⊆ FEPT0L. Thus,
CS = FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L, and the theorem holds.

Return to the proof of Lemma 18. Observe that the productions of the FEP0L grammar
G′ are of restricted forms. This observation gives rise to the next corollary.

Corollary 15. Every context-sensitive language can be generated by an FEP0L grammar
G = (V, T, P, S) of degree 2 such that every production from P has one of the following
forms:

(i) (a → a, ∅), a ∈ V ;

4.2. PARALLEL CONDITIONAL GRAMMARS 91

(ii) (X → x, F), X ∈ V − T , |x| ∈ {1, 2}, max(F) = 1;

(iii) (X → Y, {z}), X,Y ∈ V − T , z ∈ V 2.

Next, we demonstrate that the family of recursively enumerable languages is generated
by the forbidding E0L grammars of degree 2.

Lemma 19. RE ⊆ FE0L(2).

Proof. Let L be a recursively enumerable language generated by a phrase structure gram-
mar G = (V, T, P, S) having the form defined in Lemma 5, where

V = NCF ∪ NCS ∪ T,
PCS = {AB → AC ∈ P : A,C ∈ NCF , B ∈ NCS},
PCF = P − PCS .

Let $ be a new symbol and m be the cardinality of V ∪ {$}. Furthermore, let f be an
arbitrary bijection from V ∪ {$} onto {1, . . . ,m}, and let f−1 be the inverse of f .

Then, we define an FE0L grammar G′ = (V ′, T, P ′, S′) of degree 2 as follows:

W0 = {〈A,B,C〉 : AB → AC ∈ P},
WS = {〈A,B,C, j〉 : AB → AC ∈ P, 1 ≤ j ≤ m},
W = W0 ∪ WS ,
V ′ = V ∪ W ∪ {S′, $},

where A,C ∈ NCF , B ∈ NCS , and V , W0, WS, and {S′, $} are pairwise disjoint alphabets.
The set of productions P ′ is defined in the following way:

1. add (S′ → $S, ∅), ($ → $, ∅) and ($ → ε, V ′ − T − {$}) to P ′;

2. for all X ∈ V , add (X → X, ∅) to P ′;

3. for all A → u ∈ PCF , A ∈ NCF , u ∈ {ε} ∪ NCS ∪ T ∪ (
⋃2

i=1 N i
CF), add (A → u,W)

to P ′;

4. if AB → AC ∈ PCS , A,C ∈ NCF , B ∈ NCS , then add the following productions to
P ′:

(a) (B → 〈A,B,C〉,W);

(b) (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉});

(c) (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}) for all 1 ≤ j ≤ m such
that f(A) 6= j;

(d) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(e) (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

92 CHAPTER 4.

Basic Idea. Let us only sketch the proof that L(G) = L(G′). The above construction
resembles the construction in Lemma 18 very much. Indeed, to simulate the non-context-
free productions AB → AC in FE0L grammars, we use the same technique as in FEP0L
grammars from Lemma 18. We only need to guarantee that no sentential form begins
with a symbol from NCS . This is solved by an auxiliary nonterminal $ in the definition
of G′. The symbol is always generated in the first derivation step by (S ′ → $S, ∅) (see
(1) in the definition of P ′). After that, it appears as the leftmost symbol of all sentential
forms containing some nonterminals. The only production that can erase it is ($ →
ε, V ′ − T − {$}).

Therefore, by analogy with the technique used in Lemma 18, we can establish

S ⇒∗
G x if and only if S ′ ⇒+

G′ $x′

such that x ∈ V ∗, x′ ∈ (V ′ − {S′, $})∗, x′ ∈ g(x), where g is a finite substitution from V ∗

into (V ′ − {S′, $})∗ defined as

g(X) = {X} ∪ {〈A,X,C〉 : 〈A,X,C〉 ∈ W0}
∪ {〈A,X,C, j〉 : 〈A,X,C, j〉 ∈ WS , 1 ≤ j ≤ m + 1}

for all X ∈ V , A,C ∈ NCF . The details are left to the reader.

As in Lemma 18, we have g(a) = {a} for all a ∈ T ; hence, for all x ∈ T ∗:

S ⇒∗
G x if and only if S ′ ⇒+

G′ $x.

Since $x ⇒G′ x [($ → ε, V ′ − T − {$})], we obtain

S ⇒∗
G x if and only if S ′ ⇒+

G′ x.

Consequently, L(G) = L(G′); thus, RE ⊆ FE0L(2).

Theorem 39. RE = FE0L(2) = FET0L(2) = FE0L = FET0L.

Proof. By Lemma 19, we have RE ⊆ FE0L(2) ⊆ FET0L(2) ⊆ FET0L. From Lemma 12,
it follows that FET0L(s) ⊆ FET0L ⊆ CET0L ⊆ RE, for any s ≥ 0. Therefore,
RE = FE0L(2) = FET0L(2) = FE0L = FET0L, so the theorem holds.

By analogy with Corollary 15, we obtain the following normal form.

Corollary 16. Every recursively enumerable language can be generated by an FE0L gram-
mar G = (V, T, P, S) of degree 2 such that every production from P has one of the following
forms:

(i) (a → a, ∅), a ∈ V ;

(ii) (X → x, F), X ∈ V − T , |x| ≤ 2, and F 6= ∅ implies max(F) = 1;

(iii) (X → Y, {z}), X,Y ∈ V − T , z ∈ V 2.

Theorems 36, 37, 38, and 39 imply the following relationships of FET0L language
families:

4.2. PARALLEL CONDITIONAL GRAMMARS 93

Corollary 17.

CF
⊂

FEP0L(0) = FE0L(0) = EP0L = E0L
⊂

FEP0L(1) = FEPT0L(1) = FE0L(1) = FET0L(1) =
FEPT0L(0) = FET0L(0) = EPT0L = ET0L

⊂
FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L = CS

⊂
FE0L(2) = FET0L(2) = FE0L = FET0L = RE.

4.2.3 Simple Semi-Conditional ET0L Grammars

Simple semi-conditional ET0L grammars represent another variant of context-conditional
ET0L grammars with restricted sets of context conditions. By analogy with sequential sim-
ple semi-conditional grammars (see Section 4.1.5), these grammars are context-conditional
ET0L grammars in which every production contains no more than one context condition.

Definition 18. Let G = (V, T, P1, . . . , Pt, S) be a context-conditional ET0L grammar,
for some t ≥ 1. If for all p = (a → x, Per, For) ∈ Pi for every i = 1, . . . , t holds
|Per| + |For| ≤ 1, G is said to be a simple semi-conditional ET0L grammar (SSC-ET0L
grammar for short). If G is a propagating SSC-ET0L grammar, then G is called an
SSC-EPT0L grammar. If t = 1, then G is called an SSC-E0L grammar ; if in addition, G
is a propagating SSC-E0L grammar, G is said to be an SSC-EP0L grammar.

Convention 5. Let G = (V, T, P1, . . . , Pt, S) be an SSC-ET0L grammar of degree (r, s).
By analogy with ssc-grammars, in each production (a → x, Per, For) ∈ Pi, i = 1, . . . , t,
we omit braces and instead of ∅, we write 0. For example, we write (a → x,EF, 0) instead
of (a → x, {EF}, ∅).

The families of languages generated by SSC-EPT0L grammars of degree (r, s), SSC-
ET0L grammars of degree (r, s), SSC-EP0L grammars of degree (r, s), and SSC-E0L gram-
mars of degree (r, s) are denoted by SSC-EPT0L(r, s), SSC-ET0L(r, s), SSC-EP0L(r, s),
and SSC-E0L(r, s), respectively. Furthermore,

SSC-EPT0L =
∞⋃

r=0

∞⋃

s=0

SSC-EPT0L(r, s), SSC-ET0L =
∞⋃

r=0

∞⋃

s=0

SSC-ET0L(r, s),

SSC-EP0L =

∞⋃

r=0

∞⋃

s=0

SSC-EP0L(r, s), SSC-E0L =

∞⋃

r=0

∞⋃

s=0

SSC-E0L(r, s).

Next, let us investigate the generative power of SSC-ET0L grammars. The following
lemma proves that every recursively enumerable language can be defined by an SSC-E0L
grammar of degree (1, 2).

94 CHAPTER 4.

Lemma 20. RE ⊆ SSC-E0L(1, 2).

Proof. Let G = (NCF ∪ NCS ∪ T, T, P, S) be a phrase-structure grammar of the form of
Lemma 5. Then, let V = NCF ∪ NCS ∪ T and m be the cardinality of V . Let f be an
arbitrary (but fixed) bijection from V to {1, . . . ,m}, and f−1 be the inverse of f . Set

M = {#} ∪
{〈A,B,C〉 : AB → AC ∈ P,A,C ∈ NCF , B ∈ NCS} ∪
{〈A,B,C, i〉 : AB → AC ∈ P,A,C ∈ NCF , B ∈ NCS , 1 ≤ i ≤ m + 2}

and

W = {[A,B,C] : AB → AC ∈ P,A,C ∈ NCF , B ∈ NCS}.

Next, construct an SSC-E0L grammar of degree (1, 2), G′ = (V ′, T, P ′, S′), where V ′ =
V ∪ M ∪ W ∪ {S ′}. Without any loss of generality, we assume that V , M , W , and {S ′}
are pairwise disjoint. The set of productions, P ′, is constructed in the following way:

1. add (S′ → #S, 0, 0) to P ′;

2. for all A → x ∈ P , A ∈ NCF , x ∈ {ε} ∪ NCS ∪ T ∪ N2
CF , add (A → x,#, 0) to P ′;

3. for every AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , add the following productions to
P ′:

(a) (# → 〈A,B,C〉, 0, 0);

(b) (B → [A,B,C], 〈A,B,C〉, 0);

(c) (〈A,B,C〉 → 〈A,B,C, 1〉, 0, 0);

(d) ([A,B,C] → [A,B,C], 0, 〈A,B,C,m + 2〉);

(e) (〈A,B,C, i〉 → 〈A,B,C, i + 1〉, 0, f−1(i)[A,B,C]) for all 1 ≤ i ≤ m, i 6= f(A);

(f) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, 0, 0);

(g) (〈A,B,C,m + 1〉 → 〈A,B,C,m + 2〉, 0, [A,B,C]2);

(h) (〈A,B,C,m + 2〉 → #, 0, 〈A,B,C,m + 2〉[A,B,C]);

(i) ([A,B,C] → C, 〈A,B,C,m + 2〉, 0);

4. for all X ∈ V , add (X → X, 0, 0) to P ′;

5. add (# → #, 0, 0) and (# → ε, 0, 0) to P ′.

Basic Idea. Let us explain how G′ works. During the simulation of a derivation in G,
every sentential form starts with an auxiliary symbol from M , called the master. This
symbol determines the current simulation mode and controls the next derivation step.
Initially, the master is set to # (see (1) in the definition of P ′). In this mode, G′ simulates
context-free productions (see (2)); notice that symbols from V can always be rewritten to
themselves by (4). To start the simulation of a non-context-free production of the form
AB → AC, G′ rewrites the master to 〈A,B,C〉. In the following step, chosen occurences
of B are rewritten to [A,B,C]; no other productions can be used except productions
introduced in (4). At the same time, the master is rewritten to 〈A,B,C, i〉 with i = 1

4.2. PARALLEL CONDITIONAL GRAMMARS 95

(see (3c)). Then, i is repeatedly incremented by one until i is greater than the cardinality of
V (see productions (3e) and (3f)). Simultaneously, the master’s conditions make sure that
for every i such that f−1(i) 6= A, no f−1(i) appears as the left neighbor of any occurence of
[A,B,C]. Finally, G′ checks that there are no two adjoining [A,B,C] (see (3g)) and that
[A,B,C] does not appear as the right neighbor of the master (see (3h)). At this point,
the left neighbors of [A,B,C] are necessarily equal to A and every occurence of [A,B,C]
is rewritten to C. In the same derivation step, the master is rewritten to #.

Observe that in every derivation step, the master allows G′ to use only a subset of
productions according to the current mode. Indeed, it is not possible to combine context-
free and non-context-free simulation modes. Furthermore, no two different non-context-
free productions can be simulated at the same time. The simulation ends when # is erased
by (# → ε, 0, 0). After this erasure, no other production can be used.

The following three claims demonstrate some important properties of derivations in G ′

to establish L(G) = L(G′).

Claim 31. S ′ ⇒+
G′ w′ implies that w′ ∈ M(V ∪ W)∗ or w′ ∈ (V ∪ W)∗. Furthermore, if

w′ ∈ M(V ∪ W)∗, every v′ such that S ′ ⇒+
G′ v′ ⇒∗

G′ w′ belongs to M(V ∪ W)∗ as well.

Proof. When deriving w′, G′ first rewrites S ′ to #S by using (S ′ → #S, 0, 0), where
∈ M and S ∈ V . Next, inspect P ′ to see that every symbol from M is always rewritten
to a symbol belonging to M or, in the case of #, erased by (# → ε, 0, 0). Moreover, there
are no productions generating new occurences of symbols from (M ∪ {S ′}). Thus, all
sentential forms derived from S ′ belong either to M(V ∪W)∗ or to (V ∪W)∗. In addition,
if a sentential form belongs to M(V ∪ W)∗, all previous sentential forms (except for S ′)
are also from M(V ∪ W)∗.

Claim 32. Every successful derivation in G′ is of the form

S′ ⇒G′ #S ⇒+
G′ #u′ ⇒G′ w′ ⇒∗

G′ w′,

where u′ ∈ V ∗, w′ ∈ T ∗.

Proof. From Claim 31 and its proof, every successful derivation has the form

S′ ⇒G′ #S ⇒+
G′ #u′ ⇒G′ v′ ⇒∗

G′ w′,

where u′, v′ ∈ (V ∪ W)∗, w′ ∈ T ∗. This claim shows that #u′ ⇒G′ v′ ⇒∗
G′ w′ implies

u′ ∈ V and v′ = w′.
Consider #u′ ⇒G′ v′ ⇒∗

G′ w′, where u′, v′ ∈ (V ∪ W)∗, w′ ∈ T ∗. Assume that u′

contains a nonterminal [A,B,C] ∈ W . There are two productions rewriting [A,B,C]: p1 =
([A,B,C] → [A,B,C], 0, 〈A,B,C,m + 2〉) and p2 = ([A,B,C] → C, 〈A,B,C,m + 2〉, 0).
Due to its permitting condition, p2 cannot be applied during #u′ ⇒G′ v′. If [A,B,C] is
rewritten by p1, that is, [A,B,C] ∈ alph(v′), [A,B,C] necessarily occurs in all sentential
forms derived from v′. Thus, no u′ containing a nonterminal from W results in a terminal
string; hence, u′ ∈ V ∗. By analogical considerations, establish that also v ′ ∈ V ∗. Next,
assume that v′ contains some A ∈ NCF or B ∈ NCS . The first one can be rewritten by
(A → z,#, 0), z ∈ V ∗, and the second one by (B → [A,B,C], 〈A,B,C〉, 0), [A,B,C] ∈ W ,
〈A,B,C〉 ∈ M . In both cases, the permitting condition forbids an application of the
production. Consequently, v′ ∈ T ∗. It suffices to show that v′ = w′. Indeed, every
production rewriting a terminal is of the form (a → a, 0, 0), a ∈ T .

96 CHAPTER 4.

Claim 33. S ′ ⇒n
G′ Zx′, Z ∈ M , x′ ∈ (V ∪ W)∗, n ≥ 1, implies that Zx′ has one of the

following forms:

(I) Z = #, x′ ∈ V ∗;

(II) Z = 〈A,B,C〉, x′ ∈ V ∗, for some A,C ∈ NCF , B ∈ NCS;

(III) Z = 〈A,B,C, i〉, x′ ∈ (V ∪ {[A,B,C]})∗, 1 ≤ i ≤ m + 1, and {f−1(j)[A,B,C] :
1 ≤ j < i, j 6= f(A)} ∩ sub(x′) = ∅ for some A,C ∈ NCF , B ∈ NCS;

(IV) Z = 〈A,B,C,m + 2〉, x′ ∈ (V ∪ {[A,B,C]})∗, {X[A,B,C] : X ∈ V, X 6= A} ∩
sub(x′) = ∅, and [A,B,C]2 6∈ sub(x′) for some A,C ∈ NCF , B ∈ NCS;

Proof. This claim is proven by induction on the length of derivations.

Basis: Let n = 1. Then, S ′ ⇒G′ #S, where #S is of type (I).

Induction Hypothesis: Suppose that the claim holds for all derivations of length n or less,
for some n ≥ 1.

Induction Step: Consider a derivation of the form S ′ ⇒n+1
G′ Qx′, Q ∈ M , x′ ∈ (V ∪ W)∗.

Because n + 1 ≥ 2, by Claim 31, there exists Zy ′ ∈ M(V ∪ W)∗ and a sequence of
productions p0, p1, . . . , pq, where pi ∈ P ′, 0 ≤ i ≤ q, q = |y′|, such that S ′ ⇒n

G′ Zy′ ⇒G′

Qx′ [p0, p1, . . . , pq]. Let y′ = a1a2 . . . aq, where ai ∈ (V ∪ W) for all i = 1, . . . , q. By the
induction hypothesis, the following cases (i) through (iv) cover all possible forms of Zy ′:

(i) Let Z = # and y′ ∈ V ∗ (form (I)). According to the definition of P ′, p0 is either
(# → 〈A,B,C〉, 0, 0), A,C ∈ NCF , B ∈ NCS , or (# → #, 0, 0), or (# → ε, 0, 0),
and every pi is either of the form (ai → z,#, 0), z ∈ {ε} ∪ NCS ∪ T ∪ N2

CF , or
(ai → ai, 0, 0). Obviously, y′ is always rewritten to a string x′ ∈ V ∗. If # is rewritten
to 〈A,B,C〉, we get 〈A,B,C〉x′ that is of form (II). If # remains unchanged, #x′ is
of type (I). In case that # is erased, the resulting sentential form does not belong
to M(V ∪ W)∗ required by this claim (which also holds for all strings derived from
x′ (see Claim 31)).

(ii) Let Z = 〈A,B,C〉, y′ ∈ V ∗, for some A,C ∈ NCF , B ∈ NCS (form (II)). Then, p0 =
(〈A,B,C〉 → 〈A,B,C, 1〉, 0, 0) and every pi is either (ai → [A,B,C], 〈A,B,C〉, 0) or
(ai → ai, 0, 0) (see the definition of P ′). It is easy to see that 〈A,B,C, 1〉x′ belongs
to (III).

(iii) Let Z = 〈A,B,C, j〉, y′ ∈ (V ∪ {[A,B,C]})∗, and y′ satisfies {f−1(k)[A,B,C] :
1 ≤ k < j, k 6= f(A)} ∩ sub(y′) = ∅, 1 ≤ j ≤ m + 1, for some A,C ∈ NCF , B ∈ NCS

(form (III)). The only productions rewriting symbols from y ′ are (ai → ai, 0, 0),
ai ∈ V , and ([A,B,C] → [A,B,C], 0, 〈A,B,C,m+2〉); thus, y ′ is rewritten to itself.
By inspection of P ′, p0 can be of the following three forms.

(a) If j 6= f(A) and j < m + 1, then p0 = (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, 0, f−1(j)
[A,B,C]). Clearly, p0 can be used only when f−1(j)[A,B,C] 6∈ sub(Zy′). As
{f−1(k)[A,B,C] : 1 ≤ k < j, k 6= f(A)}∩sub(y ′) = ∅, it also {f−1(k)[A,B,C] :
1 ≤ k ≤ j, k 6= f(A)} ∩ sub(y′) = ∅. Since 〈A,B,C, j〉 is rewritten to
〈A,B,C, j +1〉 and y′ is unchanged, we get 〈A,B,C, j +1〉y′ such that {f−1(k)
[A,B,C] : 1 ≤ k < j + 1, k 6= f(A)} ∩ sub(y′) = ∅, which is of form (III).

4.2. PARALLEL CONDITIONAL GRAMMARS 97

(b) If j = f(A), then p0 = (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, 0, 0). As before,
Qx′ = 〈A,B,C, j + 1〉y′. Moreover, because {f−1(k)[A,B,C] : 1 ≤ k < j, k 6=
f(A)} ∩ sub(y′) = ∅ and j = f(A), {f−1(k)[A,B,C] : 1 ≤ k < j + 1, k 6=
f(A)} ∩ sub(x′) = ∅. Consequently, Qx′ belongs to (III) as well.

(c) If j = m + 1, p0 = (〈A,B,C,m + 1〉 → 〈A,B,C,m + 2〉, 0, [A,B,C]2). Then,
Qx′ = 〈A,B,C,m + 2〉y′. The application of p0 implies [A,B,C]2 6∈ sub(x′).
In addition, observe that for j = m + 1, {f−1(k)[A,B,C] : 1 ≤ k < j, k 6=
f(A)} = {X[A,B,C] : X ∈ V, X 6= A}. Hence, {X[A,B,C] : X ∈ V, X 6=
A} ∩ sub(x′) = ∅. As a result, Qx′ is of form (IV).

(iv) Assume that Z = 〈A,B,C,m+2〉, y′ ∈ (V ∪{[A,B,C]})∗, [A,B,C]2 6∈ sub(y′), and
{X[A,B,C] : X ∈ V, X 6= A} ∩ sub(y′) = ∅, for some A,C ∈ NCF , B ∈ NCS (form
(IV)). Inspect P ′ to see that p0 = (〈A,B,C,m+2〉 → #, 0, 〈A,B,C,m+2〉[A,B,C])
and pi is either (ai → ai, 0, 0), ai ∈ V, or ([A,B,C] → C, 〈A,B,C,m + 2〉, 0),
1 ≤ i ≤ q. According to the right-hand sides of these productions, Qx′ ∈ {#}V ∗;
that is, Qx′ belongs to (I).

In cases (i) through (iv), we have demonstrated that every sentential form obtained in
n + 1 derivation steps satisfies the statement of this claim. Therefore, we have finished
the induction step and established Claim 33.

To prove the following claims, define a finite substitution g from V ∗ into (V ∪ W)∗ as

g(X) = {X} ∪ {[A,B,C] ∈ W : A,C ∈ NCF , B ∈ NCS}

for all X ∈ V . Let g−1 be the inverse of g.

Claim 34. Let y′ = a1a2 . . . aq, ai ∈ (V ∪ W)∗, q = |y′|, and g−1(ai) ⇒hi

G g−1(x′
i) for all

i ∈ {1, . . . , q} and some hi ∈ {0, 1}, x′
i ∈ (V ∪ W)∗. Then, g−1(y′) ⇒h

G g−1(x′) such that
x′ = x′

1x
′
2 . . . x′

q, h =
∑q

i=1 hi, h ≤ q.

Proof. First, consider a derivation g−1(X) ⇒l
G g−1(u), X ∈ (V ∪ W), u ∈ (V ∪ W)∗,

l ∈ {0, 1}. If l = 0, g−1(X) = g−1(u). Let l = 1. Then, there surely exists a production
p = g−1(X) → g−1(u) ∈ P such that g−1(X) ⇒G g−1(u) [p]. Return to the statement of
this claim. We can construct a derivation

g−1(a1)g
−1(a2) . . . g−1(aq) ⇒h1

G g−1(x′
1)g

−1(a2) . . . g−1(aq)

⇒h2

G g−1(x′
1)g

−1(x′
2) . . . g−1(aq)

...

⇒
hq

G g−1(x′
1)g

−1(x′
2) . . . g−1(x′

q)

where g−1(y′) = g−1(a1) . . . g−1(aq) and g−1(x′
1) . . . g−1(x′

q) = g−1(x′
1 . . . x′

q) = g−1(x′).
In such a derivation, each g−1(ai) is either left unchanged (if hi = 0) or rewritten to
g−1(x′

i) by the corresponding production g−1(ai) → g−1(x′
i). Obviously, the length of this

derivation is
∑q

i=1 hi.

Claim 35. S ⇒∗
G x if and only if S ′ ⇒+

G′ Qx′, where g−1(x′) = x, Q ∈ M , x ∈ V ∗,
x′ ∈ (V ∪ W)∗.

98 CHAPTER 4.

Proof.

Only if : By induction on the length of derivations in G, we show that

S ⇒n
G x implies S ′ ⇒+

G′ #x,

where x ∈ V ∗, n ≥ 0. Clearly, g−1(x) = x.

Basis: Let n = 0. Then, S ⇒0
G S. In G′, S′ ⇒G′ #S by using (S ′ → #S, 0, 0).

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
G x. As n + 1 ≥ 1, there exists y ∈ V ∗ and

p ∈ P such that S ⇒n
G y ⇒G x [p]. Let y = a1a2 . . . aq, ai ∈ V for all 1 ≤ i ≤ q, where

q = |y|. By the induction hypothesis, S ′ ⇒+
G′ #y. The following cases investigate all

possible forms of p:

(i) p = A → z, A ∈ NCF , z ∈ {ε} ∪ NCS ∪ T ∪ N2
CF . Then, y = y1Ay3 and x = y1zy3,

y1, y3 ∈ V ∗. Let l = |y1| + 1. In this case, we can construct S ′ ⇒+
G′ #y ⇒G′

#x [p0, p1, . . . , pq] such that p0 = (# → #, 0, 0), pl = (A → z,#, 0), and pi = (ai →
ai, 0, 0) for all 1 ≤ i ≤ q, i 6= l.

(ii) p = AB → AC, A,C ∈ NCF , B ∈ NCS . Then, y = y1ABy3 and x = y1ACy3,
y1, y3 ∈ V ∗. Let l = |y1| + 2. At this point, there exists the following derivation:

S′ ⇒+
G′ #y1ABy3

⇒G′ 〈A,B,C〉y1ABy3

⇒G′ 〈A,B,C, 1〉y1A[A,B,C]y3

⇒G′ 〈A,B,C, 2〉y1A[A,B,C]y3
...

⇒G′ 〈A,B,C, f(A)〉y1A[A,B,C]y3

⇒G′ 〈A,B,C, f(A) + 1〉y1A[A,B,C]y3
...

⇒G′ 〈A,B,C,m + 1〉y1A[A,B,C]y3

⇒G′ 〈A,B,C,m + 2〉y1A[A,B,C]y3

⇒G′ #y1ACy3.

If : The if-part establishes that

S′ ⇒n
G′ Qx′ implies S ⇒∗

G′ x,

where g−1(x′) = x, Q ∈ M , x′ ∈ (V ∪ W)∗, x ∈ V ∗, n ≥ 1. This claim is proven by
induction on the length of derivations in G′.

Basis: Assume that n = 1. Because the only production that can rewrite S ′ is (S′ →
#S, 0, 0), S ′ ⇒G′ #S. Clearly, S ⇒0

G S and g−1(S) = S.

Induction Hypothesis: Suppose that the claim holds for any derivation of length n or less,
for some n ≥ 1.

4.2. PARALLEL CONDITIONAL GRAMMARS 99

Induction Step: Consider S ′ ⇒n+1
G′ Qx′, Qx′ ∈ M(V ∪W)∗. Since n+1 ≥ 2, by Claim 31,

there exists a derivation S ′ ⇒+
G′ Zy′ ⇒G′ Qx′ [p0, p1, . . . , pq], where Zy′ ∈ M(V ∪ W)∗,

and pi ∈ P ′ for all i ∈ {0, 1, . . . , q}, q = |y′|. By the induction hypothesis, there is also
a derivation S ⇒∗

G′ y, where y ∈ V ∗, g−1(y′) = y. Let y′ = a1a2 . . . aq. Claim 33 says that
Zy′ has one of the following forms:

(i) Let Z = # and y′ ∈ V ∗. Then, there are two forms of productions rewriting ai in
y′.

(a) (ai → ai, 0, 0), ai ∈ V . In this case, g−1(ai) ⇒0
G g−1(ai).

(b) (ai → xi,#, 0), xi ∈ {ε} ∪NCS ∪ T ∪N2
CF . Because ai = g−1(ai), xi = g−1(xi)

and ai → xi ∈ P , g−1(ai) ⇒G g−1(xi) [ai → xi].

We see that for all ai, there exists a derivation g−1(ai) ⇒hi

G g−1(xi) for some hi ∈
{0, 1}, where xi ∈ V ∗, x′ = x1x2 . . . xq. Therefore, by Claim 34, we can construct
S′ ⇒∗

G y ⇒h
G x, where 0 ≤ h ≤ q, x = g−1(x′).

(ii) Let Z = 〈A,B,C〉, y′ ∈ V ∗, for some A,C ∈ NCF , B ∈ NCS. At this point, the
following two forms of productions can be used to rewrite ai in y′:

(a) (ai → ai, 0, 0), ai ∈ V . As in case (i.a), g−1(ai) ⇒0
G g−1(ai).

(b) (ai → [A,B,C], 〈A,B,C〉, 0), ai = B. Since g−1([A,B,C]) = g−1(B), we have
g−1(ai) ⇒0

G g−1([A,B,C]).

Thus, there exists the derivation S ⇒∗
G y ⇒0

G x, x = g−1(x′).

(iii) Let Z = 〈A,B,C, j〉, y′ ∈ (V ∪{[A,B,C]})∗, and {f−1(k)[A,B,C] : 1 ≤ k < j, k 6=
f(A)} ∩ sub(y′) = ∅, 1 ≤ j ≤ m + 1, for some A,C ∈ NCF , B ∈ NCS. Then,
the only productions rewriting symbols from y ′ are (ai → ai, 0, 0), ai ∈ V, and
([A,B,C] → [A,B,C], 0, 〈A,B,C,m + 2〉); hence, x′ = y′. Because we have S ⇒∗

G

y, g−1(y′) = y, it also holds g−1(x′) = y.

(iv) Let Z = 〈A,B,C,m+2〉, y′ ∈ (V ∪{[A,B,C]})∗, [A,B,C]2 6∈ sub(y′), {X[A,B,C] :
X ∈ V, X 6= A} ∩ sub(y′) = ∅, for some A,C ∈ NCF , B ∈ NCS . G′ rewrites
〈A,B,C,m + 2〉 by using (〈A,B,C,m + 2〉 → #, 0, 〈A,B,C,m + 2〉[A,B,C]) which
forbids 〈A,B,C,m +2〉[A,B,C] as a substring of Zy ′. As a result, the left neighbor
of every occurence of [A,B,C] in 〈A,B,C,m+2〉y ′ is A. Inspect P ′ to see that ai can
be rewritten either by (ai → ai, 0, 0), ai ∈ V , or ([A,B,C] → C, 〈A,B,C,m + 2〉, 0).
Therefore, we can express:

y′ = y1A[A,B,C]y2A[A,B,C]y3 . . . ylA[A,B,C]yl+1,
y = y1ABy2ABy3 . . . ylAByl+1,
x′ = y1ACy2ACy3 . . . ylACyl+1,

where l ≥ 0, yk ∈ V ∗, 1 ≤ k ≤ l + 1. Since we have p = AB → AC ∈ P , there is a
derivation

S ⇒∗
G y1ABy2ABy3 . . . ylAByl+1

⇒G y1ACy2ABy3 . . . ylAByl+1 [p]
⇒G y1ACy2ACy3 . . . ylAByl+1 [p]

...
⇒G y1ACy2ACy3 . . . ylACyl+1 [p].

100 CHAPTER 4.

Because cases (i) through (iv) cover all possible forms of y ′, we have completed the induc-
tion and established Claim 35.

Let us finish the proof of Lemma 20. Consider a derivation S ⇒∗
G w, w ∈ T ∗. From

Claim 35, it follows that S ′ ⇒+
G′ #w because g(a) = {a} for every a ∈ T . Then, as shown

in Claim 32, S ′ ⇒+
G′ #w ⇒G′ w and, hence, S ⇒∗

G w implies S ′ ⇒+
G′ w for all w ∈ T ∗.

To prove the converse implication, consider a successful derivation of the form S ′ ⇒+
G′

#u ⇒G′ w ⇒∗
G′ w, u ∈ V ∗, w ∈ T ∗ (see Claim 32). Observe that by the definition of

P ′, for every S ′ ⇒+
G′ #u ⇒G′ w there also exists a derivation S ′ ⇒+

G′ #u ⇒∗
G′ #w ⇒G′

w. Then, according to Claim 35, S ⇒∗
G w. Consequently, we get for every w ∈ T ∗,

S ⇒∗
G w if and only if S ′ ⇒∗

G′ w,

therefore, L(G) = L(G′).

Lemma 21. SSC-ET0L(r, s) ⊆ RE for any r, s ≥ 0.

Proof. By Lemma 12, CET0L ⊆ RE. Because SSC-ET0L(r, s) ⊆ CET0L for all
r, s ≥ 0 (see Definition 18), SSC-ET0L(r, s) ⊆ RE for all r, s ≥ 0 as well.

Inclusions established in Lemmas 20 and 21 result in the following theorem:

Theorem 40. SSC-E0L(1, 2) = SSC-ET0L(1, 2) = SSC-E0L = SSC-ET0L = RE.

Proof. From Lemmas 20 and 21, RE ⊆ SSC-E0L(1, 2) and SSC-ET0L(r, s) ⊆ RE for
any r, s ≥ 0. By the definitions, it also holds SSC-E0L(1, 2) ⊆ SSC-ET0L(1, 2) ⊆
SSC-ET0L and SSC-E0L(1, 2) ⊆ SSC-E0L ⊆ SSC-ET0L. Hence, SSC-E0L(1, 2) =
SSC-ET0L(1, 2) = SSC-E0L = SSC-ET0L = RE. �

Next, let us investigate the generative power of propagating SSC-ET0L grammars.

Lemma 22. CS ⊆ SSC-EP0L(1, 2).

Proof. We can base this proof on the same technique as in Lemma 20. However, we have
to make sure that the construction produces no erasing productions. This requires some
modifications of the original algorithm; in particular, we have to elliminate the production
(# → ε, 0, 0).

Let L be a context-sensitive language generated by a grammar G = (V, T, P, S) of the
normal form of Lemma 4, where V = NCF ∪ NCS ∪ T. Let m be the cardinality of V .
Define a bijection f from V to {1, . . . ,m}. Let f−1 be the inverse of f . Set

M = {〈# |X〉 : X ∈ V } ∪
{〈A,B,C |X〉 : AB → AC ∈ P, X ∈ V } ∪
{〈A,B,C, i |X〉 : AB → AC ∈ P, 1 ≤ i ≤ m + 2, X ∈ V },

W = {[A,B,C,X] : AB → AC ∈ P, X ∈ V }, and
V ′ = V ∪ M ∪ W,

where V , M , and W are pairwise disjoint. Then, construct the SSC-EP0L grammar of
degree (1, 2), G′ = (V ′, T, P ′, 〈# |S〉), with the set of productions P ′ defined as follows:

4.2. PARALLEL CONDITIONAL GRAMMARS 101

1. for all A → x ∈ P , A ∈ NCF , x ∈ T ∪ NCS ∪ N2
CF ,

(a) for all X ∈ V , add (A → x, 〈# |X〉, 0) to P ′;

(b) if x ∈ T ∪ NCS , add (〈# |A〉 → 〈# |x〉, 0, 0) to P ′;

(c) if x = Y Z, Y Z ∈ N 2
CF , add (〈# |A〉 → 〈# |Y 〉Z, 0, 0) to P ′;

2. for all X ∈ V for every AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , add the following
productions to P ′:

(a) (〈# |X〉 → 〈A,B,C |X〉, 0, 0);

(b) (B → [A,B,C,X], 〈A,B,C |X〉, 0);

(c) (〈A,B,C |X〉 → 〈A,B,C, 1 |X〉, 0, 0);

(d) ([A,B,C,X] → [A,B,C,X], 0, 〈A,B,C,m + 2〉X);

(e) (〈A,B,C, i |X〉 → 〈A,B,C, i + 1 |X〉, 0, f−1(i)[A,B,C,X]) for all 1 ≤ i ≤ m,
i 6= f(A);

(f) (〈A,B,C, f(A) |X〉 → 〈A,B,C, f(A) + 1 |X〉, 0, 0);

(g) (〈A,B,C,m + 1 |X〉 → 〈A,B,C,m + 2 |X〉, 0, [A,B,C,X]2);

(h) (〈A,B,C,m + 2 |X〉 → 〈# |X〉, 0, 0) for X = A,
(〈A,B,C,m + 2 |X〉 → 〈# |X〉, 0, 〈A,B,C,m + 2 |X〉[A,B,C,X]) otherwise;

(i) ([A,B,C,X] → C, 〈A,B,C,m + 2 |X〉, 0);

3. for all X ∈ V , add (X → X, 0, 0) to P ′;

4. for all X ∈ V , add (〈# |X〉 → 〈# |X〉, 0, 0) and (〈# |X〉 → X, 0, 0) to P ′.

Basic Idea. Consider this construction and the construction used in Lemma 20. Ob-
serve that the present construction does not attach the master as an extra symbol before
sentential forms. Instead, the master is incorporated with its right neighbor into one com-
posite symbol. For example, if G generates AabCadd, the corresponding sentential form
in G′ is 〈# |A〉abCadd, where 〈# |A〉 is one symbol. At this point, we need no production
erasing #; the master is simply rewritten to the symbol with which it is incorporated
(see productions of (4)). In addition, this modification involves some further changes to
the algorithm: First, G′ can rewrite symbols incorporated with the master (see produc-
tions of (1b) and (1c)). Second, conditions of the productions depending on the master
refer to the composite symbols. Finally, G′ can make context-sensitive rewriting of the
composite master’s right neighbor (see productions of (2h)). For instance, if ABadC ⇒G

ACadC [AB → AC] in G, G′ derives 〈# |A〉BadC ⇒+
G′ 〈# |A〉CadC.

Based on the above observations, the reader can surely establish L(G) = L(G ′) by
analogy with the proof of Lemma 20. Thus, the rigorous proof is omitted.

Lemma 23. SSC-EPT0L(r, s) ⊆ CS for all r, s ≥ 0.

Proof. By Lemma 11, CEPT0L(r, s) ⊆ CS, for any r ≥ 0, s ≥ 0. Since every SSC-
EPT0L grammar is a special case of a CEPT0L grammar (see Definition 18), we obtain
SSC-EPT0L(r, s) ⊆ CS for all r, s ≥ 0.

102 CHAPTER 4.

Theorem 41. SSC-EP0L(1, 2) = SSC-EPT0L(1, 2) = SSC-EP0L = SSC-EPT0L =
CS.

Proof. By Lemma 22, CS ⊆ SSC-EP0L(1, 2). Lemma 23 says that SSC-EPT0L(r, s) ⊆
CS for all r, s ≥ 0. From the definitions, SSC-EP0L(1, 2) ⊆ SSC-EPT0L(1, 2) ⊆
SSC-EPT0L and SSC-EP0L(1, 2) ⊆ SSC-EP0L ⊆ SSC-EPT0L. Consequently,
SSC-EP0L(1, 2) = SSC-EPT0L(1, 2) = SSC-EP0L = SSC-EPT0L = CS. �

The following corollary summarizes the established relationships between the language
families generated by SSC-ET0L grammars:

Corollary 18.

CF
⊂

SSC-EP0L(0, 0) = SSC-E0L(0, 0) = EP0L = E0L
⊂

SSC-EPT0L(0, 0) = SSC-ET0L(0, 0) = EPT0L = ET0L
⊂

SSC-EP0L(1, 2) = SSC-EPT0L(1, 2) = SSC-EP0L = SSC-EPT0L = CS
⊂

SSC-E0L(1, 2) = SSC-ET0L(1, 2) = SSC-E0L = SSC-ET0L = RE.

Open Problems. Notice that Corollary 18 does not include some related language
families. For instance, it contains no language families generated by SSC-ET0L grammars
with degrees (1, 1), (1, 0), and (0, 1). What is their generative power? What is the gener-
ative power of SSC-ET0L grammars of degree (2, 1)? Are they as powerful as SSC-ET0L
grammars of degree (1, 2)?

4.3 Global Context Conditional Grammars

As a matter of fact, in the present section, we go beyond the topic of this chapter. Indeed,
rather than associate context conditions with grammatical rules, we associate them with
a grammar as a whole.

Definition 19. Let r be a natural number. A global context conditional grammar (a gcc-
grammar for short) of degree r is a sixtuple, G = (V, T, P, S, Per, For), where (V, T, P, S)
is a context-free grammar, For ⊆ V , and Per ⊆ V + such that y ∈ Per implies |y| ≤ r.
G is said to be propagating if A → x ∈ P implies x 6= ε.

Let u, v ∈ V ∗, p ∈ P , p = A → x, u = u1Au2, v = u1xu2, for some A ∈ (V − T),
x, u1, u2 ∈ V ∗, then we write

(a) u p⇒G v [p] if A ∈ alph(sub(u) ∩ Per);

(b) u f⇒G v [p] if alph(u) ∩ For = ∅;

(c) u ⇒G v [p] if u p⇒G v [p] or u f⇒G v [p].

4.3. GLOBAL CONTEXT CONDITIONAL GRAMMARS 103

Roughly speaking, such a production as A → x ∈ P can be applied to a sentential
form w provided that (a) A occurs in a permitting word from Per is a subword of w or
(b) no forbidding symbol from For occurs in w. Note that (a) requires any occurence of
A to appear in a permitting word which is a subword of u; that is, not necessarily the
occurence of A which is rewritten in a given derivation step u p⇒G v.

In the standard manner, we define ⇒i
G for i ≥ 0, ⇒+

G, and ⇒∗
G. The language of G,

denoted by L(G), is defined as

L(G) = {w ∈ T ∗ : S ⇒∗
G w}.

The family of languages generated by gcc-grammars of degree r is denoted by GCC(r).
Furthermore, GCC =

⋃∞
i=0 GCC(i). We use prefix prop- if we consider only propagating

gcc-grammars. That is, prop-GCC(r) and prop-GCC denote the family of languages
generated by propagating gcc-grammars of degree r and by propagating gcc-grammars of
any degree, respectively.

Next, we prove two fundamental results regarding the generative power of gcc-grammars:

(i) a language is context-sensitive if and only if it is generated by a propagating gcc-
grammar of degree 2;

(ii) a language is recursively enumerable if and only if it is generated by a gcc-grammar
of degree 2.

Theorem 42. CS = prop-GCC(2).

Proof. It is straightforward to prove that prop-GCC(2) ⊆ CS, so it suffices to prove the
converse inclusion.

Let L be a context-sensitive language. Without any loss of generality, we can assume
that L is generated by a context-sensitive grammar G = (NCF ∪ NCS ∪ T, T, P, S) of
the form described in Lemma 4. Let V = NCF ∪ NCS ∪ T. Set For = {〈A,B,C〉 :
AB → AC ∈ P, A,C ∈ NCF , B ∈ NCS}. The propagating gcc-grammar G′ of degree 2
is defined as G′ = (V ′, T, P ′, S, Per, For), where V ′ = V ∪ For and Per = {A〈A,B,C〉 :
A ∈ NCF , 〈A,B,C〉 ∈ For}. The set of productions P ′ is defined in the following way:

1. if A → x ∈ P , A ∈ NCF , x ∈ NCS ∪ T ∪ N2
CF then add A → x to P ′;

2. if AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS , then add the following two productions
B → 〈A,B,C〉, 〈A,B,C〉 → C to P ′.

Obviously, G′ is a propagating gcc-grammar of degree 2. Moreover, observe that G
is supposed to be of the form described by Lemma 4, so NCF and NCS are two disjoint
alphabets. Thus, considering the construction of G′, we should see that there is at most
one occurence of a symbol from For in any word derived from S, that is

S ⇒∗
G′ x implies #Forx ≤ 1.

The formal proof is left to the reader.
Next, define a finite letter-to-letters substitution g from V ∗ into (V ∪ For)∗ such that

for all Y ∈ V , g(Y) = {Y } ∪ {〈X,Y,Z〉 : 〈X,Y,Z〉 ∈ For, X,Z ∈ NCF}. Let g−1 be the
inverse of g.

104 CHAPTER 4.

To show that L(G) = L(G′), we prove that

S ⇒m
G x if and only if S ⇒n

G′ x′

where x′ ∈ g(x), x ∈ V +, for some m,n ≥ 0.

Only if : This is established by induction on the length m of derivations; that is, we have
to demonstrate that S ⇒m

G x implies S ⇒∗
G′ x′ for some x′ ∈ g(x), x ∈ V +. This is our

claim.

Basis: Let m = 0. The only x is S because S ⇒0
G S. Clearly, S ⇒0

G′ S in G′ and
S ∈ g(S).

Induction Hypothesis: Suppose that our claim holds for all derivations of length at most
m, for some m ≥ 0.

Induction Step: Let us consider a derivation S ⇒m+1
G x, x ∈ V +. Since m + 1 ≥ 1, there

is some y ∈ V + and p ∈ P such that S ⇒m
G y ⇒G x [p] and by the induction hypothesis

there is also a derivation S ⇒n
G′ y′ for some y′ ∈ g(y).

(i) Let us assume that p = D → y2 ∈ P , D ∈ NCF , y2 ∈ NCS ∪ T ∪ N2
CF , y = y1Dy3,

y1, y3 ∈ V ∗, and x = y1y2y3. Since from the definition of g it is clear that g(Z) = {Z}
for all Z ∈ NCF , we can express y′ = y′1Dy′3, where y′1 ∈ g(y1) and y′3 ∈ g(y3).
Clearly, D → y2 ∈ P ′, see (1) in the definition of P ′.

(a) If For ∩ alph(y′
1Dy′3) = ∅, then S ⇒n

G′ y′1Dy′3
f⇒G′ y′1y2y

′
3 [D → y2] and

y′1y2y
′
3 ∈ g(y1y2y3) = g(x).

(b) If For ∩ alph(y′
1Dy′3) 6= ∅, then #Fory

′
1Dy′3 = 1. Suppose that 〈X,Y,Z〉 ∈

alph(y′1Dy′3) ∩ For, XY → XZ ∈ P , X,Z ∈ NCF , Y ∈ NCS ; then, by (2),
we have Y → 〈X,Y,Z〉 ∈ P ′. Clearly, we can express the derivation S ⇒n

G′

y′1Dy′3 in the following way:

S ⇒n−1
G′ g−1(y′1Dy′3)

f⇒G′ y′1Dy′3 [Y → 〈X,Y,Z〉],

where

alph(g−1(y′1Dy′3)) ∩ For = ∅ and g−1(y′1Dy′3) = y1Dy3.

Thus, S ⇒n−1
G′ y1Dy3 ⇒G′ y1y2y3 [D → y2] and y1y2y3 ∈ g(x).

(ii) Let p = AB → AC ∈ P , A,C ∈ NCF , B ∈ NCS, y = y1ABy2, y1, y2 ∈ V ∗,
x = y1ACy2, y′ = y′1XY y′2, y′1 ∈ g(y1), y′2 ∈ g(y2), X ∈ g(A), Y ∈ g(B). Clearly,
{B → 〈A,B,C〉, 〈A,B,C〉 → C} ⊆ P ′ (see (2) in the definition of P ′).

(a) If For ∩ alph(y′
1XY y′2) = ∅, then y′1XY y′2 = y1ABy2 and so

S ⇒n
G′ y1ABy2

f⇒G′ y1A〈A,B,C〉y2 [B → 〈A,B,C〉]
p⇒G′ y1ACy2 [〈A,B,C〉 → C]

and y1ACy2 ∈ g(x).

4.3. GLOBAL CONTEXT CONDITIONAL GRAMMARS 105

(b) Let For ∩ alph(y′
1XY y′2) 6= ∅. By analogy with (i), we can find the derivation

S ⇒n−1
G′ y1ABy2 in G′ and so

S ⇒n−1
G′ y1ABy2 ⇒G′ y1A〈A,B,C〉y2 ⇒G′ y1ACy2,

where y1ACy2 ∈ g(x).

Thus, the only-if part now follows by the principle of induction.

If : This is also established by induction, but in this case on n. We have to demonstrate
that S ⇒n

G′ x′ implies S ⇒∗
G x, where x ∈ V +, x = g−1(x′), and n ≥ 0.

Basis: For n = 0 the only x′ is S because S ⇒0
G′ S. Since S = g−1(S) we have x = S.

Clearly, S ⇒0
G S in G.

Induction Hypothesis: Assume that the claim holds for all derivations of length at most
n, for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
G′ x′, where x = g−1(x′) for some x ∈ V +.

Since n + 1 ≥ 1, there is some y ∈ V +, y = g−1(y′), and p ∈ P ′ such that S ⇒n
G′ y′ ⇒G′

x′ [p] in G′. By the induction hypothesis, S ⇒∗
G y. Let y′ = r′Ds′, y = rBs, r = g−1(r′),

s = g−1(s′), r, s ∈ V ∗, B = g−1(D), x′ = r′z′s′ and p = D → z′ ∈ P ′. Moreover, let us
consider the following three cases:

(i) Let g−1(z′) = B, see (2). Then, g−1(x′) = g−1(r′z′s′) = rBs. By the induction
hypothesis, we have S ⇒∗

G rBs.

(ii) Let z′ ∈ T ∪ NCS ∪ N2
CF , D = B ∈ NCF . Then, there is a production B → z ′ ∈ P ,

see (1). Hence, S ⇒∗
G rBs ⇒G rz′s [B → z′]. Since z′ = g−1(z′), we have x = rz′s

such that g−1(x′) = x.

(iii) Let z′ = C, D = 〈A,B,C〉 ∈ For, see (2). Clearly, y ′ p⇒G′ x′ [p] and A〈A,B,C〉 ∈
sub(y′). By the definition of For, there is a production AB → AC ∈ P . Since
#Fory

′ ≤ 1, we have r′ = u′A, r = uA, where g−1(u′) = u and u ∈ V ∗. Thus, S ⇒∗
G

uABs ⇒G uACs [AB → AC], where uACs = rCs. Since C = g−1(C), we get
x = rCs such that g−1(x′) = x.

By inspection of P ′, we have considered all possible derivations of the form S ⇒n
G′ y′ ⇒G′

x′ in G′. Thus, by the principle of induction, we have established that S ⇒∗
G′ x′ implies

S ⇒∗
G x, where x ∈ V +, g−1(x′) = x, and n ≥ 0.

The equivalence of G and G′ immediately follows from the above statement. Indeed,
by the definition of g, we have g(a) = {a} for all a ∈ T . Therefore, we have for any
w ∈ T ∗,

S ⇒∗
G w if and only if S ⇒∗

G′ w;

that is, L(G) = L(G′). Hence, prop-GCC(2) = CS. �

Next, we turn to the investigation of gcc-grammars of degree 2 with erasing produc-
tions. We show that these grammars generate precisely the family of recursively enumer-
able languages.

Theorem 43. RE = GCC(2).

106 CHAPTER 4.

Proof. Clearly, GCC(2) ⊆ RE. Hence, it suffices to show RE ⊆ GCC(2). This inclusion
can be proven by the technique used in Theorem 42, because every language L ∈ RE can
be generated by a phrase-structure grammar, whose productions are of the form AB → AC
or A → x, where A,B,C ∈ V −T and x ∈ {ε} ∪T ∪ (V −T)2 (see Lemmas 3 and 5). The
details are left to the reader. �

The following corollary summarizes results established in Theorems 42 and 43:

Corollary 19.
prop-GCC(2) = prop-GCC = CS

⊂
GCC(2) = GCC = RE.

Open Problems. Consider an alternative definition of gcc-grammars. Specifically, de-
fine the notion of a forbidding gcc-grammar of degree r (for some natural number r)
as a sixtuple G = (V, T, P, S, Per, For), where (V, T, P, S) is a context-free grammar,
For ⊆ V + such that x ∈ For implies |x| ≤ r, Per ⊆ V , and a production A → x can be
applied to a word w when Per ⊆ alph(w) or ∅ = V ∗{A}V ∗ ∩ For ∩ sub(w). What is the
language generating power of these grammars?

Chapter 5

Context Conditions Placed on the
Neighborhood of Rewritten
Symbols

This chapter studies grammars with context conditions placed on the neighborhood of
rewritten symbols. In Section 5.1, we investigate grammars with context conditions that
strictly require a continuous neighborhood of the rewritten symbols. We discuss both
sequential and parallel grammars of this kind. Naturally, the discussion of sequential
grammars leads to the study of classical context-dependent grammars, such as context-
sensitive and phrase-structure grammars. Regarding parallel grammars, we base this
discussion on EIL grammars. In Section 5.2, we study scattered context grammars, in
which rewriting depends on symbols occurring in the sentential form, but these symbols
may not form a continuous substring of the sentential form. Rather, these symbols, which
are simultaneously rewritten during a single derivation step, may be scattered throughout
the sentential form. In all grammars discussed in this chapter, we make their context-
dependency uniform, reduced and easy-to-use in theory and practice.

5.1 Continuous Context

Consider the phrase-structure grammars based on productions of the form xAy → xuy,
where A is a nonterminal and x, y, u are strings (see Chapter 2). By using xAy →
xuy, we rewrite A with u on the condition that in the current sentential form x and
y are substrings neighboring with the rewritten symbol A from the left and from the
right, respectively. Consequently, the phrase-structure grammars can be quite naturally
interpreted as grammars with context condition placed on the substrings neighboring with
the rewritten symbols (c.f. the note preceding Definition 2 in Section 2.2). Therefore, we
discuss them in this chapter although we are fully aware of the problems and difficulties
that their use bring about (see Chapter 1). In fact, we intentionally concentrate our
attention on some of the difficulties in order to make them more acceptable from both
theoretical and practical viewpoint.

More specifically, a phrase-structure grammar can produce a very broad variety of
quite different sentential forms during the generation of their languages. This inconsis-

107

108 CHAPTER 5.

tent generation represents a highly undesirable grammatical phenomenon. In theory, the
demonstration of properties concerning languages generated in this way lead to extremely
tedious proofs. In practice, the inconsistent generation of languages is uneasy to analyze.
Therefore, we next investigate how to make this generation of languages more uniform.
Specifically, the phrase-structure grammars are transformed so that they generate only
words that have a uniform permutation-based form. More precisely, in Section 5.1.1, we
demonstrate that every recursively enumerable language, L, can be generated by a phrase-
structure grammar so that during the generation of any sentence from L, every sentential
form is based on a sequence of substrings, each of which represents a permutation of
symbols over a very small alphabet.

Besides phrase-structure grammars, we achieve analogical results for EIL grammars,
which represent major parallel grammars with context condition placed on substrings
continuously neighboring with the rewritten symbols (see Section 5.1.2).

5.1.1 Sequential Uniform Rewriting

The present section demonstrates that for every phrase-structure grammar, G, there exists
an equivalent phrase-structure grammar, G′ = ({S, 0, 1} ∪ T, T, P, S) so that every x ∈
F (G′) satisfies x ∈ T ∗Π(w)∗, where w ∈ {0, 1}∗. Then, it makes this conversion so that
for every x ∈ F (G), x ∈ Π(w)∗T ∗.

Let G = (V, T, P, S) be a phrase-structure grammar. Notice that alph(L(G)) ⊆ T . If
a ∈ T−alph(L(G)), then a actually acts as a pseudoterminal beacuse it appears in no word
of L(G). Every transformation described in this section assumes that its input grammar
contains no pseudoterminals of this kind, and does not contain any useless nonterminals
either.

Let j be a natural number. Set

PS[.j] = {L : L = L(G), where G = (V, T, P, S) is a phrase-structure
grammar such that |alph(F (G)) − T | = j and
F (G) ⊆ T ∗Π(w)∗, where w ∈ (V − T)∗}.

Analogously, set

PS[j.] = {L : L = L(G), where G = (V, T, P, S) is a phrase-structure
grammar such that |alph(F (G)) − T | = j and
F (G) ⊆ Π(w)∗T ∗, where w ∈ (V − T)∗}.

Lemma 24. Let G be a phrase-structure grammar. Then, there exists a phrase-structure
grammar, G′ = ({S, 0, 1}∪T, T, P, S), satisfying L(G′) = L(G) and F (G′) ⊆ T ∗Π(1n−200)∗.

Proof. Let G = (V, T,Q, $) be a phrase-structure grammar, where V is the alphabet of G,
T is the terminal alphabet of G, Q is the set of productions of G, and $ is the start symbol of
G. Without any loss of generality, assume that V ∩{0, 1} = ∅. The following construction
produces an equivalent phrase-structure grammar, G′ = ({S, 0, 1} ∪ T, T, P, S), such that
F (G′) ⊆ T ∗Π(1n−200)∗, for some natural number n.

For some integers m,n such that m ≥ 3 and 2m = n, introduce a homomorphism, β,
from V to ({1}m{1}∗{0}{1}∗∩{0, 1}n)−{1n−200}. Extend the domain of β to V ∗. Define

5.1. CONTINUOUS CONTEXT 109

the phrase-structure grammar, G′ = ({S, 0, 1} ∪ T, T, P, S), with

P = {S → 1n−100β($)1n−100} ∪
{β(x) → β(y) : x → y ∈ Q} ∪
{1n−200β(a) → a1n−200 : a ∈ T} ∪
{1n−2001n−200 → ε}.

Claim 36. Let S ⇒h
G′ w, where w ∈ V ∗ and h ≥ 1. Then, w ∈ T ∗({1n−200}(β(V))∗

{1n−200} ∪ {ε}).

Proof. The claim is proven by induction on h, h ≥ 1.

Basis: Let h = 1. That is, S ⇒G′ 1n−100β($)1n−100 [$ → 1n−100β($)1n−100]. As
1n−200β(S)1n−200 ∈ T ∗({1n−200}(β(V))∗{1n−200} ∪ {ε}), the basis holds.

Induction Hypothesis: Suppose that for some k ≥ 0, if S ⇒i
G′ w, where i = 1, . . . , k and

w ∈ V ∗, then w ∈ T ∗({1n−200}(β(V))∗{1n−200} ∪ {ε}).

Induction Step: Consider S ⇒k+1
G′ w, where w ∈ V ∗ − T ∗. Express S ⇒k+1

G′ w as

S ⇒k
G′ ulhs(p)v

⇒G′ urhs(p)v [p],

where p ∈ P and w = urhs(p)v. Less formally, after k steps, G′ derives ulhs(p)v.
Then, by using p, G′ replaces lhs(p) with rhs(p) in ulhs(p)v, so it obtains urhs(p)v. By
the induction hypothesis, ulhs(p)v ∈ T ∗({1n−100}(β(V))∗{1n−200} ∪ {ε}). As lhs(p) 6∈
T ∗, ulhs(p)v 6∈ T ∗. Therefore, ulhs(p)v ∈ T ∗{1n−200}(β(V))∗{1n−200}. Let ulhs(p)v ∈
T ∗{1n−200}(β(V))j{1n−200} in G′, for some j ≥ 1. By the definition of P , p satisfies one
of these three properties:

(i) Let lhs(p) = β(x) and rhs(p) = β(y), where x → y ∈ Q, At this point, u ∈
T ∗{1n−200}{β(V)}r, for some r ≥ 0, and v ∈ {β(V)}(j−|lhs(p)|−r){1n−200}. Dis-
tinguish these two cases: |x| ≤ |y| and |x| > |y|.

(a) Let |x| ≤ |y|. Set s = |y|−|x|. Observe that urhs(p)v ∈ T ∗{1n−200}(β(V))(j+s)

{1n−200}. As w = urhs(p)v, w ∈ T ∗({1n−200}(β(V))∗{1n−200} ∪ {ε}).

(b) Let |x| > |y|. By analogy with (a), prove w ∈ T ∗({1n−200}(β(V))∗{1n−200} ∪
{ε}).

(ii) Assume that lhs(p) = 1n−100β(a) and rhs(p) = a1n−200, for some a ∈ T . Notice that
ulhs(p)v ∈ T ∗{1n−200}(β(V))j{1n−200} implies u ∈ T ∗ and v ∈ (β(V))(j−1){1n−200}.
Then, urhs(p)v ∈ T ∗{a}{1n−200}(β(V))(j−1){1n−200}. Because w = urhs(p)v, w ∈
T ∗({1n−200}(β(V))∗{1n−200} ∪ {ε}).

(iii) Assume that lhs(p) = 1n−2001n−200 and rhs(p) = ε. In this case, j = 0 in
T ∗{1n−200}(β(V))j{1n−200}, so ulhs(p)v ∈ T ∗{1n−200}{1n−200} and urhs(p)v ∈
T ∗. Because w = urhs(p)v, w ∈ T ∗({1n−200}(β(V))∗{1n−200} ∪ {ε}).

Claim 37. Let S ⇒+
G′ u ⇒∗

G′ z, where z ∈ T ∗. Then, u ∈ T ∗Π(1n−200)∗.

110 CHAPTER 5.

Proof. Let S ⇒+
G′ u ⇒∗

G′ z, where z ∈ T ∗. By Claim 36, u ∈ T ∗({1n−200}(β(V))∗{1n−200}∪
{ε}), and by the definition of β, u ∈ T ∗Π(1n−200)∗.

Claim 38. Let $ ⇒m
G w, for some m ≥ 0. Then S ⇒+

G′ 1n−200β(w)1n−200 in G′.

Proof. The claim is proven by induction on m, m ≥ 0.

Basis: Let m = 0. That is, $ ⇒0
G $. As S ⇒G′ 1n−100β($)1n−100 [S → 1n−100β($)1n−100],

the basis holds.

Induction Hypothesis: Suppose that for some j ≥ 1, if $ ⇒i
G w, where i = 1, . . . , j and

w ∈ V ∗, then S ⇒∗
G′ β(w).

Induction Step: Let $ ⇒j+1
G w. Express $ ⇒j+1

G w as $ ⇒j
G uxv ⇒G uyv [x → y], where

x → y ∈ Q and w = uyv. By the induction hypothesis, S ⇒+
G′ 1n−200β(uxv)1n−200.

Express β(uxv) as β(uxv) = β(u)β(x)β(v). As x → y ∈ P , β(x) → β(y) ∈ P . Therefore,

S ⇒+
G′ 1n−200β(u)β(x)β(v)1n−200

⇒G′ 1n−200β(u)β(y)β(v)1n−200 [β(x) → β(y)].

Because w = uyv, β(w) = β(u)β(y)β(v), so S ⇒+
G′ 1n−200β(w)1n−200.

Claim 39. L(G) ⊆ L(G′).

Proof. Let w ∈ L(G). Thus, $ ⇒∗
G w with w ∈ T ∗. By Claim 38, S ⇒+

G′ 1n−200β(w)1n−200.
Distinguish these two cases: w = ε and w 6= ε.

(i) If w = ε, 1n−200β(w)1n−200 = 1n−2001n−200. As 1n−2001n−200 → ε ∈ P ,

S ⇒∗
G′ 1n−2001n−200

⇒G′ ε [1n−2001n−200 → ε].

Thus, w ∈ L(G′).

(ii) Assume that w 6= ε. Express w as w = a1a2 . . . an−1an with ai ∈ T for i = 1, . . . , n,
n ≥ 0. As ({1n−200β(a) → a1n−200 : a ∈ T} ∪ {1n−2001n−200 → ε}) ⊆ P, there exists

S ⇒∗
G′ 1n−200β(a1)β(a2) . . . β(an−1)β(an)1n−200

⇒G′ a11
n−200β(a2) . . . β(an−1)β(an)1n−200 [1n−200β(a1) → a11

n−200]
⇒G′ a1a21

n−200β(a3) . . . β(an−1)β(an)1n−200 [1n−200β(a2) → a21
n−200]

...
⇒G′ a1a2 . . . an−21

n−200β(an−1)β(an)1n−200 [1n−200β(an−2) → an−21
n−200]

⇒G′ a1a2 . . . an−2an−11
n−200β(an)1n−200 [1n−200β(an−1) → an−11

n−200]
⇒G′ a1a2 . . . an−2an−1an1n−2001n−200 [1n−200β(an) → an1n−200]
⇒G′ a1a2 . . . an−2an−1an [1n−2001n−200 → ε]

Therefore, w ∈ L(G′).

Claim 40. Let S ⇒m
G′ 1n−200w1n−200, where w ∈ {0, 1}∗, for some m ≥ 1. Then, $ ⇒∗

G

β−1(w).

5.1. CONTINUOUS CONTEXT 111

Proof. This claim is proven by induction on m.

Basis: Let m = 1. That is, S ⇒G′ 1n−200w1n−200, where w ∈ {0, 1}∗. Then, w = β($).
As $ ⇒0

G $, the basis holds.

Induction Hypothesis: Suppose that for some j ≥ 1, if S ⇒i
G′ 1n−200w1n−200, where

i = 1, . . . , j and w ∈ {0, 1}∗, then $ ⇒+
G β−1(w).

Induction Step: Let S ⇒j+1
G′ 1n−200w1n−200, where w ∈ {0, 1}∗. As w ∈ {0, 1}∗, S ⇒j+1

G′

1n−200w1n−200 can be expressed as

S ⇒j

G′ 1n−200uβ(x)v1n−200
⇒G′ 1n−200uβ(y)v1n0200 [β(x) → β(y)],

where x, y ∈ V ∗, x → y ∈ Q, and w = uβ(y)v. By the induction hypothesis, S ⇒+
G′

1n−200β−1(uβ(x)v)1n−200. Express β−1(uβ(x)v) as β−1(uβ(x)v) = β−1(u)xβ−1(v). Since
x → y ∈ Q,

$ ⇒+
G β−1(u)xβ−1(v)

⇒G β−1(u)yβ−1(v) [x → y].

Because w = uβ(y)v, β−1(w) = β−1(u)yβ−1(v), so $ ⇒+
G β−1(w).

Claim 41. L(G′) ⊆ L(G).

Proof. Let w ∈ L(G′). Distinguish between w = ε and w 6= ε.

(i) Let w = ε. Observe that G′ derives ε as

S ⇒∗
G′ 1n−2001n−200

⇒G′ ε [1n−2001n−200 → ε].

As S ⇒∗
G′ 1n−2001n−200, Claim 40 implies that $ ⇒∗

G ε, so w ∈ L(G).

(ii) Assume that w 6= ε. Let w = a1a2 . . . an−1an with ai ∈ T for i = 1, . . . , n, where
n ≥ 1. Examine P to see that in G′, there exists this derivation

S ⇒∗
G′ 1n−200β(a1)β(a2) . . . β(an−1)β(an)1n−200

⇒G′ a11
n−200β(a2) . . . β(an−1)β(an)1n−200 [1n−200β(a1) → a11

n−200]
⇒G′ a1a21

n−200β(a3) . . . β(an−1)β(an)1n−200 [1n−200β(a2) → a21
n−200]

...
⇒G′ a1a2 . . . an−21

n−200β(an−1)β(an)1n−200 [1n−200β(an−2) → an−21
n−200]

⇒G′ a1a2 . . . an−2an−11
n−200β(an)1n−200 [1n−200β(an−1) → an−11

n−200]
⇒G′ a1a2 . . . an−2an−1an1n−2001n−200 [1n−200β(an) → an1n−200]
⇒G′ a1a2 . . . an−2an−1an [1n−2001n−200 → ε]

Because S ⇒∗
G′ 1n−200β(a1)β(a2) . . . β(an−1)β(an)1n−200, Claim 40 implies $ ⇒∗

G

a1a2 . . . an−1an, so w ∈ L(G).

By Claims 39 and 41, L(G) = L(G′). By Claim 37, F (G′) ⊆ T ∗Π(1n−200)∗. Thus,
Lemma 24 holds.

112 CHAPTER 5.

Theorem 44. PS[.2] = RE.

Proof. Clearly, PS[.2] ⊆ RE. By Lemma 24, RE ⊆ PS[.2]. Therefore, this theorem
holds. �

Lemma 25. Let G be a phrase-structure grammar. Then, there exists a phrase-structure
grammar, G′ = ({S, 0, 1}∪T, T, P, S), satisfying L(G) = L(G′) and F (G′) ⊆ Π(1n−200)∗T ∗,
for some n ≥ 1.

Proof. Let G = (V, T,Q, $) be a phrase-structure grammar, where V is the total alphabet
of G, T is the terminal alphabet of G, Q is the set of productions of G, and $ is the
start symbol of G. Without any loss of generality, assume that V ∩ {0, 1} = ∅. The
following construction produces an equivalent phrase-structure grammar, G ′ = ({S, 0, 1}∪
T, T, P, S), such that F (G′) ⊆ Π(1n−200)∗T ∗, for some n ≥ 1.

For some m ≥ 3 and n such that 2m = n, introduce a homomorphism, β, from V
to ({1}m{1}∗{0}{1}∗ ∩ {0, 1}n) − {1n−200}. Extend the domain of β to V ∗. Define the
phrase-structure grammar G′ = (T ∪ {S, 0, 1}, P, S, T) with

P = {S → 1n−100β($)1n−100} ∪
{β(x) → β(y) : x → y ∈ Q} ∪
{β(a)1n−200 → 1n−200a : a ∈ T} ∪
{1n−2001n−200 → ε}.

Complete this proof by analogy with the proof of Lemma 24.

Theorem 45. PS[2.] = RE.

Proof. Clearly, PS[2.] ⊆ RE. By Lemma 25, RE ⊆ PS[2.]. Therefore, this theorem
holds. �

Corollary 20. PS[.2] = PS[2.] = RE.

Open Problems. Let us suggest some open problem areas related to the above results.
Recall that in this section, we converted any phrase-structure grammar, G, to an equivalent
phrase-structure grammar, G′ = (V, T, P, S), so that for every x ∈ F (G′), x ∈ T ∗Π(w)∗,
where w is a word over V −T . Then, we made this conversion so that for every x ∈ F (G ′),
x ∈ Π(w)∗T ∗. Take into account the length of w. More precisely, for j, k ≥ 1, set

PS[.j,k] = {L : L = L(G), where G = (V, T, P, S) is a phrase-structure
grammar such that |alph(F (G)) − T | = j and
F (G) ⊆ T ∗Π(w)∗, where w ∈ (V − T)∗ and |w| = k}.

Analogously, set

PS[j,k.] = {L : L = L(G), where G = (V, T, P, S) is a phrase-structure
grammar such that |alph(F (G)) − T | = j and
F (G) ⊆ Π(w)∗T ∗, where w ∈ (V − T)∗ and |w| = k}.

Reconsider Section 5.1.1 in terms of these families of languages.

5.1. CONTINUOUS CONTEXT 113

5.1.2 Parallel Uniform Rewriting

The present section converts any EIL grammar, G, to an equivalent EIL grammar, G ′ =
({S, 0, 1} ∪ T, T, P, S) so that for every x ∈ F (G′),

x ∈ T ∗Π(w)∗

where w ∈ {0, 1}∗. Then, it makes this conversion so that for every x ∈ F (G′),

x ∈ Π(w)∗T ∗.

Note that by analogy with Section 5.1.1, every transformation presented in this section
assumes that its input grammar contains neither pseudoterminals nor useless nonterminals.
Let j ≥ 0. Set

EIL[.j] = {L : L = L(G), where G = (V, T, P, S) is an EIL grammar such that
|alph(F (G)) − T | = j and F (G) ⊆ T ∗Π(w)∗, where w ∈ (V − T)∗}.

Analogously, define

EIL[j.] = {L : L = L(G), where G = (V, T, P, S) is an EIL grammar such that
|alph(F (G)) − T | = j and F (G) ⊆ Π(w)∗T ∗, where w ∈ (V − T)∗}.

Lemma 26. Let G be an E(1,0)L grammar. Then, there exists an EIL grammar, G′ =
({S, 0, 1} ∪ T, T, P, S), such that L(G) = L(G′) and F (G′) ⊆ T ∗Π(1n−200)∗, for some
n ≥ 1.

Proof. Let G = (V, T,Q, $) be an E(1,0)L grammar. For some natural numbers, m
and n, such that m ≥ 3 and 2m = n, introduce a homomorphism, β, from V to
({1}m{1}∗{0}{1}∗{0} ∩ {0, 1}n) − {1n−200}; in addition, introduce a homomorphism,
χ, from T to {1}m{1}∗{0}{1}∗{0} ∩ {0, 1}n) − {1n−200} so {χ(a) : a ∈ T} ∩ {β(A) :
A ∈ V } = ∅. Extend the domain of β and the domain of χ to V ∗ and T ∗, respectively.
Define the E(2n − 1, 0)L grammar, G′ = (T ∪ {S, 0, 1}, T, P, S), with P = Pβ ∪ Pχ ∪ Pδ ,
where

Pβ = {S → β($)}
∪ {(β(X)x, 0) → β(y) : X ∈ V ∪ {ε}, x ∈ {0, 1}n−1, y ∈ V ∗,

x0 = β(Y) for some Y ∈ V such that (X,Y) → y ∈ Q}
∪ {(β(a)x, 0) → χ(b) : a ∈ T ∪ {ε}, x ∈ {0, 1}n−1,

x0 = β(b) for some b ∈ T},
Pχ = {(yx, 0) → a : a ∈ T, y ∈ T ∗, x ∈ {0, 1}∗, |yx| ≤ 2n − 1, x0 = χ(a)}

∪ {(yx, y) → ε : Y ∈ {0, 1}, y ∈ T ∗, x ∈ {0, 1}∗, |x| ≤ n − 2, |yx| ≤ 2n − 1}
∪ {(yx, Y) → Y : Y ∈ {0, 1}, y ∈ T ∗, x ∈ {0, 1}∗, |x| ≥ n, |yx| ≤ 2n − 1}
∪ {(x, a) → a : a ∈ T, |x| ≤ 2n − 1},

Pδ = {(x,X) → 1n−200 : x ∈ (T ∪ {0, 1})2n−1, X ∈ (T ∪ {0, 1}),
(Pβ ∪ Pχ) ∩ {(x,X) → z : z ∈ (T ∪ {0, 1})∗} = ∅}.

Claim 42. Let S ⇒m
G′ w, where w ∈ V ∗ and m ≥ 1. Then, w ∈ T ∗Π(1n−200)∗.

114 CHAPTER 5.

Proof. The claim is proven by induction on m, m ≥ 1.

Basis: Let m = 1. That is, S ⇒G′ β($) [S → β($)]. As T ∗Π(1n−200)∗ contains β($), the
basis holds.

Induction Hypothesis: Suppose that for all i = 1, . . . , k, where k ≥ 1, if S ⇒i
G′ w, then

w ∈ T ∗Π(1n−200)∗.

Induction Step: Consider S ⇒k+1
G′ w, where w ∈ V ∗. Express S ⇒k+1

G′ w as S ⇒k
G′ u ⇒G′

v [p], where p ∈ P . By the induction hypothesis, u ∈ T ∗Π(1n−200)∗. Examine P to see
that v ∈ T ∗Π(1n−200)∗ if u ∈ T ∗Π(1n−200)∗; the details are left to the reader.

Claim 43. Let $ ⇒m
G w, for some m ≥ 0. Then, S ⇒+

G′ β(w).

Proof. This claim is proven by induction on m, m ≥ 0.

Basis: Let m = 0. That is, $ ⇒0
G $. Observe that S ⇒G′ β($) [S → β($)], so the basis

holds.

Induction Hypothesis: Suppose that for some j ≥ 1, if $ ⇒i
G w, where i = 1, . . . , j, and

w ∈ V ∗, then S ⇒∗
G′ β(w).

Induction Step: Consider a derivation $ ⇒j+1
G y. Express $ ⇒j+1

G y as $ ⇒j
G x ⇒G

y. Furthermore, express x as x = X1X2 . . . Xk, where k = |x| and Xj ∈ V , for j =
1, . . . , k. Assume that G makes X1X2 . . . Xk ⇒G y according to (ε,X1) → y1, (X1, X2) →
y2, . . . , (Xk−1, Xk) → yk so y = y1y2 . . . yk. By the induction hypothesis, S ⇒+

G′ β(x). Ex-
press β(x) as β(x) = β(X1)β(X2) . . . β(Xk), where Xj ∈ V , for j = 1, . . . , k. Return to Pβ .
Observe that Pβ contains (x1, 0) → β(y1), where x10 = β(X1), and (β(Xi−1)xi, 0) → β(yi),
where xi0 = β(Xi) for i = 2, . . . , k. Thus, β(X1)β(X2) . . . β(Xk) ⇒G′ β(y1)β(y2) . . . β(yk).
As y = y1y2 . . . yk, β(x) ⇒G′ β(y). Consequently, S ⇒+

G′ β(y).

Claim 44. L(G) ⊆ L(G′).

Proof. Let w ∈ L(G′). Thus, S ⇒∗
G′ w and w ∈ T ∗. By Claim 43, S ⇒+

G′ β(w). Recall
that Pβ contains {(β(a)x, 0) → χ(b) : a ∈ T, x ∈ {0, 1}n−1, x0 = β(b) for some b ∈ T} ⊆
Pβ. Therefore, β(w) ⇒G′ χ(w). Examine Pχ to see that χ(w) ⇒∗

G′ w. Hence, Claim 44
holds.

Claim 45. L(G′) ⊆ L(G).

Proof. Let w ∈ L(G′), and let w = a1a2 . . . an−1an with ai ∈ T for i = 1, . . . , n, where n
is a non-negative integer (w = ε if n = 0). Observe that

S ⇒∗
G′ β(a1)β(a2) . . . β(an−1)β(an)

⇒G′ χ(a1)χ(a2) . . . χ(an−1)χ(an)
⇒G′ a1χ(a2) . . . χ(an−1)χ(an)
⇒G′ a1a2χ(a3) . . . χ(an−1)χ(an)

...
⇒G′ a1a2 . . . χ(an−1)χ(an)
⇒G′ a1a2 . . . an−1χ(an)
⇒G′ a1a2 . . . an−1an.

5.1. CONTINUOUS CONTEXT 115

In greater detail, by using productions from Pβ, G′ makes

S ⇒∗
G′ β(a1)β(a2) . . . β(an−1)β(an)

⇒G′ χ(a1)χ(a2) . . . χ(an−1)χ(an),

and by using productions from Pχ, G′ makes the rest of this derivation. Examine Pβ to
see that if G′ makes

S ⇒∗
G′ β(a1)β(a2) . . . β(an−1)β(an)

⇒G′ χ(a1)χ(a2) . . . χ(an−1)χ(an),

by using productions from Pβ , then $ ⇒∗
G a1a2 . . . an−1an in G. As w = a1a2 . . . an−1an,

w ∈ L(G), so Claim 45 holds.

By Claims 44 and 45, L(G′) = L(G), so Lemma 26 holds.

Theorem 46. EIL[.2] = RE.

Proof. Clearly, EIL[.2] ⊆ RE. By Theorem 6.1.3. in [155], for every L ∈ RE, there exists
an E(1,0)L grammar, G, such that L = L(G). Thus, by Lemma 26, RE ⊆ EIL[.2]. As
EIL[.2] ⊆ RE and RE ⊆ EIL[.2], RE = EIL[.2]. �

Lemma 27. Let G be an E(0,1)L grammar. Then, there exists an EIL grammar, G′ =
({S, 0, 1}, T, P, S), such that L(G) = L(G′) and F (G′) ⊆ Π(1n−200)∗T ∗, for some n ≥ 6.

Proof. Let G = (V, T,Q, $) be an E(0,1)L grammar. For some natural numbers, m and n,
such that m ≥ 3 and 2m = n, introduce a homomorphism, β from V to ({0}{1}∗{0}{1}∗

{1}m∩{0, 1}n)−{1n−200}; in addition, introduce a homomorphism, χ, from T to ({0}{1}∗

{0}{1}∗{1}m ∩ {0, 1}n) − {1n−200} so {χ(a) : a ∈ T} ∩ {β(A) : A ∈ V } = ∅. Extend the
domain of β and the domain of χ to V ∗ and T ∗, respectively. Define the E(0, 2n − 1)L
grammar, G′ = (T ∪ {S, 0, 1}, T, P, S), with P = Pβ ∪ Pχ ∪ Pδ, where

Pβ = {S → β($)}
∪ {(0, xβ(X)) → β(y) : X ∈ V ∪ {ε}, x ∈ {0, 1}n−1, y ∈ V ∗,

x0 = β(Y) for some Y ∈ V such that (Y,X) → y ∈ Q}
∪ {(0, xβ(a)) → χ(b) : a ∈ T ∪ {ε}, x ∈ {0, 1}n−1,

0x = β(b) for some b ∈ T},
Pχ = {(0, xy) → a : a ∈ T, y ∈ T ∗, x ∈ {0, 1}∗, |xy| ≤ 2n − 1, 0x = χ(a)}

∪ {(Y, xy) → ε : Y ∈ {0, 1}, y ∈ T ∗, x ∈ {0, 1}∗, |x| ≤ n − 2, |xy| ≤ 2n − 1}
∪ {(Y, xy) → Y : Y ∈ {0, 1}, y ∈ T ∗, x ∈ {0, 1}∗, |x| ≥ n, |xy| ≤ 2n − 1}
∪ {(a, x) → a : a ∈ T, |x| ≤ 2n − 1},

Pδ = {(X,x) → 1n−200 : x ∈ (T ∪ {0, 1})2n−1, X ∈ (T ∪ {0, 1}),
(Pβ ∪ Pχ) ∩ {(X,x) → z : z ∈ (T ∪ {0, 1})∗} = ∅}.

Complete this proof by analogy with the proof of Lemma 26.

Theorem 47. EIL[2.] = RE.

Proof. Clearly, EIL[2.] ⊆ RE. By Theorem 6.1.3. in [155], for every L ∈ RE, there exists
an E(0,1)L grammar, G, such that L = L(G). Thus, by Lemma 27, RE ⊆ EIL[2.]. As
EIL[2.] ⊆ RE and RE ⊆ EIL[2.], EIL[2.] = RE.

Corollary 21. EIL[.2] = EIL[.2] = RE.

116 CHAPTER 5.

5.2 Scattered Context

The concept of scattered context was introduced by Greibach and Hopcroft in [75]. Scat-
tered context grammars are semi-parallel grammars whose productions simultaneously
rewrite several symbols in parallel. These symbols must occur in a certain order which is
given by the applied production. However, as opposed to the phrase-structure grammars,
these symbols may not form a continuous sequence in the rewritten sentential form.

We concentrate our attention on the reduction of scattered context grammars with
respect to several measures of descriptional complexity. Moreover, we demonstrate that
by analogy with continuous-context grammars studied in Section 5.1, scattered context
grammars can generate their languages in a uniform and succint way.

5.2.1 Scattered Context Grammars and Their Reduction

Definition 20. A scattered context grammar (see [75], [110], [122], [123], [127], [128]) is
a quadruple, G = (V, T, P, S), where V is the total alphabet, T is a finite set of terminals
(T ⊆ V), and S ∈ V − T is the axiom. P is a finite set of productions of the form

(A1, A2, . . . , An) → (x1, x2, . . . , xn)

where n ≥ 1, and for all i = 1, 2, . . . , n, Ai ∈ V −T and xi ∈ V ∗. Instead of (A1, A2, . . . , An) →
(x1, x2, . . . , xn), the literature sometimes writes (A1 → x1, A2 → x2, . . . , An → xn). Let
p = (A1, A2, . . . , An) → (x1, x2, . . . , xn) ∈ P , n ≥ 1. Then, scleft(p) = A1A2 . . . An and
scright(p) = x1x2 . . . xn. If xi ∈ V + for all i = 1, . . . , n, G is said to be propagating. Set
π(p) = n. If π(p) ≥ 2, p is said to be a context-sensitive production. If π(p) = 1, p is said
to be context-free. Consider p = (A1, A2, . . . , An) → (x1, x2, . . . , xn) ∈ P and u, v ∈ V ∗ of
the form

u = u1A1u2A2 . . . unAnun+1

v = u1x1u2x2 . . . unxnun+1

where ui ∈ V ∗ for i = 1, 2, . . . , n, n ≥ 1. Then, u directly derives v in G or, simply,

u ⇒G v [p].

In the standard way, ⇒G can be extendend to ⇒n
G (n ≥ 0), ⇒+

G, and ⇒∗
G, respectively.

The language of G, L(G), is defined as

L(G) = {w ∈ T ∗ : S ⇒∗
G w}.

The family of languages generated by scattered context grammars is denoted by SCAT.

Theorem 48. RE= SCAT.

Proof. Let L ∈ RE. By the first corollary on page 245 in [75], there exist a propagating
scattered context grammar, G = (V, T, P, S) and a homomorphism, h, such that L =
h(L(G)). Without any loss of generality, assume alph(L) ∩ T = ∅. Define the scattered
context grammar

G′ = (V ∪ T ∪ alph(L), alph(L), P ∪ P ′, S)

where
P ′ = {(a) → (h(a)) : a ∈ T}.

5.2. SCATTERED CONTEXT 117

Clearly, L(G′) = L. Therefore, RE ⊆ SCAT. Obviously, SCAT ⊆ RE, so RE = SCAT.
�

Next, we investigate the descriptional complexity of scattered context grammars. To
do so, we first introduce several measures of this complexity.

If G = (V, T, P, S) is a scattered context grammar, then its nonterminal complexity is
the number of nonterminals in G. If G is a scattered context grammar, then its degree of
context-sensitivity, symbolically written as δ-CS(G), is defined as the number of context-
sensitive productions in G. The maximum context sensitivity of G is the greatest number
in {π(pi) − 1 : 1 ≤ i ≤ |P |}, symbolically denoted by max-CS(G). The overall context
sensitivity of G, denoted by sum-CS(G), is the sum of all members in {π(pi) − 1 : 1 ≤
i ≤ |P |}.

Lemma 28 (see [128]). There exists a scattered context grammar, G, such that G gen-
erates a non-context-free language and δ-CS(G) = max-CS(G) = sum-CS(G) = 1.

Proof. Consider a scattered context grammar, G = ({S,A,B,C,D}, {a, b, c}, P, S), where
the set of productions, P , is defined as

P = {(S) → (AC),
(A) → (aAbB),
(A) → (ε),
(C) → (cCD),
(C) → (ε),
(B,D) → (ε, ε)}.

It is easy to verify that L(G) = {anbncn : n ≥ 0} and δ-CS(G) = max-CS(G) =
sum-CS(G) = 1.

Let SCAT[k, l,m, n] denote the family of languages such that a language L is in
SCAT[k, l,m, n] if and only if there exists a scattered context grammar G such that
L(G) = L and G’s nonterminal complexity is k or less, δ-CS(G) ≤ l, max-CS(G) ≤ m,
and sum-CS(G) ≤ n. In this thesis, we consider parameters k and l as the two major
measures of descriptional complexity while parameters m and n are less important.

First, we demonstrate that the number of nonterminals can be reduced to three or
less. The proof of this statement makes use of a normal form of queue grammars (see
Definition 6), which is established in the following lemma.

Lemma 29. For any queue grammar, Q′, there exists an equivalent queue grammar,
Q = (V, T,W,F,R, g), such that Q generates every z ∈ L(Q) by the derivation of the form
R ⇒i

Q u ⇒Q v ⇒k
Q w ⇒Q z, where i, k ≥ 1, and the derivation satisfies the following

properties:

1. each derivation step in R ⇒i
Q u has the form

a′y′b′ ⇒Q a′y′x′b′ [(a′, b′, x′, c′)],

where a′ ∈ V − T , b′, c′ ∈ W − F , x′, y′ ∈ (V − T)∗;

118 CHAPTER 5.

2. in greater detail, the derivation step u ⇒Q v has this form

a′′y′′b′′ ⇒Q a′′y′′h′′x′′b′′ [(a′′, b′′, h′′x′′, c′′)],

where a′ ∈ V − T , b′, c′ ∈ W − F , h′′, y′′ ∈ (V − T)∗, x′′ ∈ T ∗;

3. each derivation step in v ⇒k
Q w has the form

a′′′y′′′h′′′b′′′ ⇒Q a′′′y′′′h′′′x′′′b′′′ [(a′′′, b′′′, x′′′, c′′′)],

where a′′′ ∈ V − T , b′′′, c′′′ ∈ W − F , y′′′ ∈ (V − T)∗, x′′′, y′′′ ∈ T ∗;

4. in greater detail, the derivation step w ⇒Q z has the form

a′′′′y′′′′b′′′′ ⇒Q y′′′′x′′′′c′′′′ [(a′′′′, b′′′′, x′′′′, c′′′′)],

where a′′′′ ∈ V − T , b′′′′ ∈ W − F , y′′′′, x′′′′ ∈ T ∗, w = a′′′′y′′′′b′′′′, z = y′′′′x′′′′.

Proof. Let Q′ = (V ′, T ′,W ′, F ′, R′, g′) be any queue grammar. Introduce these four pair-
wise disjoint alphabets U,X, Y , and {@, $,#,⊥} so that |U | = |V ′| and |X| = |Y | = |W ′|.
Introduce any bijection, α, from (V ′ ∪U ′) onto (U ∪X). Furthermore, introduce another
bijection, β, from W ′ to Y . Set V = U∪T ′∪{@,#}, T = T ′, W = X∪Y ∪{$,⊥}, F = {⊥},
and R = @$. Define the queue grammar Q = (V, T,W,F,R, g) with g constructed in the
following five-step way:

I. if R′ = ab with a ∈ V − T and b ∈ W − F , then add (@, $, a, b) to g;

II. for every (a, b, x, c) ∈ g′, a ∈ V , x ∈ V ∗, and b, c ∈ W , add (α(a), α(b), α(x), α(c))
to g;

III. for every (a, b, xy, c) ∈ g′, a ∈ V , x ∈ V ∗, y ∈ T ∗, b, c ∈ W , add (α(a), α(b), α(x)#y,
β(c)) to g;

IV. for every (a, b, y, c) ∈ g′, a ∈ V , y ∈ T ∗, and b, c ∈ W , add (α(a), β(b), y, β(c)) to g;

V. for every c ∈ F ′, add (#, β(b), ε,⊥) to g.

A formal proof that Q satisfies the properties required by this lemma is left to the reader.

Theorem 49. RE = SCAT[3,∞,∞,∞].

Proof. Obviously, SCAT[3,∞,∞,∞] ⊆ RE. Next, we prove the converse inclusion. Let
L be a recursively enumerable language. By Theorem 2.1 in [88], there exists a queue
grammar, Q = (V, T,W,F,R, g), such that L = L(Q). Witout any loss of generality,
assume that Q satisfies the properties described in Lemma 29. The next construction
produces a three-nonterminal scattered context grammar, G, satisfying L(G) = L(Q).

Set n = |V ∪W |+2. Introduce a bijection, β, from (V ∪W) to ({1}+{0}{1}+∩{0, 1}n).
In the standard manner, extend the domain of β to (V ∪ W)∗. Without any loss of
generality assume that (V ∪ W) ∩ {0, 1, 2} = ∅. Define the scattered context grammar,
G = (T ∪ {0, 1, 2}, T, P, 2), where P is constructed in the following six-step way:

5.2. SCATTERED CONTEXT 119

I. if R = ab with a ∈ V − T and b ∈ W − F , then add

(2) → (01n−1β(b)22β(a)20)

to P ;

II. for every (a, b, x, c) ∈ g with a ∈ V − T , x ∈ (V − T)∗, and b, c ∈ W − F , add

(d1, . . . , dn, b1, . . . , bn, 2, a1, . . . , an−1, an, 2, 2) →

(d1, . . . , dn, c1, . . . , cn, e1, e2, . . . , en, 2, 2, β(x)2)

to P , where d1 . . . dn = 01n−1 (that is, d1 = 0 and dh = 1 for h = 2, . . . , n),
b1 . . . bn = β(b), a1 . . . an = β(a), c1 . . . cn = β(c), ei = ε for i = 1, . . . , n;

III. for every (a, b, xy, c) ∈ g with a ∈ V − T , x ∈ (V − T)∗, y ∈ T ∗, and b, c ∈ W − F ,
add

(d1, . . . , dn, b1, . . . , bn, 2, a1, . . . , an−1, an, 2, 2) →

(f1, . . . , fn, c1, . . . , cn, e1, e2, . . . , en, 2, 2, β(x)y2)

to P , where d1 . . . dn = 01n−1 (that is, d1 = 0 and dh = 1 for h = 2, . . . , n),
f1 . . . fn = 1n−10 (that is, fn = 0 and fh = 1 for h = 1, . . . , n − 1), b1 . . . bn = β(b),
a1 . . . , an = β(a), c1 . . . cn = β(c), ei = ε for i = 1, . . . , n;

IV. for every (a, b, y, c) ∈ g with a ∈ V − T , y ∈ T ∗, and b, c ∈ W − F , add

(f1, . . . , fn, b1, . . . , bn, 2, a1, . . . , an−1, an, 2, 2) →

(f1, . . . , fn, c1, . . . , cn, e1, e2, . . . , en, 2, 2, y2)

to P , where f1 . . . fn = 1n−10 (that is, fn = 0 and fh = 1 for h = 1, . . . , n − 1),
b1 . . . , bn = β(b), a1, . . . , an = β(a), c1 . . . cn = β(c), ei = ε for i = 1, . . . , n;

V. for every (a, b, y, c) ∈ g with a ∈ V − T , y ∈ T ∗, b ∈ W − F , and c ∈ F , add

(f1, . . . , fn, b1, . . . , bn, 2, a1, . . . , an−1, an, 2, 2) →

(e1, . . . , en, en+1, . . . , e2n, e2n+1, e2n+2, . . . , e3n, ε, ε, y)

to P , where f1 . . . fn = 1n−10 (that is, fn = 0 and fh = 1 for h = 1, . . . , n − 1),
b1 . . . bn = β(b), a1 . . . an = β(a), ei = ε for i = 1, . . . , 3n;

VI. add (2, 2, a, 2) → (2, ε, a2, 2) to P , where a ∈ {0, 1}.

To keep this proof readable, we omit some obvious details from the rest of this proof
whose completion is left to the reader.

Claim 46. Let 2 ⇒∗
G x be a derivation in G during which G uses the productions introduced

in step (I) i times, for some i ≥ 1. Then #2w = (1 + 2i) − 3j, #1x = (n − 1)k, and
#0x = k + i − j, where k is a non-negative integer and j is the number of applications of
a production introduced in step (V) during 2 ⇒∗

G x such that j ≥ 1 and (1 + 2i) ≥ 3j.

120 CHAPTER 5.

Proof. The proof of this claim is left to the reader.

Claim 47. Let 2 ⇒∗
G x be a derivation in G during which G uses the production introduced

in step (I) two or more times. Then, x 6∈ T ∗.

Proof. Let 2 ⇒∗
G x. If G uses the production introduced in step (I) two or more times,

then the previous claim implies that x contains some ocurences of 0. Thus, x 6∈ T ∗ because
0 is a nonterminal.

Claim 48. G generates every w ∈ L(G) as 2 ⇒G u [p] ⇒∗
G v ⇒G w [q], where p is the

production introduced in (I), q is a production introduced in (V), during u ⇒∗
G v, G makes

every derivation step by a production introduced in (II)–(IV), or (VI).

Proof. Let w ∈ L(G). Then, 2 ⇒∗
G w and w ∈ T ∗. By Claim 46, as w ∈ T ∗, G uses the

production introduced in (I) once. Because 2 ⇒∗
G w begins from 2, we can express 2 ⇒∗

G

w as 2 ⇒G u [p] ⇒∗
G w, where p is the production introduced in (I), and during u ⇒∗

G w, G
never uses the production introduced in (I). Observe that every production, r, introduced
in (II)–(IV), and (VI) satisfies #2scleft(r) = 3 and #2scright(r) = 3. Furthermore, notice
that every production, q, introduced in (V), satisfies #2scleft(q) = 3 and #2scright(q) = 0.
These observations imply 2 ⇒G u [p] ⇒∗

G v ⇒G w [q], where p is the production introduced
in (I), q is a production introduced in (V), during u ⇒∗

G v, G makes every step by a
production introduced in (II)–(IV), or (VI).

Basic Idea. Before describing the form of every successful derivation in G in greater
detail, we make some observations about the use of productions introduced in (VI).

During any successful derivation in G, a production introduced in step (VI) is always
applied after using a production introduced in steps (I)–(IV) (the use of these productions
is described below). More precisely, to continue the derivation after applying a production
introduced in (I)–(IV), G has to shift the second appearance of 2 right in the current
sentential form. G makes this shift by using productions introduced in (VI) to generate
a sentential form having precisely n appearances of d (d ∈ {0, 1}) between the first ap-
pearance of 2 and the second appearance of 2. Indeed, the sentential form has to contain
exactly n appearances of d between the first appearance of 2 and the second appearance
of 2; otherwise, the successfulness of the derivation is contradicted by Observations 1 and
2, which follow next.

Observation 1. If there exist fewer than n ds between the first appearance of 2 and
the second appearance of 2, no production introduced in (I)–(V) can be used, so the
derivation ends. If the last sentential form contains nonterminals and if the derivation is
not successful, it is a contradiction.

Observation 2. Assume that there exist more than n ds between the first appearance
of 2 and the second appearance of 2. Then, after the next application of a production
introduced in (I)–(V), more than 3n ds (d ∈ {0, 1}) appear before the first appearance of
2. Return to the construction of productions in G to make the following observations:

(i) The production introduced in step (I) is always used only in the first step of a
successful derivation (see Claim 48).

5.2. SCATTERED CONTEXT 121

(ii) All productions introduced in steps (II)–(IV) rewrite 3n nonterminals preceding the
first appearance of 2 with other 3n nonterminals.

(iii) Recall that a production introduced in step (V) is always used in the last derivation
step (see Claim 48); furthermore, observe that this production erase precisely 3n
nonterminals preceding the first appearance of 2.

By Observation 2, the occurence of more than 3n ds between the first and the second
appearance of 2 gives rise to a contradiction of the successfulness of the derivation.

By Observations 1 and 2, we see that the sentential form has to contain precisely n
appearances of d between the first and the second appearance of 2.

Except for the use of productions introduced in step (VI) (this use is explained above),
every successful derivation in G is made as

2 ⇒G rhs(p1) [p1] ⇒
i
G u ⇒G v [p3] ⇒

k
G w ⇒G z [p5],

where i, k ≥ 1, and the derivation satisfies the following properties (A) through (D):

(A) Each derivation step in rhs(p1) ⇒i
G u has this form

01n−1β(b′)2β(a′)2β(y′)20 ⇒G 01n−1β(c′)22β(y′x′)20 [p2],

where p2 is a production introduced in (II), (a′, b′, x′, c′) ∈ g, y′ ∈ (V − T)∗.

(B) In greater detail, the derivation step u ⇒G v [p3] has this form

01n−1β(b′′)2β(a′′)2β(h′′)20 ⇒G 1n−10β(c′′)22β(h′′y′′)x′′20 [p3],

where u = 01n−1β(b′′)2β(a′′)2β(h′′)20, v = 1n−10β(c′′)22β(h′′y′′)x′′20, p3 is a pro-
duction introduced in (III), (a′′, b′′, y′′x′′, c′′) ∈ g, h′′, y′′ ∈ (V − T)∗, x′′ ∈ T ∗.

(C) Each derivation step in v ⇒k
G w has this form

1n−10β(b′′′)2β(a′′′)2β(y′′′)t′′′20 ⇒G 1n−10β(c′)22β(y′′′)t′′′x′′′20 [p4],

where p4 is a production introduced in (IV), (a′′′, b′′′, x′′′, c′′′) ∈ g, y′′′ ∈ (V − T)∗,
t′′′, x′′′ ∈ T ∗.

(D) In greater detail, the derivation step w ⇒G z [p5] has this form

1n−10β(b′′′′)2β(a′′′′)2t′′′′20 ⇒G t′′′′x′′′′ [p5],

where w = 1n−10β(b′′′′)2β(a′′′′)2t′′′′20, z = t′′′′x′′′′, p5 is a production introduced in
(V), (a′′′′, b′′′′, x′′′′, c′′′′) ∈ g with c′′′′ ∈ F .

Let
2 ⇒G rhs(p1) [p1] ⇒

i
G u ⇒G v [p3] ⇒

k
G w ⇒G z [p5]

be any successful derivation in G such that this derivation satisfies the above properties.
Observe that at this point

R ⇒i
Q a′′y′′b′′ ⇒Q ⇒Q y′′x′′b′′′ ⇒k

Q a′′′′t′′′′b′′′′ ⇒Q z

122 CHAPTER 5.

in Q, so z ∈ L(Q). Consequently, L(G) ⊆ L(Q).

A proof demonstrating that L(Q) ⊆ L(G) is left to the reader. Since L(Q) = L(G)
and G has only three nonterminals 0, 1, and 2, RE ⊆ SCAT[3,∞,∞,∞]. Having
SCAT[3,∞,∞,∞] ⊆ RE, we get SCAT[3,∞,∞,∞] = RE and the theorem holds.

�

Rigorous proofs of the remaining theorems given in this section are tedious, so we
describe them rather informally. In the next theorem, we demonstrate that the number
of context-sensitive productions can be reduced to two or less (see [127]).

Theorem 50. SCAT[∞, 2, 3, 6] = RE.

Proof. It is well known that every recursively enumerable language L ⊆ Σ∗ can be rep-
resented as L = h(L1 ∩ L2), where h is a homomorphism from T ∗ onto Σ∗ and L1 and
L2 are two context-free languages (see [79]). Let T = {a1, . . . , an} and 0, 1, $ 6∈ (T ∪ Σ)
be three new symbols. Let g(ai) = 10i1 and f(ai) = h(ai)g(ai) for all i ∈ {1, . . . , n}. By
the closure properties of context-free languages, there are context-free grammars G1 and
G2 that generate f(L1) and f(LR

2), respectively. Note that LR
2 denotes the reversal of L2.

Without any loss of generality assume that the nonterminal alphabets of these grammars
are disjoint. Let S1 and S2 be the start symbols of G1 and G2, respectively. Define another
context-free grammar, G′, by putting together G1 and G2 and adding a new production
of the form S → $S11111S2$, where $ and S are new nonterminals (S is the start symbol
of G′). Observe that

L(G′) = $f(L1)1111g(LR
2)$

If we now consider the productions of G′ as belonging to the scattered context grammar
G, where 0, 1, $ are interpreted as nonterminal symbols and where we have three additional
productions, namely, r1 = ($, 0, 0, $) → (ε, $, $, ε), r2 = ($, 1, 1, $) → (ε, $, $, ε), and
r3 = ($) → (ε), then L(G) = L is rather evident.

Indeed, consider a word w ∈ L. There is a word v ∈ L1 ∩ L2 such that w = h(v).
Hence, u = $f(v)1111g(vR)$ ∈ L(G′). By the construction, u is generated by the scattered
context grammar G. The productions r1, r2 and r3 of G allow us to remove all occurrences
of 0, 1 and $ to obtain w from u. Thus, L ⊆ L(G).

To prove L(G) ⊆ L, consider any w ∈ L(G). Since 0, 1 and $ are terminals in G′

on which G is based, we can assume that some generation of w exists which uses, in a
first phase, only productions from G′ and then, in a second phase, the productions r1,
r2 and r3. By the construction, there never exist more than two occurrences of $ in any
sentential form generated by G. Since the productions r1 and r2 test for the presence of
two occurrences of $, r3 has to be the last production that is used.

If r1 is applied so it does not rewrite the leftmost or rightmost appearance of 0, then
$ serves as a delimiter so that no terminal word is derivable. An analogical observation
applies to r2. Hence, we can assume that in the second phase of the derivation of w, the
productions r1 and r2 are used to test whether the word e(v) is a palindrome, where v
is generated by the first derivation phase and e is the homomorphism erasing all letters
from V and mapping 0 and 1 to 0 and 1, respectively. Only in this case, the second phase
succeeds.

5.2. SCATTERED CONTEXT 123

By the way the codification of f and g works, this means that the first phase ends
with v = $f(u)1111g(uR)$. Hence, G1 derives f(u) and G2 derives g(uR), yielding that
u ∈ L1 ∩ L2. Moreover, the codification ensures that w = h(u). Thus, L(G) ⊆ L.

As a result, L(G) = L. Observe that apart from r1 and r2, all productions in
G are context-free. Moreover, max-CS(G) = 3 and sum-CS(G) = 6. So, L(G) ∈
SCAT[∞, 2, 3, 6]. Consequently, the theorem holds. �

Unfortunately, in the construction of the proof of Theorem 50, the number of nontermi-
nals is unbounded. The following theorem demonstates how to simultaneously reduce both
the number of context-sensitive productions and the number of nonterminals (see [128]).

Theorem 51. SCAT[8, 5, 5, 17] = RE.

Proof. Let L ⊆ Σ∗ be a recursively enumerable language. L can be represented as L =
h(L1∩L2), where h is a homomorphism from T ∗ to Σ∗ and L1 and L2 are two context-free
languages (see [79]). Let T = {a1, . . . , an} and 0, 1, 2, 3, 4,#, $, S 6∈ (T ∪ Σ) be eight new
symbols. Let c(ai) = 10i1 and f(ai) = h(ai)c(ai) for all ai ∈ T , 1 ≤ i ≤ n. By the
definition, c is a coding; that is, it is injective. By the closure properties of context-free
languages, there are context-free grammars G1 and G2 that generate f(L1) and f(LR

2),
respectively. More precisely, let Gi = (Vi, T, Pi, Si) for i = 1, 2. Let N1 = (V1 − T),
N2 = (V2 − T). Without any loss of generality assume that the nonterminal alphabets
N1 and N2 are disjoint. Let N = N1 ∪ N2 and let C be a coding from N to {43i4 :
1 ≤ i ≤ |N |}. Next, we extend the codings C and c in two different ways. Let C1 be
a homomorphism defined as C1(A) = C(A)2 for all A ∈ N1 and C(a) = f(a) for every
a ∈ T . Moreover, let C2 be a homomorphism such that C2(A) = C(A)2 for all A ∈ N2

and C2(a) = c(a) for all a ∈ T . Next, consider the context-free grammar

G = (V,Σ ∪ {0, 1, 3, 4,#, $}, P, S)

with V − (Σ ∪ {0, 1, 3, 4,#, $}) = {S, 2} and where P contains the following productions

1. S → $C1(S1)1111C2(S2)##$,

2. 2 → C(A)Ci(w) if A → w ∈ Pi for i = 1, 2.

A word in L(G) starts with $ and ends with ##$. Moreover, it cannot contain any 2,
which means that the simulations of G1 and G2 have come to an end (no unresolved codings
of nonterminals of the simulated grammars remain). The two simulations of G1 and G2

are separated by a sequence of four 1’s which cannot occur elsewhere by construction. The
coding C(A) of the nonterminal A, which actually has to be replaced according to Gi, is
placed before the coding Ci(w) of the right-hand side w of the production A → w ∈ Pi.
Therefore, a correct simulation can be detected by a sequence of two codings of A in
the terminal word of G. Next, let n be a homomorphism from Σ ∪ {0, 1, 3, 4,#, $} to
{3, 4}, where n(3) = 3, n(4) = 4, and n(a) = ε for a 6∈ {3, 4}. Furthermore, let t be a
homomorphism from Σ ∪ {0, 1, 3, 4,#, $} to Σ defined as t(a) = a for every a ∈ Σ and
t(A) = ε for all A 6∈ Σ. Finally, let t′ be a homomorphism from Σ ∪ {0, 1, 3, 4,#, $} to
{0, 1}, where t′(a) = a, a ∈ {0, 1}, and t′(A) = ε, A 6∈ {0, 1}.

Considering homomorphisms n, t, and t′, we can state: $w11111w2##$ ∈ L(G) rep-
resents a correct simulation of Gi if n(wi) ∈ {C(A)C(A) : A ∈ Ni}

+. If both w1 and w2

124 CHAPTER 5.

represent a correct simulation, then t′(wi) = c(xi) for a terminal word xi derivable by Gi,
and, moreover, t(w1) = h(x1) in that case. Summarizing, we conclude:

h(L1 ∩ L2) = {t(w) : w = $w11111w2##$ represents a correct simulation
both of G1 and of G2 and t′(w1) = t′(wR

2) = (t′(w2))
R}.

We will now design a scattered context grammar based on G which checks the condi-
tions mentioned above. Consider the scattered context grammar G′ = (V ′,Σ, P ′, S) with
V ′ = {0, 1, 2, 3, 4,#, $, S} ∪ Σ and P ′ contains, besides all the productions from P , the
following checking productions:

1. ra = ($, a, a, $) → (ε, $, $, ε) for a = 0, 1 allow to skip the codings of terminal
symbols; more precisely, if w is a word derived by G, then the zeros and ones are
erased synchronously from both ends of the subwords w1 and w2, this way checking
whether t′(w1) = t′(w2). The four ones in the middle of the word are necessary to
also check the boundary between the w1- and the w2-parts.

2. rinit = (4, 4, 4,#,#) → (#, 4,#, ε, ε) initializes the check of “neighboured codings”
of nonterminals.

3. r3 = (#, 3, 4, 3,#) → (ε,#, 4,#, ε) and r4 = (#, 4, 4,#) → (##, ε, ε, ε) for checking
the neighbored codings.

The checking of the codings of terminal strings works as in the case proved in The-
orem 50. The checking of codings of neighboured nonterminals is performed by a right-
to-left scan over the word derived by G. Assume that we are confronted with a word
ξ = w43i443j4x#y#z before applying rinit, where x does not contain any occurrence of a
4. If w contains some occurrences of 4’s and one of them is selected when applying rinit,
then the indicated substring 43i443j4 is at least partially skipped, meaning that at least
some of the occurrences of 4’s or 3’s cannot be erased anymore.

When applying rinit to ξ = w43i443j4x#y#z by replacing the three displayed right-
most 4’s, we arrive at w43i#43j4#xyz. Then, none of the productions rinit, r3, r4 would
be applicable. Replacing the three displayed leftmost 4’s can be symmetrically treated.

Hence, the only possible next sentential form ξ ′ derivable from ξ by applying rinit

which might finally lead to a terminal word in G′ yields ξ′ = w#3i443j#xyz. Now, a
sequence of applications of r3 leads to ξ′′ = w#44#xyz if and only if i = j. In that case,
applying r4 once yields ξ′′′ = w##xyz, and the checking can proceed by going into the
next cycle. Assume that ξ ′′ = w#3`44#xyz or ξ′′ = w#443`#xyz for some ` > 0 (this
corresponds to the error case when neighboured codings do not coincide). Applying now
r4 would skip over some occurrences of 3’s (in the left direction) so that those 3’s would
never be erased anymore. r3 and 4 are not applicable here.

Moreover, the simulating grammar contains context-free productions to get rid of the
markers, ($) → (ε) and (#) → (ε).

Observe that the construction works even if derivations of G are interleaved with
checking steps in the derivation of G′. �

At the expense of a larger context-sensing ability, we can merge both markers $ and
in the above construction, which gives us the following corollary.

5.2. SCATTERED CONTEXT 125

Corollary 22. SCAT[7, 5, 6, 27] = RE.

Proof. We only indicate the necessary modifications and comment on the correctness of
the construction. In doing so, we make use of the same abbreviations as in the proof of
the preceding theorem, especially regarding G1, G2, G, and G′.

The start production of G′ and of G equals (S) → ($C1(S1)1111C2(S2)$$$). G′ con-
tains the following context-sensitive productions:

1. ($, 0, 0, $, $, $) → (ε, $, $$$, ε, ε, ε),

2. ($, 1, 1, $, $, $) → (ε, $, $$$, ε, ε, ε),

3. ($, 4, 4, 4, $, $, $) → ($, $, 4, $, ε, ε, $),

4. ($, $, 3, 4, 3, $, $) → ($, ε, $, 4, $, ε, $), and

5. ($, $, 4, 4, $, $) → ($, $$, ε, ε, ε, $).

At a further additional cost of enlarged context-sensing abilities and with a further
context-sensitive production, we can improve the nonterminal complexity. To do that,
however, we have to modify the construction of Theorem 51 considerably.

Theorem 52. SCAT[6, 6, 12, 44] = RE.

Proof. We start again with the representation of a recursively enumerable language L ⊆
Σ∗ as L = h(L1 ∩ L2), where h is a homomorphism from T ∗ to Σ∗ and L1 and L2

are two context-free languages. Let T = {a1, . . . , an} and 0, 1, 2, 3, $, S 6∈ (T ∪ Σ) be
six new symbols. Let c and f be two homomorphisms defined as c(ai) = (10)i and
f(ai) = h(ai)c(ai) for all ai ∈ T , 1 ≤ i ≤ n. Let Gi = (Vi, T, Pi, Si) for i = 1, 2 be
two context-free grammars with L(G1) = L1# and L(G2) = (L2)

R# and # 6∈ T . Let
N1 = V1 − T and N2 = V2 − T . Assume, without any loss of generality, that G1 and
G2 are in Chomsky normal form and that N1 ∩ N2 = ∅. We modify G1 slightly so that
we add a further production S ′

1 → S1 to P1 and take S ′
1 as new start symbol of G1. Let

us call this modified grammar again G1 = (V1, T, P1, S
′
1) in what follows. Let C be a

coding that maps symbols from N1 to {0i : 1 ≤ i ≤ |N1|} and symbols from N2 to {1i :
1 ≤ i ≤ |N2|}.

The scattered context grammar that generates L is defined as G′ = (V ′, T, P ′, S) with
V ′ = {0, 1, 2, 3, $, S} ∪ T and P ′ constructed as

1. The start production is (S) → ($$C(S ′
1)2$C(S2)2$).

2. The simulation productions are defined as follows:

(a) for each A → XY ∈ P1 ∪ P2, introduce (2) → ($C(A)$C(X)3C(Y)3) into P ′;

(b) for each A → a ∈ P1 with # 6= a, put (2) → ($C(A)$h(a)c(a)) into P ′;

(c) for each A → a ∈ P2 with # 6= a, add (2) → ($C(A)$(c(a))R) into P ′;

(d) for every production A → # ∈ P1 ∪ P2, add (2) → ($C(A)$3$3) into P ′;

126 CHAPTER 5.

(e) add (2, $, $, $, $, $, $) → ($C(S ′
1)$3C(S1)3, $, $, ε, ε, ε, ε) to P ′.

3. Checking rules for matching nonterminals are:
($, $, 0, $, 0, $, 3, $) → ($, ε, $, $, $, ε, 3, $),
($, $, 1, $, 1, $, 3, $) → ($, ε, $, $, $, ε, 3, $),
($, $, $, $, 3, $) → ($, ε, ε, ε, $2, $).

4. Checking rules for matching terminals are:
($, 1, $, $, $, 1, $) → (ε, $6, $, $, $, $, ε),
($, $, $, $, $, $, 0, $, $, $, $, 0, $) → (ε, ε, ε, ε, ε, ε, $, $, $, $, $, $, ε).

5. Erasing productions are ($) → (ε) and (2) → (ε).

The simulation proceeds again in several phases, different from the simulation described
in the proof of Theorem 51.

We start with the simulation of G2. Observe that the simulation of G1 cannot start at
this point, since there are no 6 occurrences of $ to the right-hand side of any symbol 2 as
required by the production designed to initiate a derivation of G1. Basically, a leftmost
derivation of G2 is mimicked. This is accomplished in the following way: after applying
(2) → ($C(A)$C(X)3C(Y)3), (2) → ($C(A)$(c(a))R) or (2) → ($C(A)$3$3), there is
no 2 needed to go on simulating G2. Therefore, a checking production for matching
nonterminals is to be applied. Then, ($, $, $, $, 3, $) → ($, ε, ε, ε, $2, $) terminates the
checking phase and starts a new a possible simulation with one of the productions having
2 as the left-hand side. If the checking phase fails or is ended prematurely, then there are
left-over 1’s. These 1’s will not be removed anymore since the checking productions for
matching terminals are designed in a way that only strings with an equal number of zeros
and ones, occurring alternatively, passes this test.

Then, the simulation of grammar G1 starts after having applied (2) → ($C(A)$3$3)—
the checking productions for nonterminals and the erasing production (2) → (ε) to end
the simulation of G2. Observe that the chosen codings of nonterminals for N1 and for
N2 prevent that the use of nonterminal checking productions mingles simulations of G1

and G2. Most importantly, check that starting the simulation of G1 immediately after
applying (2) → ($C(A)$3$3) will lead to an error situation since there is a 3 to the right
of the rightmost occurrence of $ which can never be removed anymore so no successful
derivation exists in this way. The simulation of grammar G1 is also mimicking a leftmost
derivation.

Finally, we can apply alternatingly both terminal checking productions. The produc-
tion designed for checking 0’s cannot be applied twice in a row because too many $’s are
erased. �

Open Problems. Recall that SCAT[1,∞,∞,∞] ⊂ RE; in fact, the one-nonterminal
scattered context grammars cannot even generate some context-sensitive languages (see
[120]). In Theorem 49, we prove that SCAT[3,∞,∞,∞] = RE. What is the generative
power of two-nonterminal scattered context grammars?

By Theorem 50, scattered context grammars with two context-sensitive productions
characterize RE. What is the generative power of scattered context grammars with one
context-sensitive production?

5.2. SCATTERED CONTEXT 127

Theorems 50 through 52 reduce the number of context-sensitive productions and non-
terminals of scattered context grammars in terms of the characterization of every recur-
sively enumerable language, L, by two context-free languages, L1 and L2, and a homo-
morphism, h, so that L = h(L1 ∩ L2) (see [79]). Reconsider these results in terms of
another characterizations of recursively enumerable languages. For instance, in [68], [69]
and [70], Geffert established several normal forms of phrase-structure grammars with a
significantly reduced number of context-sensitive productions and nonterminals. Perhaps
most interestingly, some of these normal forms require only one context-sensitive produc-
tion to characterize RE. Is it possible to improve the above results by using these normal
forms?

5.2.2 Semi-Parallel Uniform Rewriting

In this section, we discuss the uniform generation of languages by scattered context gram-
mars (see [121]). More precisely, we demonstrate that for every recursively enumerable
language, L, there exists a scattered context grammar, G, and two equally long words,
z1 ∈ {A,B,C}∗ and z2 ∈ {A,B,D}∗, where A, B, C, and D are G’s nonterminals, so
that G generates L and every word appearing in a generation of a sentence from L has the
form y1 . . . ymu, where u is a word of terminals and each yi is a permutation of zj , where
j ∈ {1, 2}. Furthermore, we achieve an analogical result so that u precedes y1 . . . ym.

Recall that by SCAT, we denote the family of languages generated by scattered con-
text grammars. Set

SCAT[.i/j] = {L : L = L(G), where G = (V, T, P, S) is a scattered context grammar
such that ∆(G) ⊆ T ∗Π(K)∗, where K is a finite language
consisting of equally long words with |K| = i and |alph(K)| = j}

and

SCAT[i/j.] = {L : L = L(G), where G = (V, T, P, S) is a scattered context grammar
such that ∆(G) ⊆ Π(K)∗T ∗, where K is a finite language
consisting of equally long words with |K| = i and |alph(K)| = j}.

Lemma 30. Let L ∈ RE. Then, there exists a queue grammar Q (see Definition 6 in
[88]), Q = (V, T,W,F,R, g), satisfying these two properties:

(I) L = L(G);

(II) Q derives every w ∈ L(Q) in this way

R ⇒i
Q a1u1b1

⇒Q u1x1y1c1 [(a1, b1, x1y1, c1)]

⇒j
Q y1z1d

where i, j ≥ 1, w = y1z1, x1, u1 ∈ V ∗, y1, z1 ∈ T ∗, b1, c1 ∈ W and d ∈ F .

Proof. Let L be a recursively enumerable language. By Theorem 2.1 in [88], there exists
a queue grammar Q′ = (V, T,W,F,R, g) such that Q′ derives every w ∈ L(Q′) as

R ⇒i
Q′ a1u1b1

⇒Q′ u1x1y1c1 [(a1, b1, x1y1, c1)]

⇒j

Q′ y1z1d

128 CHAPTER 5.

where i, j ≥ 0, w = y1z1, x1, u1 ∈ V ∗, y1, z1 ∈ T ∗, b1, c1 ∈ W and d ∈ F (i = 0 implies
a1u1b1 = u1x1y1c1 and j = 0 implies u1x1y1c1 = y1z1d). Transform Q′ to an equivalent
queue grammar, Q, so that Q generates every w ∈ L(Q′) by a derivation of the above
form, where i ≥ 1 and j ≥ 1. A detailed version of this simple modification is left to the
reader.

Lemma 31. Let L ∈ RE. Then, there exists a scattered context grammar G = ({A,B,C,
D, S} ∪ T, T, P, S) so that L(G) = rev(L) and ∆(G) ⊆ Π({AtBn−tC,AtBn−tD})∗T ∗ for
some t, n ≥ 1.

Proof. Let L ∈ RE. By Lemma 30, without any loss of generality, assume that there
exists a queue grammar Q = (V, T,W,F,R, q) such that L = L(Q) and Q derives every
w ∈ L(Q) in this way

R ⇒i
Q a1u1b1

⇒Q u1x1y1c1 [(a1, b1, x1y1, c1)]

⇒j
Q y1z1d

where i, j ≥ 1, w = y1z1, x1, u1 ∈ V ∗, y1, z1 ∈ T ∗, b1, c1 ∈ W and d ∈ F . The following
construction produces a scattered context grammar G = ({A,B,C,D, S} ∪ T, T, P, S)
satisfying L(G) = rev(L(Q)) and ∆(Q) ⊆ Π({AtBn−tC,AtBn−tD})∗T ∗ for some t, n ≥ 1.

For some n ≥ 2|V ∪W | and t ∈ {1, . . . , n − 1}, introduce a homomorphism, β, from
(V ∪W) to Z, where Z = {w : w ∈ ({A,B}n − ({A}t{B}n−t ∪{B}t{A}n−t)), #Aw = t}.
Intuitively, β represents (V ∪ W) in binary. Furthermore, let χ be the homomorphism
from (V ∪W) to Z{D} defined as χ(a) = β(a){D} for all a ∈ (V ∪W). Extend the domain
of β and χ to (V ∪ W)∗ in the standard manner. Define the scattered context grammar
G = ({A,B,C,D, S} ∪ T, T, P, S) with P constructed by performing the next six steps:

1. for a ∈ V − T and b ∈ W − F such that ab = R, add

(S → AtBn−tCb1 . . . bnCa1 . . . anCCAtBn−t)

to P , where bi, ai ∈ {A,B} for i = 1, . . . , n, b1 . . . bn = β(b), a1 . . . an = β(a).

2. for every (a, b, x, c) ∈ g, add

(d1, . . . , dn, C, b1, . . . , bn, C, a1, . . . , an, C, C, d1, . . . , dn) →

(d1, . . . , dn, C, e1, . . . , en, ε, e1, . . . , en, β(c)CAtBn−tC,χ(x)C, d1, . . . , dn)

to P , where ei = ε, di, bi, ai ∈ {A,B} for i = 1, . . . , n, d1 . . . dn = AtBn−t, b1 . . . bn =
β(b), a1 . . . an = β(a).

3. for every (a, b, xy, c) ∈ g with x ∈ V + and y ∈ T ∗, add

(d1, . . . , dn, C, b1, . . . , bn, C, a1, . . . , an, C, C, d1, . . . , dn) →

(f1, . . . , fn, C, e1, . . . , en, ε, e1, . . . , en, β(c)CAtBn−tC,

χ(x)AtBn−tCrev(y), e1, . . . , en)

to P , where ei = ε, di, fi, bi, ai ∈ {A,B} for i = 1, . . . , n, d1 . . . dn = AtBn−t,
f1 . . . fn = BtAn−t, b1 . . . bn = β(b), a1 . . . an = β(a).

5.2. SCATTERED CONTEXT 129

4. for every (a, b, y, c) ∈ g with y ∈ T ∗ and c ∈ W − F , add

(f1, . . . , fn, C, b1, . . . , bn, C, a1, . . . , an, C, C) →

(f1, . . . , fn, C, e1, . . . , en, ε, e1, . . . , en, β(c)CAtBn−tC,Crev(y))

to P , where ei = ε, fi, bi, ai ∈ {A,B} for i = 1, . . . , n, f1 . . . fn = BtAn−t, b1 . . . bn =
β(b), a1 . . . an = β(a).

5. for every (a, b, y, c) ∈ g with y ∈ T ∗ and c ∈ F , add

(f1, . . . , fn, C, b1, . . . , bn, C, a1, . . . , an, C, d1, . . . , dn, C) →

(e1, . . . , en, ε, e1, . . . , en, ε, e1, . . . , en, ε, e1, . . . , en, rev(y))

to P , where ei = ε, fi, bi, ai, di ∈ {A,B} for i = 1, . . . , n, d1 . . . dn = AtBn−t,
f1 . . . fn = BtAn−t, b1 . . . bn = β(b), a1 . . . an = β(a).

6. add
(C,C, d1, . . . , dn, C, f, C) → (C,C, e1, . . . , en, ε, fC,C)

to P , where ei = ε, f, di ∈ {A,B} for i = 1, . . . , n, d1 . . . dn = AtBn−t.

Next, we prove that ∆(G) ⊆ Π({AtBn−tC,AtBn−tD})∗T ∗ and L(G) = rev(L). For
brevity, we omit some details in this proof; a complete version of this proof is left to the
reader.

Consider any z ∈ L(G). G generates z in this way:

S ⇒G AtBn−tCb11
. . . b1nCa11

. . . a1nCCAtBn−t [p1]

⇒j
G u

⇒G v
⇒k

G w
⇒G rev(w5) [p5]

where j, k ≥ 0, z = rev(w5), and the five sub-derivations satisfy the following properties.

(i) In S ⇒G AtBn−tCb11
. . . b1nCa11

. . . a1nCCAtBn−t [p1], p1 is of the form

(S → AtBn−tCb11
. . . b1nCa11

. . . a1nCCAtBn−t),

where a1i
, b1i

∈ {A,B} for i = 1, . . . , n, b11
. . . b1n = β(b1) with b1 ∈ W , a11

. . . a1n =
β(a1) with a1 ∈ V , and a1b1 = R (see (1) in the construction of P);

(ii) In AtBn−tCb11
. . . b1nCa11

. . . a1nCCAtBn−t ⇒j
G u, every derivation step that is not

made by a production introduced in (6) has the form

AtBn−tCb21
. . . b2nCa21

. . . a2nCχ(u2)CAtBn−t ⇒G

AtBn−tCc21
. . . c2nCAtBn−tCχ(u2x2)CAtBn−t [p2]

where p2 is of the form

(d21
, . . . , d2n , C, b21

, . . . , b2n , C, a21
, . . . , a2n , C, C, d21

, . . . , d2n) →

(d21
, . . . , d2n , C, e21

, . . . , e2n , ε, e21
, . . . , e2n , β(c)CAtBn−tC,χ(x2)C, d21

, . . . , d2n),

130 CHAPTER 5.

where e2i
= ε, a2i

, b2i
, d2i

∈ {A,B} for i = 1, . . . , n, a21
. . . a2n = β(a2) with a2 ∈ V ,

b21
. . . b2n = β(b2) with b2 ∈ W , d21

. . . b2n = AtBn−t (see (2) in the construction of
P).

Thus,
AtBn−tCb11

. . . b1nCa11
. . . a1nCCAtBn−t ⇒j

G u

can be expressed as

AtBn−tCb11
. . . b1nCa11

. . . a1nCCAtBn−t ⇒G

...
⇒G AtBn−tCb21

. . . b2nCa21
. . . a2nCχ(u2)CAtBn−t

⇒G AtBn−tCc21
. . . c2nCAtBn−tCχ(u2x2)CAtBn−t

...
⇒G AtBn−tCb31

. . . b3nCa31
. . . a3nCAtBn−tCχ(u3)CAtBn−t

where
u = AtBn−tCb31

. . . b3nCa31
. . . a3nCAtBn−tCχ(u3)CAtBn−t.

(iii) Step u ⇒G v has the following form:

AtBn−tCb31
. . . b3nCa31

. . . a3nCAtBn−tCχ(u3)CAtBn−t ⇒G

BtAn−tCc31
. . . c3nCAtBn−tCχ(u3x3)A

tBn−tCrev(y3) [p3]

where
v = BtAn−tCc31

. . . c3nCAtBn−tCχ(u3x3)A
tBn−tCrev(y3)

and p3 is of the form

(d31
, . . . , d3n , C, b31

, . . . , b3n , C, a31
, . . . , a3n , C, C, d31

, . . . , d3n) →

(f31
, . . . , f3n , C, e31

, . . . , e3n , ε, e31
, . . . , e3n , β(c)CAtBn−tC,

χ(x3)A
tBn−tCrev(y3), e31

, . . . , e3n),

where e3i
= ε, a3i

, b3i
, d3i

, f3i
∈ {A,B} for i = 1, . . . , n, a31

. . . a3n = β(a3) with
a3 ∈ V , b31

. . . b3n = β(b3) with b3 ∈ W , d31
. . . d3n = AtBn−t, f31

. . . f3n = BtAn−t

(see (3) in the construction of P).

(iv) In v ⇒k
G w, any derivation step that is not made by a production introduced in (6)

has the following form:

BtAn−tCb41
. . . b4nCa41

. . . a4nCχ(u4)A
tBn−tCrev(v4) ⇒G

BtAn−tCc41
. . . c4nCAtBn−tCχ(u4)A

tBn−tCrev(y4)rev(v4) [p4]

where p4 is of the form

(f41
, . . . , f4n , C, b41

, . . . , b4n , C, a41
, . . . , a4n , C, C) →

(f41
, . . . , f4n , C, e41

, . . . , e4n , ε, e41
, . . . , e4n , β(c4)CAtBn−tC,Crev(y)),

where e4i
= ε, a4i

, b4i
, f4i

∈ {A,B} for i = 1, . . . , n, f41
. . . f4n = BtAn−t, b41

. . . b4n =
β(b4) with b4 ∈ W , a41

. . . a4n = β(a4) with a4 ∈ V , c41
. . . c4n = β(c4) with c4 ∈ W .

5.2. SCATTERED CONTEXT 131

As a result, v ⇒k
G w can be expressed as

BtAn−tCc31
. . . c3nCAtBn−tCχ(u3x3)A

tBn−tCrev(y3) ⇒G

...
⇒G BtAn−tCb41

. . . b4nCa41
. . . a4nCχ(u4)A

tBn−tCrev(v4)
⇒G BtAn−tCc41

. . . c4nCAtBn−tCχ(u4)A
tBn−tCrev(y4)rev(v4) [p4]

...
⇒G BtAn−tCb51

. . . b5nCa51
. . . a5nCAtBn−tCrev(w5),

where

w = BtAn−tCb51
. . . b5nCa51

. . . a5nCAtBn−tCrev(w5).

and p5 is of the form

(f51
, . . . , f5n , C, b51

, . . . , b5n , C, a51
, . . . , a5n , C, d51

, . . . , d5n , C) →

(e51
, . . . , e5n , ε, e51

, . . . , e5n , ε, e51
, . . . , e5n , ε, e51

, . . . , e5n , rev(y5)),

where e5i
= ε, a5i

, b5i
, d5i

, f5i
∈ {A,B} for i = 1, . . . , n, a51

. . . a5n = β(a5) with
a5 ∈ V , b51

. . . b5n = β(b5) with b5 ∈ W , d51
. . . d5n = AtBn−t, f51

. . . f5n = BtAn−t

(see (5) in the construction of P ′).

In addition, during AtBn−tCb11
. . . b1nCa11

. . . a1nCCAtBn−t ⇒j
G u and v ⇒k

G w, G uses
a production introduced in (6) to generate a sentential form that contains exactly n
hs, where h ∈ {A,B}, between the second appearance of C and the third appear-
ance of C so G can use p2 and p4 as described above. Observe that in the previous
generation of z by G, every sentential form belong to Π({AtBn−tC,AtBn−tD})∗T ∗, so
∆(G) ⊆ Π({AtBn−tC,AtBn−tD})∗T ∗. Furthermore, the form of this generation and the
construction of P imply that R ⇒∗

Q rev(z)d with d ∈ F . Consequently, L(Q) contains
rev(L(G)), so L(G) is in rev(L(Q)). Because L = L(Q), L(G) = rev(L).

Lemma 32. RE ⊆ SCAT[2/4.]

Proof. Let L be a recursively enumerable language. Set L′ = rev(L). As RE is closed
under reversal, L′ is a recursively enumerable language. By Lemma 31, there exists a scat-
tered context grammar, G = ({A,B,C,D, S} ∪ T, T, P, S) so that ∆(G) ⊆ Π({AtBn−tC,
AtBn−tD})∗T ∗ and L(G) = rev(L′). Observe that L(G), rev(L(Q)), rev(L′), rev(rev(L)),
and L coincide. As L(G) ∈ SCAT[2/4.], this lemma holds.

Theorem 53. SCAT[2/4.] = RE.

Proof. Clearly, SCAT[2/4.] ⊆ RE. By Lemma 32, it holds that RE ⊆ SCAT[2/4.].
Thus, SCAT[2/4.] = RE. �

Lemma 33. RE ⊆ SCAT[.2/4].

Proof. Let L be a recursively enumerable language. By Lemma 31, there exists a scattered
context grammar, G′ = (V, T, P ′, S), satisfying L(G′) ∈ SCAT[2/4.] and L(G′) = rev(L).

132 CHAPTER 5.

Introduce a scattered context grammar, G = (V, T, P, S), where P is defined by the equiv-
alence

(A1, . . . , An) → (x1, . . . , xn) ∈ P
if and only if

(An, . . . , An) → (rev(xn), . . . , rev(x1)) ∈ P ′

Observe that L(G) ∈ SCAT[.2/4] and L(G) = rev(rev(L)). As rev(rev(L)) = L, this
lemma holds.

Theorem 54. SCAT[.2/4] = RE.

Proof. Clearly, SCAT[.2/4] ⊆ RE. By Lemma 33, it holds that RE ⊆ SCAT[.2/4].
Thus, SCAT[.2/4] = RE. �

Open Problems. All the uniform rewriting discussed in this chapter is obtained for
grammars with erasing productions. In the techniques by which we achieved this uniform
rewriting, these productions fulfill a crucial role. Therefore, we believe that these tech-
niques cannot be straightforwardly adapted for grammars without erasing productions.
Can we achieve some uniform rewriting for grammars without erasing productions by
using completely different techniques?

Chapter 6

Grammatical Transformations and
Derivation Simulations

The previous parts of this thesis contain various transformations of some grammars with
context conditions to other grammars so that both the input and the output grammars
are equivalent. Taking a closer look at these grammars, we intuitively see that some
grammars generate the language in a more similary way than others. Indeed, consider two
grammars of this kind. If we can find a suitable substitution by which we change each
string of every derivation in one grammar so that the sequence of strings resulting from
this change represents a derivation in the other grammar, we tend to consider them as two
grammars that closely simulate each other. On the other hand, if a substitution of this
kind cannot be found, we do not consider them in this way. In the present chapter, we
formalize this intuitive understanding of equivalent grammars that make similar deriva-
tions. First, we introduce the basic concept of a derivation simulation. Making use of this
concept, we rigorously describe what we intuitively mean by grammatical transformations
that convert some grammars to other equivalent grammars so that the output grammars
closely simulate the input grammars. Specifically, we discuss this kind of grammatical
transformations in terms of EIL grammars (see Chapter 2), pointing out that an analogi-
cal discussion can be made for any equivalent grammars. Then, we present a grammatical
transformation of EIL grammars to equivalent symbiotic E0L grammars (see Section 3.2)
in order to illustrate the concept of close simulation.

6.1 Derivation Simulation

In this section, we conceptualize the derivation similarity of language models.

Definition 21. A string-relation system is a quadruple Ψ = (W,⇒,W0,WF), where W is
a language, ⇒ is a binary relation on W , W0 ⊆ W is a set of start strings, and WF ⊆ W
is a set of final strings.

Every string, w ∈ W , represents a 0-step string-relation sequence in Ψ. For every
n ≥ 1, a sequence w0, w1, . . . wn, wi ∈ W , 0 ≤ i ≤ n, is an n-step string-relation sequence,
symbolically written as w0 ⇒ w1 ⇒ . . . ⇒ wn, if for each 0 ≤ i ≤ n − 1, wi ⇒ wi+1.

If there is a string-relation sequence w0 ⇒ w1 ⇒ . . . ⇒ wn, where n ≥ 0, we write
w0 ⇒n wn. Furthermore, w0 ⇒∗ wn means that w0 ⇒n wn for some n ≥ 0, and w0 ⇒+

133

134 CHAPTER 6.

wn means that w0 ⇒n wn for some n ≥ 1. Obviously, from the mathematical point of
view, ⇒+ and ⇒∗ are the transitive closure of ⇒ and the transitive and reflexive closure
of ⇒, respectively.

Let Ψ = (W,⇒,W0,WF) be a string-relation system. A string-relation sequence in Ψ,
u ⇒∗ v, where u, v ∈ W , is called a yield sequence, if u ∈ W0. If u ⇒∗ v is a yield sequence
and v ∈ WF , u ⇒∗ v is successful.

Let D(Ψ) and SD(Ψ) denote the set of all yield sequences and all successful yield
sequences in Ψ, respectively.

Example 9. To illustrate the way we use string-relation systems, consider a context-free
grammar G = (V, T, P, S), where V , T , P , and S are the total alphabet, the terminal
alphabet, the set of productions, and the start symbol, respectively. In the standard way
(see [118]), define the direct derivation ⇒ on V ∗, the set of G’s sentential forms F (G), and
the language of G, L(G). Then, introduce a string-relation system Ψ = (V ∗,⇒, {S}, T ∗).
Observe that w0 ⇒ w1 ⇒ . . . ⇒ wn is a yield sequence in Ψ if and only if wn ∈ F (G).
Furthermore, w0 ⇒ w1 ⇒ . . . ⇒ wn is a successful yield sequence if and only if wn ∈ L(G).

Definition 22. Let Ψ = (W,⇒Ψ,W0,WF) and Ω = (W ′,⇒Ω,W ′
0,W

′
F) be two string-

relation systems, and let σ be a substitution from W ′ to W . Furthermore, let d be a
yield sequence in Ψ of the form w0 ⇒Ψ w1 ⇒Ψ . . . ⇒Ψ wn−1 ⇒Ψ wn, where wi ∈ W ,
0 ≤ i ≤ n, for some n ≥ 0. A yield sequence, h, in Ω simulates d with respect to σ,
symbolically written as h Bσ d, if h is of the form y0 ⇒m1

Ω y1 ⇒m2

Ω . . . ⇒
mn−1

Ω yn−1 ⇒mn

Ω

yn, where yj ∈ W ′, 0 ≤ j ≤ n, mk ≥ 1, 1 ≤ k ≤ n, and wi ∈ σ(yi) for all 0 ≤ i ≤ n. If,
in addition, there exists m ≥ 1 such that mk ≤ m for each 1 ≤ k ≤ n, then h m-closely
simulates d with respect to σ, symbolically written as h Bm

σ d.

Definition 23. Let Ψ = (W,⇒Ψ,W0,WF) and Ω = (W ′,⇒Ω,W ′
0,W

′
F) be two string-

relation systems, and let σ be a substitution from W ′ to W . Let X ⊆ D(Ψ) and Y ⊆ D(Ω).
Y simulates X with respect to σ, written as Y Bσ X, if the following two conditions hold:

1. for every d ∈ X, there is h ∈ Y such that h Bσ d;

2. for every h ∈ Y , there is d ∈ X such that h Bσ d.

Let m be a positive integer. Y m-closely simulates X with respect to σ, Y Bm
σ X, provided

that:

1. for every d ∈ X, there is h ∈ Y such that h Bm
σ d;

2. for every h ∈ Y , there is d ∈ X such that h Bm
σ d.

Definition 24. Let Ψ = (W,⇒Ψ,W0,WF) and Ω = (W ′,⇒Ω,W ′
0,W

′
F) be two string-

relation systems. If there exists a substitution σ from W ′ to W such that D(Ω) Bσ D(Ψ)
and SD(Ω) Bσ SD(Ψ), then Ω is said to be Ψ’s derivation simulator and successful-
derivation simulator, respectively. Furthermore, if there is an integer, m ≥ 1, such that
D(Ω) Bm

σ D(Ψ) and SD(Ω) Bm
σ SD(Ψ), Ω is called an m-close derivation simulator and

m-close successful-derivation simulator of Ψ, respectively. If there exists a homomor-
phism ρ from W ′ to W such that D(Ω) Bρ D(Ψ), SD(Ω) Bρ SD(Ψ), D(Ω) Bm

ρ D(Ψ),
and SD(Ω) Bm

ρ SD(Ψ), then Ω is Ψ’s homomorphic derivation simulator, homomorphic
successful-derivation simulator, m-close homomorphic derivation simulator and m-close
homomorphic successful-derivation simulator, respectively.

6.1. DERIVATION SIMULATION 135

Example 10. Let us demonstrate the idea of derivation simulations on grammars gener-
ating the language L = {anbn : n ≥ 1}. Consider

G1 = (V1, {a, b}, P1, S), where
V1 = {S, a, b},
P1 = {S → ab, S → aSb}.

Clearly, every derivation in G1 has the form

S ⇒G1
aSb ⇒G1

aaSbb ⇒G1
. . . ⇒G1

an−1Sbn−1 ⇒G1
anbn

for some n ≥ 1. The language of G1 is L. Next, consider

G2 = (V2, {a, b}, P2, S), where
V2 = {S,A,B, a, b},
P2 = {S → aB, B → Ab, A → aB, B → b}.

G2 makes every derivation in this way

S ⇒G2
aB ⇒G2

aAb ⇒G2
aaBb ⇒G2

aaAbb ⇒G2
. . . ⇒G2

anBbn−1 ⇒G2
anAbn,

where n ≥ 1. Furthermore, every sentential form anBbn−1 can be rewritten to anbn.
Obviously, L(G2) = L(G1) = L.

Investigate the derivations in G1 and G2 in terms of derivation simulations. To do
so, introduce the corresponding string-relation systems Ψ1 = (V ∗

1 ,⇒G1
, {S}, {a, b}∗) and

Ψ2 = (V ∗
2 ,⇒G2

, {S}, {a, b}∗) by analogy with Example 9. Notice that Ψ1 and Ψ2 are
defined so that their yield sequences correspond to the above derivations in G1 and G2.
Then, introduce a homomorphism σ2 from V ∗

2 to V ∗
1 as

1. σ2(S) = σ2(A) = S;

2. σ2(B) = σ2(b) = b;

3. σ2(a) = a.

Let us show that Ψ2 is a 2-close homomorphic derivation simulator of Ψ1 with respect to
σ2. First, inspect all steps of yield sequences in Ψ1:

1. for S ⇒G1
ab, there is S ⇒G2

aB ⇒G2
ab;

2. for S ⇒G1
aSb, Ψ2 makes S ⇒G2

aB ⇒G2
aAb, where σ2(aAb) = aSb;

3. for an−1Sbn−1 ⇒G1
anSbn, n ≥ 2, there is an−1Abn−1 ⇒G2

anBbn−1 ⇒G2
anAbn,

where σ2(a
n−1Abn−1) = an−1Sbn−1, σ2(a

nAbn) = anSbn;

4. for an−1Sbn−1 ⇒G1
anbn, n ≥ 2, there exists an−1Abn−1 ⇒G2

anBbn−1 ⇒G2
anbn

with σ2(a
n−1Abn−1) = an−1Sbn−1 and σ2(a

nbn) = anbn.

That is, every step in any yield sequence from Ψ1 can be simulated by two steps in Ψ2.
Hence, by induction on the length of yield sequences in Ψ1, prove that every d ∈ D(Ψ1)
is 2-close-simulatable by some h ∈ D(Ψ2) with respect to σ2; in symbols, h B2

σ2
d. Next,

observe that every h ∈ D(Ψ2) is a 2-close homomorphic simulation of some d ∈ D(Ψ1).

136 CHAPTER 6.

Indeed, S ⇒∗
G2

anAbn and S ⇒∗
G2

anbn, n ≥ 1, are 2-close simulations of yield sequences
from Ψ1. The other forms of yield sequences in Ψ2 are of the form S ⇒G2

aB and
S ⇒+

G2
anAbn ⇒G2

an+1Bbn, n ≥ 1. Because σ2(B) = b, the first sequence is a 1-

close simulation of S ⇒G1
ab and the second sequence is a 2-close simulation of S ⇒+

G1

anSbn ⇒G2
an+1bn+1. Hence, for every h ∈ D(Ψ2), there exists d ∈ D(Ψ1) such that

h B2
σ2

d. As a result, D(Ψ2) B2
σ2

D(Ψ1); that is, Ψ2 is a 2-close homomorphic derivation
simulator of Ψ1.

Return to the grammars G1 and G2. Quite intuitively, the 2-closeness of their deriva-
tions means that the grammars generate their sentential forms in a very similar way.
Indeed, while G1 inserts new occurences of symbols a and b in one derivation step, G2

does the same in two steps.

Example 11. Consider G1 from Example 10. Let us demonstrate that the following
grammar, G3, homomorphically simulates G1, but the closeness of this simulation is not
limited by any number.

G3 = (V3, {a, b}, P3, S), where
V3 = {S,M,A,B,X,Z, a, b},

and the set of productions, P3, is defined as

P3 = {S → ZXMXZ,
ZA → ZXa, BZ → bXZ,
Xa → aX, bX → Xb,
XMX → AMB, XMX → AB,
aA → Aa, Bb → bB,
ZA → a, BZ → b};

Introduce a string-relation system Ψ3 = (V ∗
3 ,⇒G3

, {S}, {a, b}∗) and a homomorphism σ3

from V3 to V1 as

1. σ3(S) = σ3(M) = S;

2. σ3(A) = σ3(a) = a;

3. σ3(B) = σ3(b) = b;

4. σ3(X) = σ3(Z) = ε.

Inspect the definition of P3 to see that for every derivation step an−1Sbn−1 ⇒G1
anSan, n ≥

1, G3 makes a derivation

ZXan−1Mbn−1XZ ⇒2n−2
G3

Zan−1XMXbn−1Z

⇒G3
Zan−1AMBbn−1Z

⇒2n−2
G3

ZAan−1Mbn−1BZ

⇒2
G3

ZXanMbnXZ.

Analogously, for every an−1Sbn−1 ⇒G1
anbn, n > 0, there is

ZXan−1Mbn−1XZ ⇒2n−2
G3

Zan−1XMXbn−1Z

⇒G3
Zan−1ABbn−1Z

⇒2n−2
G3

ZAan−1Mbn−1BZ

⇒2
G3

anbn

6.1. DERIVATION SIMULATION 137

in G3. Informally, while G1 inserts new occurences of symbols a and b in the middle of
a sentential form, G3 adds as and bs to the ends of the corresponding sentential form.
It is rather easy to prove that if d ∈ D(Ψ1), there exists h ∈ D(Ψ3) such that h Bσ3

d. Furthermore, it can also be demonstrated that for every h ∈ D(Ψ3), there is some
d ∈ D(Ψ1) such that h Bσ3

d. However, observe that G3 simulates every derivation step of
G1 by a sequence of steps whose number depends on the length of the rewritten sentential
form. Therefore, D(Ψ3) Bσ3

D(Ψ1), but there exists no m satisfying D(Ψ3) Bm
σ3

D(Ψ1).

Consider three string-relation systems Ψ, Ω, and Θ. Assume that, for instance, Ω
is a q-close derivation simulator of Ψ and Θ is a r-close derivation simulator of Ω. The
following two theorems establish a simulation-based relationship between Ψ and Θ.

Theorem 55. Let Ψ = (W,⇒Ψ,W0,WF), Ω = (W ′,⇒Ω,W ′
0,W

′
F), Θ = (W ′′,⇒Θ,W ′′

0 ,W ′′
F)

be string-relation systems, σ be a substitution from W ′ to W , and τ be a substitution from
W ′′ to W ′. If for some X ⊆ D(Ψ), Y ⊆ D(Ω), Z ⊆ D(Θ) holds Y B

q
σ X and Z Br

τ

Y , q, r ≥ 1, there exists a substitution φ from W ′′ to W such that Z B
qr
φ X.

Proof.

(i) Let d ∈ X. Then, there exist some g ∈ Y and h ∈ Z such that g B
q
σ d and h Br

τ g.
From the definition of g B

q
σ d, d and g can be expressed as d = x0 ⇒Ψ x1 ⇒Ψ

. . . ⇒Ψ xm and g = y0 ⇒+
Ω y1 ⇒+

Ω . . . ⇒+
Ω ym, where xi ∈ W , yi ∈ W ′, xi ∈ σ(yi)

for all 0 ≤ i ≤ m; furthermore, every yk ⇒+
Ω yk+1, 0 ≤ k ≤ m − 1, consists of q

or fewer steps. Therefore, each yk ⇒+
Ω yk+1 is a string-relation sequence yk0 ⇒Ω

yk1 ⇒Ω . . . ⇒Ω ykqk
, where yk = yk0, yk+1 = ykqk

, 1 ≤ qk ≤ q. Because h Br
τ

g, it holds that h = z00 ⇒+
Θ z01 ⇒+

Θ . . . ⇒+
Θ z(m−1)qm−1

such that for every yki ⇒Ω

yk(i+1), 0 ≤ k ≤ m − 1, 0 ≤ i ≤ qk, yki = τ(zki), and every zki ⇒+
Θ zk(i+1) has r

or fewer steps. Putting the simulations together, we get for every xk ⇒Ψ xk+1 a
string-relation sequence zk0 ⇒+

Θ zk1 ⇒+
Θ . . . ⇒+

Θ zkqk
with at most qr steps so that

xk ∈ σ(τ(zk0)) and xk+1 ∈ σ(τ(zkqk
)). Consequently, h B

qr
φ d, where φ is defined as

φ(a) = {v ∈ σ(u) : u ∈ τ(a)} for all a ∈ W ′′.

(ii) Let h ∈ Z. By the definition of Z Br
τ Y , there exists g ∈ Y such that h Br

τ g.
Moreover, because Y B

q
σ X, there is some d ∈ X such that g B

q
σ d. Hence, by

analogy with (i), h B
qr
φ d.

From (i) and (ii), for every d ∈ X, there is h ∈ Z such that h B
qr
φ d, and for every

h ∈ Z, there exists some d ∈ X such that h B
qr
φ d. As a result, Z B

qr
φ X. �

Theorem 56. Let Ψ = (W,⇒Ψ,W0,WF), Ω = (W ′,⇒Ω,W ′
0,W

′
F), Θ = (W ′′,⇒Θ,W ′′

0 ,W ′′
F)

be string-relation systems, σ be a homomorphism from W ′ to W , and τ be a homomor-
phism from W ′′ to W ′. If for some X ⊆ D(Ψ), Y ⊆ D(Ω), Z ⊆ D(Θ) holds Y B

q
σ X and

Z Br
τ Y , q, r ≥ 1, there exists a homomorphism φ from W ′′ to W such that Z B

qr
φ X.

Proof. By Theorem 55, Z B
qr
φ X, where φ is a substitution from W ′′ to W defined as

φ(a) = {v ∈ σ(u) : u ∈ τ(a)} for all a ∈ W ′′. Clearly, if both σ and τ are homomorphisms,
φ is a homomorphism as well. �

138 CHAPTER 6.

6.2 Grammatical Simulation

Return to Examples 10 and 11. To study the closeness of derivations in grammars G1 and
G2, the corresponding string-relation systems Ψ1 and Ψ2 were introduced. More precisely,
for grammars G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2), Ψ1 and Ψ2 were defined as
Ψ1 = (V ∗

1 ,⇒G1
, {S1}, T

∗
1) and Ψ2 = (V ∗

2 ,⇒G2
, {S2}, T

∗
2). That is, in both Ψ1 and Ψ2, the

set of start strings contained only the axiom and the set of final strings was defined as a
set of all words over the terminal alphabet. As demonstrated next, however, the study of
grammatical simulations frequently requires a more general approach.

Consider a typical transformation of a grammar G1 to another equivalent grammar
G2; for example, see Theorems 19 and 21 in Section 4.1.3, Theorem 30 in Section 4.1.5,
or Lemma 19 in Section 4.2.2.

As a rule, G2 simulates derivations in G1 by performing these three phases:

(A) initialization that produces a string of a desired form by making a few initial steps;

(B) main phase that actually makes the derivation simulation;

(C) conclusion that removes various auxiliary symbols.

Phase (B) almost always fulfills a crucial role while the other two phases are usually much
less important. Furthermore, phases (A) and (C) usually correspond to no derivation steps
in terms of this simulation. As a result, the simulation as a whole is less close than the
main phase. Therefore, we next introduce string-relation systems that allow us to formally
express phase (B) and, simultaneously, supress the inessential phases (A) and (C).

Making use of the notions introduced in the previous section, we formalize the gram-
matical simulation in terms of EIL grammars because this formalization is discussed
throughout Section 6.3. Let us point out, however, that quite analogically, this simu-
lation can be formalized in terms of any grammatical models.

Definition 25. Let G = (V, T, P, s) be an EIL grammar. Let ⇒G be the direct derivation
relation in G. For ⇒G and every l ≥ 0, set

∆(⇒G, l) = {x ⇒G y : x ⇒G y ⇒i
G w, x, y ∈ V ∗, w ∈ T ∗, i + 1 = l, i ≥ 0}.

Next, let G1 = (V1, T1, P1, s1) and G2 = (V2, T2, P2, s2) be EIL grammars. Let ⇒G1

and ⇒G2
be the derivation relations of G1 and G2, respectively. Let σ be a substitution

from V2 to V1. G2 simulates G1 with respect to σ, D(G2) Bσ D(G1) in symbols, if there
exists two natural numbers k, l ≥ 0 so that the following conditions hold:

1. Ψ1 = (V ∗
1 ,⇒G1

, {s1}, T
∗
1) and Ψ2 = (V ∗

2 ,⇒Ψ2
,W0,WF) are string-relation systems

corresponding to G1 and G2, respectively, where W0 = {x ∈ V ∗
2 : s2 ⇒k

G2
x} and

WF = {x ∈ V ∗
2 : x ⇒l

G2
w, w ∈ T ∗

2 , σ(w) ⊆ T ∗
1 };

2. relation ⇒Ψ2
coincides with ⇒G2

− ∆(⇒G2
, l);

3. D(Ψ2) Bσ D(Ψ1).

In case that SD(Ψ2) Bσ SD(Ψ1), G2 simulates successful derivations of G1 with respect
to σ; in symbols, SD(G2) Bσ SD(G1).

6.3. SIMULATION OF E(0,1)L GRAMMARS 139

Definition 26. Let G1 and G2 be EIL grammars with total alphabets V1 and V2, terminal
alphabets T1 and T2, and axioms S1 and S2, respectively. Let σ be a substitution from V2

to V1. G2 m-closely simulates G1 with respect to σ if D(G2) Bσ D(G1) and there exists
m ≥ 1 such that the corresponding string-relation systems Ψ1 and Ψ2 satisfy D(Ψ2) Bm

σ

D(Ψ1). In symbols, D(G2) Bm
σ D(G1).

Analogously, G2 m-closely simulates successful derivations of G1 with respect to σ,
denoted by SD(G2) Bm

σ SD(G1), if SD(Ψ2) Bm
σ SD(Ψ1) and there exists m ≥ 1 such

that SD(G2) Bm
σ SD(G1).

Definition 27. Let G1 and G2 be two EIL grammars. If there exists a substitution σ
such that D(G2) Bσ D(G1), then G2 is said to be G1’s derivation simulator.

By analogy with Definition 27, the reader can also define homomorphic, m-close, and
successful-derivation simulators of EIL grammars.

6.3 Simulation of E(0,1)L Grammars

In this section, we investigate E(0,1)L grammars and symbiotic E0L grammars (see Sec-
tion 3.2) in terms of the grammatical simulation. Recall that by Theorem 10 and [155],
these two types of EIL grammars have the same generative power. Indeed, both E(0,1)L
grammars and symbiotic E0L grammars generate RE. From the simulation point of view,
however, there exists no transformation of an E(0,1)L grammar to an equivalent symbiotic
E0L grammar which closely simulates the input one. Therefore, we improve the results
concerning the generative power of these EIL grammars by proving that for any E(0,1)L
grammar, there exists an equivalent symbiotic E0L grammar that 1-closely simulates the
input grammar.

First, we introduce a construction that transforms any E(0,1)L grammar, G = (V, T, P, s),
satisfying s 6∈ T ∗, to a symbiotic E0L grammar, (G′,W). After that, we establish Theo-
rems 57 and 58. Theorem 57 proves that L(G) = L(G′,W). Theorem 58 demonstrates
that (G′,W) is a 1-close homomorphic simulator of G. Then, we modify the construction
for any s ∈ V ∗ and show that the statements of Theorems 57 and 58 hold for G with
s ∈ T ∗ as well.

Construction 1.

Input : An E(0,1)L grammar, G = (V, T, P, s), where s 6∈ T ∗.

Output : A symbiotic E0L grammar, (G′,W).

Algorithm: Introduce a new alphabet, V ′, defined as

V ′ = V ∪ {@,#, S ′} ∪ V̄ ∪ V̂ ∪ T̃ , where
V̄ = {ā : a ∈ V ∪ {@,#}},

V̂ = {â : a ∈ V ∪ {@,#}},

T̃ = {ã : a ∈ T}.

Let τ be a homomorphism from T to T̃ such that τ(a) = ã for all a ∈ T . Define a language,
W , over V ′ as W = V ∪ {@,#, S ′} ∪ T̃ ∪ ({āā, ââ, @̄ā, @̂â : a ∈ V ∪ {@,#}} − {@̄#̄}).
Then, construct a symbiotic E0L grammar, (G′,W), with G′ = (V ′, T, P ′, S′), where the
set of productions is defined in the following way:

140 CHAPTER 6.

1. add S′ → @s# to P ′;

2. for every (a, b) → x ∈ P , add a → āxb̄ to P ′;

3. for every (a, ε) → x ∈ P , add a → āx#̄ to P ′;

4. for every (a, b) → t ∈ P , t ∈ T ∗, add a → âτ(t)b̂ to P ′;

5. for every (a, ε) → t ∈ P , t ∈ T ∗, add a → âτ(t)#̂ to P ′;

6. add @ → @@̄, # → #̄#, @ → @̂, # → #̂ to P ′;

7. for every ā ∈ V̄ , add ā → ε to P ′;

8. for every â ∈ V̂ , add â → ε to P ′;

9. for all a ∈ T , add ã → a to P ′.

Theorem 57. Let G = (V, T, P, s) be an E(0,1)L grammar satisfying s 6∈ T ∗. Let (G′,W)
be a symbiotic E0L grammar constructed by using Construction 1 with G as its input.
Then, L(G) = L(G′,W).

Proof. Let ω be a homomorphism from V ′ to V ′ − (V̄ ∪ V̂) defined as ω(a) = ε for all
a ∈ V̄ ∪V̂ and ω(a) = a for every a ∈ V ′−(V̄ ∪V̂). Furthermore, let ω̃ be a homomorphism
from V ′ to V such that ω̃(a) = a for all a ∈ V , ω̃(ã) = a for all ã ∈ T̃ , and ω̃(a) = ε for
all V ′− (V ∪ T̃). Informally, ω removes all occurences of symbols of the forms ā and â. In
addition, ω̃ also removes @ and #; moreover, it converts tilde-versions of terminals back
to their originals.

Claim 49. For every w ∈ W ∗,

(I) S′ ⇒+
(G′,W)

w if and only if @s# ⇒∗
(G′,W) w;

(II) S′ ⇒+
(G′,W)

w implies S ′ 6∈ sub(w).

Proof. By the definition of P ′, it is easy to see that the very first derivation step always
rewrites S ′ to @s#. Moreover, no productions generate S ′; thus, S′ appears in no sentential
form derived from S ′.

Claim 50. For all u, v ∈ W ∗, S′ 6∈ sub(uv), u ⇒(G′,W) v if and only if ω(u) ⇒(G′,W) v.

Proof. Examine the definition of P ′. Clearly, all occurences of symbols from V̄ ∪ V̂ are
always erased during u ⇒(G′,W) v, so they play no role in the generation of v. By the
definition of W and ω, ω(u) ∈ W ∗; therefore, ω(u) ⇒(G′,W) v is a valid derivation in
(G′,W).

Note that this property of derivations in (G′,W) allows us to ignore symbols of forms
ā and â occuring in left-hand sides of derivation steps.

In Claims 51 and 52, we investigate some rewritings of sentential forms that belong to
{@}V ∗{#}.

Claim 51. Let @y# ⇒(G′,W) @x#, where y = a1a2 . . . an for some ai ∈ V , x ∈ W ∗,
n ≥ 0. Then, @x# = @@̄ā1x1ā2ā2x2ā3 . . . ānxn#̄#̄#, where xi ∈ V ∗ for all i = 1, . . . , n.

6.3. SIMULATION OF E(0,1)L GRAMMARS 141

Proof. Since x is surrounded by @ and # in @x#, (G′,W) surely rewrites @y# in such
a way that @ is rewritten to @@̄ and # is rewritten to #̄# (see the definition of P ′).
Every ai can be rewritten either to āixib̄i or âiτ(ti)̂bi, where bi ∈ V , xi ∈ V ∗, and ti ∈ T ∗.
Thus, @x# = @@̄α1z1β1α2z2β2 . . . αnznβn#̄# with αi = āi, zi = xi, and βi = b̄i or
αi = âi, zi = τ(ti), and βi = b̂i for all i = 1, . . . , n. However, @x# must be a string
over W . Inspect the definition of W to see that @x# ∈ W ∗ if and only if α1 = ā1,
β1 = α2 = ā2, β2 = α3 = ā3, . . . , βn−1 = αn = ān, and βn = #̄. As a result, we get
@x# = @@̄ā1x1ā2ā2x2ā3 . . . ānxn#̄#̄#.

Claim 52. Let @y# ⇒(G′,W) x, where y = a1a2 . . . an and {@,#} ∩ sub(x) = ∅ for some

ai ∈ V , x ∈ W ∗, n ≥ 0. Then, x = @̂â1τ(t1)â2â2τ(t2)â3 . . . ânτ(tn)#̂#̂, where ti ∈ T ∗ for
all i = 1, . . . , n.

Proof. Prove this claim by analogy with the proof of Claim 51.

The following claim shows that Claims 51 and 52 cover all possible ways of rewriting
of a string having the form @y#, y ∈ V ∗, in (G′,W).

Claim 53. Let @y# ⇒(G′,W) u, y ∈ V ∗. Then, either u = @x#, x ∈ W ∗, or u ∈ W ∗,

ω(u) ∈ T̃ ∗, and {@,#} ∩ sub(u) = ∅.

Proof. Return to the proof of Claim 51. Suppose that @ is rewritten to @@̄ and # is
rewritten to #̂. Inspect the resulting sentential form to see that either α1 ∈ V̂ or βn ∈ V̄
or there exists i ∈ {1, . . . , n − 1} such that βiαi+1 ∈ V̄ V̂ ; in all cases, the sentential form
does not belong to W ∗. Analogously, suppose that @ is rewritten to @̂ and # is rewritten
to #̄#. As before, such a sentential form is out of W .

Claim 54. Every derivation in (G′,W) is a beginning of

S′ ⇒(G′,W) @w0#

⇒(G′,W) @w1#
...

⇒(G′,W) @wn#

⇒(G′,W) u

⇒(G′,W) t

where w0 = s, wi ∈ W ∗, ω(u) = τ(t), t ∈ T ∗, 0 ≤ i ≤ n, n ≥ 0.

Proof. By the proof of Claim 49, S ′ is always rewritten to @w0#, where w0 = s. Then,
Claim 53 tells us that there are two possible forms of derivations rewriting ω(@wi#) and,
hence, @wi#. First, (G′,W) can generate a sequence of n sentential forms that belong to
{@}W ∗{#}, for some n ≥ 0 (their form is described in Claim 51). Second, (G′,W) can
rewrite @wn# to u ∈ W ∗, satisfying ω(u) ∈ T̃ ∗ (see Claim 52). By the definition of P ′,
ã → a is the only production that can rewrite ã ∈ T̃ . Therefore, u ⇒(G′,W) t such that
t ∈ T ∗ and ω(u) = τ(t). After that, no other derivation step can be made from t because
P ′ contains no production that rewrites terminals.

142 CHAPTER 6.

Claim 55. For all x, y ∈ V ∗, u ∈ W ∗ it holds

y ⇒G x if and only if @y# ⇒(G′,W) @u#

where x = ω(u).

Proof.

Only if : Let y ⇒G x. Express y and x as y = a1a2 . . . an and x = x1x2 . . . xn, respec-
tively, so that (ai, ai+1) → xi ∈ P and (an, ε) → xn ∈ P are applied during y ⇒G x,
i = 1, . . . , n − 1, n ≥ 0. Then, for every (ai, ai+1) → xi, there exists ai → āixiāi+1 ∈ P ′

and for (an, ε) → xn, there exists an → ānxn#̄ ∈ P ′. Therefore, taking into account
Claim 51, we can construct @y# ⇒(G′,W) @@̄ā1x1ā2ā2x2ā3 . . . ānxn#̄#̄#. Obviously,
ω(@̄ā1x1ā2ā2x2ā3 . . . ānxn#̄#̄) = x1x2 . . . xn = x.

If : Let @y# ⇒(G′,W) @u#. Express y as y = a1a2 . . . an, ai ∈ V , n ≥ 0. By the proof
of Claim 51, every ai is rewritten to āixiāi+1, xi ∈ V ∗, 0 ≤ i ≤ n − 1, an is rewritten to
ānxn#̄, xn ∈ V ∗, and @u# = @@̄ā1x1ā2ā2x2ā3 . . . ānxn#̄#̄#. Examine the definition of
P ′. For every ai → āixiāi+1, there exists (ai, ai+1) → xi ∈ P , and for an → ānxn#̄, there
is (an, ε) → xn in P . Hence, G can derive y ⇒G x such that x = x1x2 . . . xn = ω(u).

Claim 56. For all t ∈ T ∗, y ∈ V ∗, u ∈ W ∗, it holds

y ⇒G t if and only if @y# ⇒(G′,W) u

where τ(t) = ω(u).

Proof. Prove by analogy with the proof of Claim 55.

From the above claims, it is easy to prove that

s ⇒∗
G t if and only if S ′ ⇒+

(G′,W)
t

for all t ∈ T ∗.

Only If : Let s ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn ⇒G t for some n ≥ 0. Then, there exists

S′ ⇒(G′,W) @s# ⇒(G′,W) @w1# ⇒(G′,W) @w2# ⇒(G′,W) . . .

⇒(G′,W) @wn# ⇒(G′,W) u ⇒(G′,W) t,

where vi = ω(wi) for all i = 1, . . . , n and τ(t) = ω(u).

If : By Claim 54, S ′ ⇒+
(G′,W)

t has the form

S′ ⇒(G′,W) @s# ⇒(G′,W) @w1# ⇒(G′,W) @w2# ⇒(G′,W) . . .

⇒(G′,W) @wn# ⇒(G′,W) u ⇒(G′,W) t,

where n ≥ 0. For this derivation, we can construct s ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn ⇒G

t so that vi = ω(wi) for all i = 1, . . . , n.

Therefore, L(G) = L(G′,W), and the theorem holds. �

6.3. SIMULATION OF E(0,1)L GRAMMARS 143

Theorem 58. Let G = (V, T, P, s) be an E(0,1)L grammar satisfying s 6∈ T ∗. Let (G′,W)
with G′ = (V ′, T, P ′, S′) be a symbiotic E0L grammar constructed by using Construction 1
with G as its input. Then, there exists a homomorphism ω̃ such that D(G′,W) B1

eω D(G)
and SD(G′,W) B1

eω SD(G).

Proof. Let Ψ = (V ∗,⇒G, {s}, T ∗) be a string-relation system corresponding to G. Let ω̃
be the homomorphism defined in the proof of Theorem 57. Let Ψ′ = ((V ′)∗,⇒Ψ′ ,W0,WF)
be a string-relation system corresponding to (G′,W), where

⇒Ψ′ = ⇒(G′,W) − {@̂â1τ(t1)â2â2τ(t2)â3 . . . ânτ(tn)#̂#̂ ⇒(G′,W) t1t2 . . . tn :

ai ∈ V, ti ∈ T ∗, 1 ≤ i ≤ n, n ≥ 0};
W0 = {@s#};

WF = {@̂â1τ(t1)â2â2τ(t2)â3 . . . ânτ(tn)#̂#̂ : ai ∈ V, ti ∈ T ∗, 1 ≤ i ≤ n, n ≥ 0}.

It is easy to verify that Ψ and Ψ′ satisfy (1) through (3) of Definition 25; of course,
S′ ⇒1

(G′,W) @s# and for every u ∈ WF , u ⇒1
(G′,W) t where t ∈ T ∗ (see Claim 54 in the

proof of Theorem 57). Next, we show that D(Ψ′) B1
eω D(Ψ). By Definition 23, we have to

establish that

(1) for every d ∈ D(Ψ), there exists h ∈ D(Ψ′) such that h B1
eω d;

(2) for every h ∈ D(Ψ′), there exists d ∈ D(Ψ) so that h B1
eω d.

(Note that most of this proof is based on substitutions and claims introduced in the proof
of Theorem 57).

(1) Let d ∈ D(Ψ). Express d as d = v0 ⇒G v1 ⇒G v2 ⇒G . . . ⇒G vn, where v0 = s,
for some n ≥ 0. For n = 0, there is @s# ∈ Ψ′ such that the zero-length derivations
s and @s# satisfy s B1

eω @s#. Assume that n > 0. Then, according to Claims 50
and 55, vi ⇒G vi+1 if and only if @wi# ⇒(G′,W) @wi+1#, where vi+1 = ω(wi+1) =
ω̃(@wi+1#), wi, wi+1 ∈ W ∗, 0 ≤ i ≤ n − 1. Moreover, by the definition of Ψ′, @wi# ⇒Ψ′

@wi+1# for all i = 0, . . . , n − 1. Hence, by induction on the length of derivations in G,
the reader can easily establish that for every d ∈ D(Ψ), there exists h ∈ D(Ψ′) such that
h B1

eω d.

(2) Let h ∈ D(Ψ). By the definition of ⇒Ψ′ and Claim 54, every yield sequence in Ψ′

is a prefix of @w0# ⇒Ψ′ @w1# ⇒Ψ′ . . . ⇒Ψ′ @wn# ⇒Ψ′ u, where w0 = s, wi ∈ W ∗,
u ∈ WF , 0 ≤ i ≤ n, n ≤ 0. The zero-length derivation @s# is a 1-close simulation of s
from G. Claims 50 and 55 imply that for every @wi# ⇒Ψ′ @wi+1#, there exists vi ⇒G

vi+1 for some vi, vi+1 ∈ V ∗, vi+1 = ω(wi+1) = ω̃(@wi+1#), 0 ≤ i ≤ n − 1. Furthermore,
according to Claims 52 and 56, for @wn# ⇒Ψ′ u, there exists vn ⇒G t such that t ∈ T ∗,
τ(t) = ω(u); that is, ω̃(u) = t. Clearly, every derivation step in h is a simulation of a
corresponding derivation step in d; as a result, h B1

eω d.

Next, we prove that SD(G′,W) B1
eω SD(G). From (2), it follows that every successful

yield sequence h ∈ SD(Ψ′) is a 1-close simulation of a derivation s ⇒∗
G t with t ∈ T ∗. To

prove that for every d ∈ SD(Ψ), there exists h ∈ SD(Ψ′) such that h B1
eω d, return to case

(1) in this proof. Assume that v0 ⇒n
G vn, vn ∈ T ∗, n ≥ 1. Then, there exists a derivation

@wn−1# ⇒Ψ′ u, u ∈ WF (see Claim 56), such that τ(vn) = ω(u) which implies ω̃(u) = vn.
Therefore, we get h B1

eω d, so SD(G′,W) B1
eω SD(G). �

144 CHAPTER 6.

Theorems 57 and 58 show that for every E(0,1)L grammar G = (V, T, P, s), s 6∈ T ∗,
there exists a symbiotic E0L grammar (G′,W) with G′ = (V ′, T, P ′, S′) such that

1. L(G) = L(G′,W);

2. (G′,W) is a 1-close homomorphic derivation simulator of G;

3. (G′,W) is a 1-close homomorphic successful-derivation simulator of G;

4. To simulate G, (G′,W) uses one initial derivation step, S ′ ⇒(G′,W) @s#, and one

derivation step, @̂â1τ(t1)â2â2τ(t2)â3 . . . ânτ(tn)#̂#̂ ⇒(G′,W) t1t2 . . . tn, ai ∈ V , ti ∈
T ∗, that removes auxiliary symbols.

To cover the entire family of E(0,1)L grammars, however, we have to demonstrate
that the above results can also be established for any G with s ∈ T ∗. First, introduce
the following new part to Construction 1: if s ∈ T ∗, add S′ → @̂âτ(s)#̂#̂, where a ∈
V , to P ′. Then, use this construction to create (G′,W). S′ → @̂âτ(s)#̂#̂ adds the
following new derivations S ′ ⇒(G′,W) @̂âτ(s)#̂#̂ and S′ ⇒(G′,W) @̂âτ(s)#̂#̂ ⇒(G′,W)

s to (G′,W). By analogy with Theorem 57, it is easy to see that L(G) = L(G′,W).
Inspect the corresponding string-relation system Ψ′ defined by analogy with Ψ′ in the
proof of Theorem 58. Clearly, the only difference is that W0 and WF contain @̂âτ(s)#̂#̂.
However, because ω̃(@̂âτ(s)#̂#̂) = s, the zero-length yield sequence @̂âτ(s)#̂#̂ is a 1-
close simulation of s. Therefore, all results established for E(0,1)L grammars with s 6∈ T ∗

also hold for E(0,1)L grammars with any axiom.

Chapter 7

Applications and Implementation

Although this thesis primarily represents a theoretically oriented treatment, most gram-
mars discussed in the previous chapters have quite realistic applications. Indeed, these
grammars are useful to every scientific field that formalizes its results by some strings and
studies how these strings are produced from one another under some permitting or, in
contrast, forbidding conditions. As numerous areas of science formalize and study their
results in this way, any description of applications that cover more than one of these areas
would be unbearably sketchy, if not impossible. Therefore, we concentrate our attention
on a single application area—microbiology, which appears of great interest at present. In
this intensively investigated scientific field, we give three case studies that make use of L
grammars with context conditions (see Chapter 4.2). Section 7.1 presents two case studies
of biological organisms whose development is affected by some abnormal conditions, such
as some virus infection. From even more practical point of view, Section 7.2 discusses
parametric 0L grammars (see [150]), which represent a powerful and elegant implemen-
tation tool in the area of biological simulation and modelling today. More specifically,
we extend parametric 0L grammars by context conditions and demonstrate their use on
models of growing plants.

7.1 Applications

Case Study 1. Consider a cellular organism in which every cell divides itself into two cells
during every single step of a healthy development. However, when a virus infects some
cells, all the organism stagnates until it is cured again. During the stagnating period,
all the cells just reproduce themselves without producing any new cells. To formalize
this development by a suitable simple semi-conditional L grammar (see Section 4.2.3), we
denote a healthy cell and a virus-infected cell by A and B, respectively, and introduce the
simple semi-conditional 0L grammar, G = ({A,B}, P,A), where P contains the following
productions:

(A → AA, 0, B), (B → B, 0, 0),
(A → A,B, 0), (B → A, 0, 0),
(A → B, 0, 0).

Figure 7.1 describes G simulating a healthy development while Figure 7.2 gives a devel-
opment with a stagnating period caused by the virus.

145

146 CHAPTER 7.

Figure 7.1: Healthy development.

Figure 7.2: Development with a stagnating period.

7.1. APPLICATIONS 147

In the next case study, we reconsider the well known 0L grammar that simulate the
developmental stages of a red alga (see [161], [166]). By using context conditions, we
modify this system so it describes some unhealthy development of this alga, which leads
to its partial death or degeneration.

Case Study 2. Consider an 0L grammar, G = (V, P, 1), where V = {1, 2, 3, 4, 5, 6, 7, 8, [,]}
and the set of productions P contains

1 → 23, 2 → 2, 3 → 24, 4 → 54, [→ [,
5 → 6, 6 → 7, 7 → 8[1], 8 → 8,] →].

From a biological viewpoint, parenthesized expressions represent branches whose posi-
tion is indicated by 8s. These branches are shown as attached on alternate sides of the
branch on which they are born. Figure 7.3 gives a biological interpretation of the devel-
opmental stages formally specified by the next derivation, which contain thirteen strings
corresponding to stages (a) through (m) in the figure.

1 ⇒G 23
⇒G 224
⇒G 2254
⇒G 22654
⇒G 227654
⇒G 228[1]7654
⇒G 228[23]8[1]7654
⇒G 228[224]8[23]8[1]7654
⇒G 228[2254]8[224]8[23]8[1]7654
⇒G 228[22654]8[2254]8[224]8[23]8[1]7654
⇒G 228[227654]8[22654]8[2254]8[224]8[23]8[1]7654
⇒G 228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654.

Death. Let us assume that the red alga occurs in some unhealthy conditions under
which only some of its parts survive while the rest dies. This dying process starts from
the newly born, marginal parts of branches, which are too young and weak to survive, and
proceeds towards the older parts, which are strong enough to live under these conditions.
To be quite specific, all the red alga parts become gradually dead except for the parts
denoted by 2s and 8s. This process is specified by the following 0L grammar, G, with
forbidding conditions. Let W = {a′ : a ∈ V }. Then, G = (V ∪ W,P, 1), where the set of
productions, P , contains:

(1 → 23,W), (1′ → 2′, {3′, 4′, 5′, 6′, 7′}),
(2 → 2,W), (2′ → 2′, ∅),
(3 → 24,W), (3′ → ε, {4′, 5′, 6′, 7′}),
(4 → 54,W), (4′ → ε, ∅),
(5 → 6,W), (5′ → ε, {4′}),
(6 → 7,W), (6′ → ε, {4′, 5′}),
(7 → 8[1],W), (7′ → ε, {4′, 5′, 6′}),
(8 → 8,W),
([→ [, ∅),
(] →], ∅),

148 CHAPTER 7.

Figure 7.3: Healthy development.

7.2. IMPLEMENTATION 149

and for every a ∈ V ,
(a → a′, ∅), (a′ → a′, ∅).

Figure 7.4 pictures the dying process corresponding to the next derivation, whose last
eight strings correspond to stages (a) through (h) in the figure.

1 ⇒∗
G 228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654

⇒G 2′2′8′[2′2′8′[1′]7′6′5′4′]8′[2′2′7′6′5′4′]8′[2′2′6′5′4′]8′[2′2′5′4′]8′[2′2′4′]8′[2′3′]8′[1′]7′6′5′4′

⇒G 2′2′8′[2′2′8′[1′]7′6′5′]8′[2′2′7′6′5′]8′[2′2′6′5′]8′[2′2′5′]8′[2′2′]8′[2′3′]8′[1′]7′6′5′

⇒G 2′2′8′[2′2′8′[1′]7′6′]8′[2′2′7′6′]8′[2′2′6′]8′[2′2′]8′[2′2′]8′[2′3′]8′[1′]7′6′

⇒G 2′2′8′[2′2′8′[1′]7′]8′[2′2′7′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′3′]8′[1′]7′

⇒G 2′2′8′[2′2′8′[1′]]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′3′]8′[1′]
⇒G 2′2′8′[2′2′8′[1′]]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′]8′[1′]
⇒G 2′2′8′[2′2′8′[2′]]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′]8′[2′].

Degeneration. Imagine a situation in which the red alga is degenerated. During this
degeneration, only the main stem is able to give a birth to new branches while all the other
branches lengthen themselves without any branching out. This degeneration is specified
by forbidding 0L grammar G = (V ∪ {D,E}, P, 1) with P containing

(1 → 23, ∅) (2 → 2, ∅) (3 → 24, ∅) (4 → 54, ∅)
(5 → 6, ∅) (6 → 7, ∅) (7 → 8[1], {D}) (8 → 8, ∅)
([→ [, ∅) (] →], ∅) (7 → 8[D], ∅)
(D → ED, ∅) (E → E, ∅).

Figure 7.5 pictures the degeneration specified by the following derivation, in which the
last ten strings correspond to stages (a) through (j) in the figure.

1 ⇒∗
G 227654

⇒G 228[D]7654
⇒G 228[ED]8[D]7654
⇒G 228[E2D]8[ED]8[D]7654
⇒G 228[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E6D]8[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E7D]8[E6D]8[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E8D]8[E7D]8[E6D]8[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654.

7.2 Implementation

In this section, we describe parametric 0L grammars (see [150]) and their extension by
context conditions. We make this description from a purely practical point of view to
clearly demonstrate how these grammars are implemented and used.

150 CHAPTER 7.

Figure 7.4: Death of marginal branch parts.

7.2. IMPLEMENTATION 151

Figure 7.5: Degeneration.

152 CHAPTER 7.

Case Study 3. Parametric 0L grammars (see [150], [149]) operate on strings of modules
called parametric words. A module is a symbol from an alphabet with an associated
sequence of parameters belonging to the set of real numbers. Productions of parametric
0L grammars are of the form

predecessor [: logical expression] → successor.

The predecessor is a module having a sequence of formal parameters instead of real num-
bers. The logical expression is any expression over predecessor’s parameters and real
numbers. If the logical expression is missing, the logical truth is assumed. The successor
is a string of modules containing expressions as parameters; for example,

A(x) : x < 7 → A(x + 1)D(1)B(3 − x).

Such a production matches a module in a parametric word provided that the symbol of the
rewritten module is the same as the symbol of the predecessor module, both modules have
the same number of parameters, and the value for the logical expression is true. Then,
the module can be rewritten by the given production. For instance, consider A(4). This
module matches the above production since A is the symbol of production’s predecessor,
there is one actual parameter, 4, in A(4), which corresponds to the formal parameter x in
A(x), and the value for the logical expression x < 7 with x = 4 is true. Thus, A(4) can
be rewritten to A(5)D(1)B(−1).

As usual, a parametric 0L grammar can rewrite a parametric word provided that there
exists a matching production for every module that occurs in it. Then, all modules are
simultaneously rewritten, and we obtain a new parametric word.

Parametric 0L grammars with context conditions. Next, we extend the parametric 0L
grammars by permitting context conditions. Each production of a parametric 0L grammar
with permitting conditions has the form

predecessor [? context conditions] [: logical expression] → successor.

where the predecessor, the logical expression, and the successor have the same meaning as
in parametric 0L grammars, and context conditions are some permitting context conditions
separated by commas. Each condition is a string of modules with formal parameters. For
example, consider

A(x) ? B(y), C(r, z) : x < y + r → D(x)E(y + r).

This production matches a module in a parametric word w provided that the predecessor
A(x) matches the rewritten module with respect to the symbol and the number of pa-
rameters and there exist modules matching to B(y) and C(r, z) in w such that the value
for logical expression x < y + r is true. For example, this production matches A(1) in
C(3, 8)D(−1)B(5)H(0, 0)A(1)F (3) because there are C(3, 8) and B(5) such that 1 < 5+3
is true. If there are more substrings matching the context condition, any of them can be
used.

Having described the parametric 0L grammars with permitting conditions, we next
show how to simulate the development of some plants by using them.

In the nature, developmental processes of multicellular structures are controlled by
the quantity of substances exchanged between the modules. In case of plants, the growth

7.2. IMPLEMENTATION 153

depends on the amount of water and minerals absorbed by the roots and carried upwards
to the branches. The model of branching structures making use of the resource flow was
proposed by Borchert and Honda in [24]. The model is controlled by a flux of resources,
that starts at the base of the plant and propagates the substances towards the apices. An
apex accepts the substances and when the quantity of accumulated resources exceeds a
predefined threshold value, the apex bifurcates and initiates a new lateral branch. The
distribution of the flux depends on the number of apices that the given branch supports
and on the type of the branch—plants usually carry greater amount of resources to straight
branches than to lateral branches (see [24] and [149]).

The following two examples illustrate the idea of plants simulated by parametric
0L grammars with permitting conditions.

(I) Consider the following model:

axiom : I(1, 1, eroot)A(1)
p1 : A(id) ? I(idp, c, e) : id == idp ∧ e ≥ eth

→ [+(α) I(2 ∗ id + 1, γ, 0)A(2 ∗ id + 1)]/(π) I(2 ∗ id, 1 − γ, 0)A(2 ∗ id)
p2 : I(id, c, e) ? I(idp, cp, ep) : idp == bid/2c

→ I(id, c, c ∗ ep)

This L grammar describes a simple plant with a constant resource flow from its roots and
with a fixed distribution of the stream between lateral and straight branches. It operates
on the following types of modules:

• I(id, c, e) represents an internode with a unique identification number id, a distribu-
tion coeficient c, and a flux value e;

• A(id) is an apex growing from the internode with identification number equal to id;

• +(φ) and /(φ) rotate the segment orientation by angle φ (for more information,
consult [149]);

• [and] enclose the sequence of modules describing a lateral branch.

Standardly, we assume that if no production matches a given module X(x1, . . . , xn), the
module is rewritten by an implicit production of the form X(x1, . . . , xn) → X(x1, . . . , xn);
that is, it remains unchanged.

At the beginning, the plant consists of one internode I(1, 1, eroot) with apex A(1),
where eroot is a constant flux value provided by roots. The first production, p1, simulates
the bifurcation of an apex. If an internode preceding the apex A(id) reaches a sufficient
flux e ≥ eth, the apex creates two new internodes I terminated by apices A. The lateral
internode is of the form I(2∗id+1, γ, 0) and the straight internode is of the form I(2∗id, 1−
γ, 0). Clearly, identification numbers of these internodes are unique. Moreover, every child
internode can easily calculate the identification number of its parent internode; the parent
internode has idp = bid/2c. The coeficient, γ, is a fraction of the parent flux to be directed
to the lateral internode. The second production, p2, controls the resource flow of a given
internode. Observe that the permitting condition I(idp, cp, ep) with idp = bid/2c matches
only the parent internode. Thus, p2 changes the flux value e of I(id, c, e) to c ∗ ep, where
ep is the flux of the parent internode, and c is either γ for lateral internodes or 1 − γ for

154 CHAPTER 7.

(a)

12

(b)

12

0
0

(c)

12

4.8

7.2

(d)

12

4.8

0

0

7.2

0

0

(e)

12

4.8

1.9

2.9

7.2

2.9

4.3

(f)

12

4.8

1.90

0

2.9

0
0

7.2

2.9
0

0
4.3

0
0

(g)

12

4.8

1.90.77

1.2

2.9

1.2
1.7

7.2

2.9
1.2

1.7
4.3

1.7

2.6

(h)

12

4.8

1.90.77

1.2

0

0 2.9

1.2

0

0

1.7

0

0

7.2

2.9
1.2

0

0
1.7

0

0

4.3

1.7

0

0

2.6

0

0

(i)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1

4.3

1.7

0.69

1

2.6

1

1.6

(j)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

0
0

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1
0

0

4.3

1.7

0.69

1

0
0

2.6

1
0

0
1.6

0
0

(k)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

0.41
0.62

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1
0.41

0.62

4.3

1.7

0.69

1

0.41
0.62

2.6

1
0.41

0.62
1.6

0.62
0.93

(l)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

0.41
0.62

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1
0.41

0.62

4.3

1.7

0.69

1

0.41
0.62

2.6

1
0.41

0.62
1.6

0.62
0.93

0

0

Figure 7.6: Developmental stages of the plant generated by (I).

7.2. IMPLEMENTATION 155

straight internodes. Therefore, p2 simulates the transfer of a given amount of parent’s
flux into the internode. Figure 7.6 pictures twelve developmental stages of this plant, with
eroot, eth, and γ set to 12, 0.9, and 0.4, respectively. The numbers indicate the flow values
of internodes.

It is easy to see that this model is unrealistically simple. Indeed, the model ignores
the number of apices, its flow distribution does not depend on the size of branches, and
the basal flow is set to a constant value. However, it sufficiently illustrates the technique
of a communication between adjacent internodes. Thus, it is intended to be a template
for more sophisticated models of plants, such as the following model.

(II) We discuss a plant development with a resource flow controlled by the number of
apices. This example is based on Example 17 in [149].

axiom : N(1) I(1, straight, 0, 1)A(1)
p1 : N(k) → N(k + 1)
p2 : I(id, t, e, c) ? N(k), A(id)

: id == 1

→ I(id, t, σ02
(k−1)ηk

, 1)
p3 : I(id, t, e, c) ? N(k), I(ids, ts, es, cs), I(idl, tl, el, cl)

: id == 1 ∧ ids == 2 ∗ id ∧ idl == 2 ∗ id + 1

→ I(id, t, σ02
(k−1)ηk

, cs + cl)
p4 : I(id, t, e, c) ? I(idp, tp, ep, cp), I(ids, ts, es, cs), I(idl, tl, el, cl)

: idp == bid/2c ∧ ids == 2 ∗ id ∧ idl == 2 ∗ id + 1
→ I(id, t, δ(t, ep, cp, c), cs + cl)

p5 : Id(id, t, e, c) ? I(idp, tp, ep, cp), A(ida)
: idp == bid/2c ∧ ida == id
→ I(id, t, δ(t, ep, cp, c), 1)

p6 : A(id) ? I(idp, tp, ep, cp)
: id == idp ∧ ep ≥ eth

→ [+(α) I(2 ∗ id + 1, lateral, ep ∗ (1 − λ), 1)A(2 ∗ id + 1)]
/(π) I(2 ∗ id, straight, ep ∗ λ, 1)A(2 ∗ id)

This L grammar uses the following types of modules:

• I(id, t, e, c) is an internode with a unique identification number id, where t is a type
of this internode, t ∈ {straight, lateral}, e is a flux value, and c is a number of apices
the internode supports;

• A(id) is an apex terminating the internode id;

• N(k) is an auxiliary module, where k is the number of a developmental cycle to be
done by the next derivation;

• +(φ), /(φ), [and] have the same meaning as in the previous example.

The flux distribution function, δ, is defined as

δ(t, ep, cp, c) =

{
ep − ep(1 − λ)((cp − c)/c) if t = straight,

ep(1 − λ)(c/(cp − c)) if t = lateral.

156 CHAPTER 7.

(a)

0

(b)

8

(c)

14
2.4

5.6

(d)

21

4.2

9.7
1.7

3.9

(e)

29

6.4

15
2.9

6.8

(f)

38

18
1.9

4.5
25

4.5

10
2

4.8

(g)

45

23

5.3

12

32

7.5

18

3.1

7.3

(h)

50

13

6.81.6

3.7
16

3.78.7

40

19
2.3

5.327

5.3

12
2.2

5.1

(i)

54

10
42

4.7
9.4

4.711
2.6

6.1

40

24
5.8

13

1.6
3.7

34

8.2
1.6

3.7
19

3.7

8.6
1.5

3.6

(j)

56

65

31.2
2.8

7

2.86.6
3.3

7.7

1.8
4.2

50

12
7.3

1.7
4

17

4
9.4

36

21
2.4

5.7

29

5.7

13

2.6

6

(k)

56

17

190.91
2.1

58

1.16
2

4.6

2.35.4

46

22
7.3

2.2
5.1

10

5.1
12

2.8

6.6

46

11
6.2

14

1.7
4

33

17
1.7

425

4

9.3
1.8

4.2

(l)

55

21
3.35.8

14 13

8.841
0.9

5.1

1.4
3.2

1.6

3.8

51

18
6.7

2.2
5.1

1.5
3.6

16

3.1
1.5

3.6

7.2
3.6

8.3

2
4.6

40

9.2
3.31.9

4.3
7.6

4.310

37

20
5.2

12
28

7.4

17

2.8

6.5

(m)

53

12
4.21

1.8
4.1

2.3

4.1
9.5 19

4
2.6

6.1

12
6.1

35

1.5
3.6

0.97
2.3

49

12
5.5

2
4.7

1.5
3.6

16

9.4
0.92

2.2

13
2.2

5

2.5
5.8

39

18

5.50.98
2.3

7.9

2.35.3
3

7.1

37

11
5.9

1.6
3.7

14

3.7
8.6

33

17
2.2

5.2

24

5.2

12

2
4.6

(n)

50

12
1.81.3

0.3
0.7

2.9

0.7
1.62.9

6.7

10

5.8
1.2

2.8
1.8

4.3

17

7.21.8

4.3 8.4

5.230
1.1
2.5

44

18
5.5

0.82
4.7

1.4
3.3

11

4.9
2.8

6.6

15
2

11

1.5
3.5

1.7

4.1

45

16

5.41.7

3.9
13

2.45.5
1.6

3.7

2.14.9

34

7.5
3.3

1.8
4.1

7.8

4.1
9.6

2.6

6

30

20

5

12

1.6
3.6

28

7.1
1.6

3.617

3.6

8.5

(o)

47

10
7.10.53

0.38
0.88

1.2

0.88
2.10.49

1.1

2
4.7

11

2
1.7

4.1
0.84

2

9.2
5.22.2

5.1
16

5.1
1.6

3.6

7.2

8.9

21

46

18
4.2

0.83
4.7

1.4
3.3

16

2.3
1.5

3.5
2

4.6

9.1
2.2

13

3.4
8

1.1
2.5

39

11
4.71.6

3.8
14

1.911
1.7

3.9

1.1
2.6

34

41
2.2

1
2.3

5.2

2.3
5.4

2.9

6.7

1.8
4.2

32

8.9
6

14

3.58.2

27

17
2.1

524

5

12
2.5

5.9

Figure 7.7: Developmental stages of the plant generated by (II).

7.2. IMPLEMENTATION 157

The development starts from the axiom N(1) I(1, straight, 0, 1)A(1) containing one
straight internode with one apex. In each derivation step, by application of p4, every
inner internode I(id, t, e, c) gets the number of apices of its straight (I(ids, ts, es, cs)) and
lateral (I(idl, tl, el, cl)) descendant. Then, this number is stored in c. Simultaneously, it
accepts a given part of the flux ep provided by its parent internode I(idp, tp, ep, cp). The
distribution function δ depends on the number of apices in the given branch and in the
sibling branch, and on the type of this branch (straight or lateral). The distribution factor,
λ, determines the amount of the flux that reaches the straight branch in case that both
branches support the same number of apices. Otherwise, the fraction is also affected by
the ratio of apex counts. Productions p2 and p3 rewrite the basal internode, calculating
its input flux value. The expression used for this purpose, σ02

(k−1)ηk

, was introduced by
Borchert and Honda to simulate a sigmoid increase of the input flux; σ0 is an initial flux,
k is a developmental cycle and η is a constant value scaling the flux change. Production
p5 rewrites internodes terminated by apices. It keeps the number of apices set to 1 and,
by analogy with p4, it loads a fraction of parent’s flux by using the δ function. The
last production, p6, controls the addition of new segments. By analogy with p1 in the
previous example, it erases the apex and generates two new internodes terminated by
apices. Figure 7.7 shows fifteen developmental stages of a plant simulation based on this
model.

Obviously, there are two concurrent streams of information in this model. The bottom-
up (acropetal) stream carries and distributes the substances required for the growth. The
top-down (basipetal) flow propagates the number of apices which is then used for the flux
distribution. A remarkable feature of this model is the response of a plant to a pruning.
Indeed, after a branch removal, the model redirects the flux to the remaining branches
and accelerates their growth.

Let us note that this model is a simplified version of the model described in [149], which
is very complex. Under this simplification, however, cp − c may be equal to the zero as
the denominator in the distribution function δ. If this happens, we change this zero value
to the proper non-zero value so the number of apices supported by the parent internode
corresponds to the number of apices on the straight and lateral branches growing from the
parent internode. Consult [149] for a more appropriate, but also complicated solution of
this problem.

From the presented examples, we see that parametric 0L grammars with permitting
conditions can describe sophisticated models of plants in a very natural way. Particularly,
compared to the context-sensitive L grammars, they allow to refer to modules that are not
adjacent to the rewritten module, and this property makes them more adequate, succint
and elegant from a practical point of view.

158 CHAPTER 7.

Chapter 8

Concluding and Bibliographical
Notes

Summary. The classical context-dependent grammars, such as context-sensitive and
phrase-structure grammars, represent powerful generators of languages. However, their
strict context conditions placed on the context surrounding the rewritten symbol during
the generation of languages complicate their use both in theory and in practice. Therefore,
in this thesis, we discuss a large variety of grammars with much less restrictive context
conditions, which are placed on derivation domains, use of productions, or the neighbor-
hood of rewritten symbols. All the grammars under discussion use context-independent
productions, which obviously significantly simplify the language generation process. Per-
haps most importantly, we demonstrate that most of the grammars with alternative con-
text conditions are as powerful as the classical context-dependent grammars. That is,
they have the same generative power as the phrase-structure grammars, and if erasing
productions are ruled out, they are as powerful as the context-sensitive grammars. As a
result, the grammars studied in this thesis represent language generators based on context-
independent productions and very simple context conditions, yet they maintain the power
of context-dependent grammars. All these advantages make their use obviously prefer-
able to the classical context-dependent grammars both from a theoretical and practical
point of view. From a theoretical viewpoint, they simplify the language generation and its
analysis, which usually turns out unbearably tedious and clumsy in terms of the classical
context-dependent grammars. From a practical viewpoint, these easy-to-use grammars
with flexible context conditions have their important applications in reality as we demon-
strate in terms of microbiology in this thesis as well.

Historical Notes. Conditional grammars were introduced in [64]. Several variants of
these grammars were discussed in [41], [44], [52], [53], [84], [85], [87], [91], [141], [145],
[146], [154], [158], [173], and [174]. The crucial concepts of these grammars and results
concerning them are summarized in [126].

General References. Although the present treatment of conditional grammars is self-
contained, it assumes some background in the formal language theory. For an introduction
to this theory, consult [7], [8], [16], [72], [79], [81], [86], [118], [157], [160], [162], or [182].

159

160 CHAPTER 8.

Future Investigation. Finally, we suggest the following new directions of investigation
concerning grammars with context conditions.

(1) By context conditions, the grammars dicussed in this thesis actually restrict their
derivations. In this sense, they are strongly related to regulated grammars, which make
this restriction by various regulating mechanisms. Study how to replace some of these
mechanisms by suitable context conditions and vice versa. Regulated grammars are in-
vestigated, for instance, in [1], [2], [58], [83], [101], [102], [103], [108], [111], [113], [115],
[125], [129], [130], [145], [152], [153], [154], and [157]. A good introduction to regulated
grammars is [43].

(2) Introduce automata with context conditions. Concentrate on pushdown automata
with some context conditions placed on their stacks. For a detailed discussion of automata,
consult [4], [7], [8], [12], [16], [32], [34], [54], [55] [56], [71], [78], [79], [80], [81], [86], [92],
[124], [132], [134], [151], [157], [160], [163], [171], or [182].

(3) Adapt the language models with context conditions for translation. Develop trans-
lation grammars and automata working under these conditions. For an essential discussion
of the translation models, see [4], [5], [6], [7], [8], [9], [22], [27], [31], [35], [59], [60], [76],
[89], [90], [82], [98], [143], [144], [164], or [183].

(4) Chapter 7 concentrates its attention on applications in terms of microbiology,
which various areas of computer scince have been intensively investigated recently. Study
some other applications of the language and translation models with context conditions.
Specifically, apply these models in some classical application areas of computer science,
such as the applications included in [3], [4], [9], [10], [11], [13], [14], [15], [17], [18], [19],
[20], [21], [23], [25], [26], [28], [29], [30], [31], [32], [33], [35], [36], [37], [38], [39], [40], [42],
[45], [46], [47], [48], [49], [50], [51], [57], [59], [61], [62], [63], [65], [66], [67], [74], [93], [94],
[95], [96], [97], [?], [99], [139], [140], [142], [159], [165], [172], [177], [176], [178], [179], [180],
[181], and [183].

Bibliography

[1] S. Abraham. Compound and serial grammars. Information and Control, 20:432–438,
1972.

[2] A. V. Aho. Indexed grammars: An extension of context-free grammars. Journal of
the ACM, 15:647–671, 1968.

[3] A. V. Aho. Currents in the Theory of Computing. Prentice-Hall, Englewood Cliffs,
New Jersey, 1973.

[4] A. V. Aho. Pattern matching in strings. In R.V., editor, Formal Language Theory:
Perspectives and Open Problems, pages 325–247. Academic Press, New York, 1980.

[5] A. V. Aho and J. D. Ullman. Properties of syntax directed relations. Journal of
Computer and System Sciences, 3:319–334, 1969.

[6] A. V. Aho and J. D. Ullman. Syntax directed translations and the pushdown as-
sembler. Journal of Computer and System Sciences, 3:37–56, 1969.

[7] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling,
Volume I: Parsing. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

[8] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling,
Volume II: Compiling. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[9] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley,
Reading, Massachusetts, 1977.

[10] S. Alagic and M. A. Arbib. The Design of Well-structured and Correct Programs.
Springer-Verlag, Heidelberg, 1978.

[11] R. B. Anderson. Proving Programs Correct. Wiley, New York, 1979.

[12] M. A. Arbib, A. J. Kfoury, and R. N. Moll. A Basis for Theoretical Computer
Science. Springer-Verlag, New York, 1981.

[13] E. A. Ashcroft and W. W. Wadge. Lucid, a formal system for writing and proving
programs. SIAM Journal on Computing, 5:336–354, 1976.

[14] J. W. Backus. The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM conference. In Proceedings of the International
Conference on Information Processing, pages 125–132. UNESCO, 1959.

161

162 BIBLIOGRAPHY

[15] C. B. Becker. Software Testing Techniques. Van Nostrand Reinhold, New York,
1983.

[16] R. Beigel and R. W. Floyd. The Language of Machines. Freeman, New York, 1994.

[17] R. E. Bellmann and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, 1962.

[18] J. L. Bentley and Th. Ottmann. The complexity of manipulating hierarchically
defined sets of rectangles. In Mathematical Foundations of Computer Science 1981,
pages 1–15. Springer-Verlag, Heidelberg, 1981.

[19] J. L. Bentley, Th. Ottmann, and P. Widmayer. The complexity of manipulating
hierarchically defined sets of rectangles. In F. P. Preparata, editor, Advances in
Computing Research 1, pages 127–158. JAI Press, Greenwich, Connecticut, 1983.

[20] R. Berger. The undecidability of the domino problem. In Memoirs of the Ameri-
can Mathematical Society, volume 66. American Mathematical Society, Providence,
Rhode Island, 1966.

[21] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways, Volume 2: Games
in Particular. Academic Press, New York, 1982.

[22] J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart, 1979.

[23] J. Berstel and L. Boasson. Une suite decroissante de cones rationnels. Springer-
Verlag Lecture Notes in Computer Science, 14:383–397, 1974.

[24] R. Borchert and H. Honda. Control of development in the bifurcating branch system
of Tabebuia Rosea: A computer simulation. Botanical Gazette, 145(2):184–195, 1984.

[25] S. R. Bourne. The UNIX System. Addison-Wesley, Reading, Massachussetts, 1983.

[26] P. Braffort and D. Hirschberg (eds.). Computer Programming and Formal Systems.
North-Holland, Amsterdam, 1963.

[27] J. G. Brookshear. Theory of Computation. Benjamin/Cummings, Redwood City,
California, 1989.

[28] J. A. Brzozowski. A survey of regular expressions and their applications. IEEE
Transactions on Electronic Computers, 11:324–335, 1962.

[29] J. A. Brzozowski and E. J. McCluskey Jr. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Transactions on Electronic Computers, EC-12:67–76,
1963.

[30] J. A. Brzozowski and M. Yoeli. Digital Networks. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

[31] W. Bucher and H. A. Maurer. Teoretische Grundlagen der Programmiersprachen:
Automatem und Sprachen. Bibliographisches Institut, Zurich, 1984.

BIBLIOGRAPHY 163

[32] A. W. Burks. Essays in Cellular Automata. University of Illinois Press, Champaign,
1970.

[33] A. W. Burks, W. D. Warren, and J. B. Wright. An analysis of a logical machine using
parenthesis-free notation. Mathematical Tables and Other Aids to Computation,
8:55–57, 1954.

[34] J. Carroll and D. Long. Theory of Finite Automata. Prentice-Hall, Englewood Cliffs,
1989.

[35] N. Chomsky. Syntactic Structures. The Hague, Netherlands, 1957.

[36] A. Church. The calculi of lambda-conversion. In Annals of Mathematics Studies 6.
Princeton University Press, Princeton, New Jersey, 1941.

[37] W. F. Clocksin and C. S. Mullish. Programming in PROLOG. Springer-Verlag,
Heidelberg, 1981.

[38] A. Cobham. The intrinsic computational difficulty of functions. In Proceedings
of 1964 Congress for Logic, Mathematics, and Philosophy of Science, pages 24–30,
Amsterdam, 1964. North-Holland.

[39] M. E. Conway. Design of a separable transition-diagram compiler. Communications
of the ACM, 6:396–408, 1963.

[40] S. A. Cook. Linear-time simulation of deterministic two-way pushdown automata.
In Proceeding of the 1971 IFIP Congress, pages 75–80, Amsterdam, 1971. North-
Holland.

[41] E. Csuhaj-Varju. On grammars with local and global context conditions. Interna-
tional Journal of Computer Mathematics, 47:17–27, 1992.

[42] G. B. Dantzig. On the significance of solving linear programming problems with
integer variables. Econometrica, 28:30–44, 1960.

[43] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory.
Akademie-Verlag, Berlin, 1989.

[44] J. Dassow, Gh. Paun, and A. Salomaa. Grammars based on patterns. International
Journal of Foundations of Computer Science, 4(1):1–14, 1993.

[45] J. W. de Bakker. Semantics of programming languages. In J. Tou, editor, Advances
in Information Systems and Sciences, volume 2, pages 173–227. Plenum Press, New
York, 1969.

[46] R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton (eds.). Foundations of
Secure Computation. Academic Press, New York, 1978.

[47] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social processes and proofs of theorems
and programs. Communications of the ACM, 22:271–280, 1979.

164 BIBLIOGRAPHY

[48] A. K. Dewdney. Computer recreations: A computer trap for the busy beaver, the
hardest-working turing machine. Scientific American, 251:19–23, 1984.

[49] A. K. Dewdney. Computer recreations. Scientific American, 252:23, 1985.

[50] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

[51] J. Edmonds. Covers and packings in a family of sets. Bulletin of the American
Mathematical Society, 68:494–499, 1962.

[52] A. Ehrenfeucht, J. Kleijn, and G. Rozenberg. Adding global forbidding context to
context-free grammars. Theoretical Computer Science, 37:337–360, 1985.

[53] A. Ehrenfeucht, P. Pasten, and G. Rozenberg. Context-free text grammars. Acta
Informatica, 31:161–206, 1994.

[54] S. Eilenberg. Automata, Languages, and Machines, volume A. Academic Press, New
York, 1974.

[55] S. Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, New
York, 1976.

[56] J. Engelfriet, E. M. Schmidt, and J. van Leeuwen. Stack machines and classes of
nonnested macro languages. Journal of the ACM, 27:6–17, 1980.

[57] J. Evey. Application of pushdown store machines. In Proceedings 1963 Fall Joint
Computer Conference, pages 215–227, Montvale, New Jersey, 1963. AFIPS Press.

[58] M. J. Fischer. Grammars with macro-like productions. In Proceedings of the Ninth
Annual Symposium on Switching and Automata Theory, pages 131–142, Schenec-
tady, New York, 1968. IEEE.

[59] R. W. Floyd. The syntax of programming languages–a survey. IEEE Transactions on
Electronic Computers, EC-13:346–353, 1964. Reprinted in S. Rosen (ed.), Program-
ming Systems and Languages, McGraw-Hill, New York, 1967; and B. W. Pollack,
Compiler Techniques, Auerbach Press, Philadelphia, Pensylvania, 1972.

[60] R. W. Floyd and J. D. Ullman. The compilation of regular expressions into integrated
circuits. Journal of the ACM, 29:603–622, 1984.

[61] L. D. Fosdick and L. J. Osterweil. Data flow analysis in software reliability. Com-
puting Surveys, 8:305–330, 1976.

[62] J. M. Foster. A syntax-improving program. Computer Journal, 11:31–34, 1968.

[63] J. M. Foster. Automatic Syntactic Analysis. American Elsevier, New York, 1970.

[64] I. Fris. Grammars with partial ordering of the rules. Information and Control,
12:415–425, 1968.

[65] B. A. Galler and A. J. Perlis. A View of Programming Languages. Addison-Wesley,
Reading, Massachusetts, 1970.

BIBLIOGRAPHY 165

[66] M. Gardner. Wheels, Life and Other Mathematical Amusements. Freeman, San
Francisco, 1983.

[67] M. Gardner. The traveling saleman’s travail. Discover, 6:87–90, 1985.

[68] V. Geffert. Context-free-like forms for the phrase-structure grammars. In Proceedings
of the Mathematical Foundations of Computer Science 1988, pages 309–317, New
York, 1988. Springer-Verlag.

[69] V. Geffert. How to generate languages using only two pairs of parentheses. Journal
of Information Processes in Cybernetics EIK, 27:303–315, 1991.

[70] V. Geffert. Normal forms for phrase-structure grammars. Informatique théorique et
Applications/Theoretical Informatics and Applications, 25(5):473–496, 1991.

[71] F. Gesceg and M. Steinby. Tree Automata. Akademia Kiado, Budapest, 1984.

[72] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill,
New York, 1966.

[73] J. Gonczarowski and M. K. Warmuth. Scattered and context-sensitive rewriting.
Acta Informatica, 20:391–411, 1983.

[74] M. G. Gouda and L. E. Rosier. Priority networks of communicating finite state
machines. SIAM Journal on Computing, 14:569–584, 1985.

[75] S. Greibach and J. Hopcroft. Scattered context grammars. Journal of Computer
and System Sciences, 3:233–247, 1969.

[76] D. Gries. Compiler Construction for Digital Computers. Wiley, New York, 1971.

[77] J. Gruska. On a classification of context-free languages. Kybernetika, 13:22–29, 1967.

[78] M. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill, New
York, 1965.

[79] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading,
Massachusetts, 1979.

[80] J. E. Hopcroft. An n log n algorithm for minimizing the states in a finite automaton.
In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages
189–196. Academic Press, New York, 1971.

[81] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1979.

[82] P. M. Lewis II, D. J. Rosenkrantz, and R. E. Stearns. Compiler Design Theory.
Addison-Wesley, Reading, Massachusetts, 1976.

[83] J. H. Johnson. Formal Models for String Similarity. PhD thesis, Department of
Computer Science, University of Waterloo, 1983.

166 BIBLIOGRAPHY

[84] J. Kelemen. Conditional grammars: Motivations, definition, and some properties. In
I. Peak and J. Szep, editors, Proceedings on Automata, Languages and Mathematical
Systems, pages 110–123, K. Marx University of Economics, Budapest, 1984.

[85] J. Kelemen. Measuring cognitive resources use (a grammatical approach). Computers
and Artificial Intelligence, 8(1):29–42, 1989.

[86] D. Kelley. Automata and Formal Languages. Prentice-Hall, Englewood Cliffs, New
Jersey, 1995.

[87] H. C. M. Kleijn and G. Rozenberg. Context-free-like restrictions on selective rewrit-
ing. Theoretical Computer Science, 16:237–239, 1981.

[88] H. C. M. Kleijn and G. Rozenberg. On the generative power of regular pattern
grammars. Acta Informatica, 20:391–411, 1983.

[89] D. E. Knuth. On the translation of languages from left to right. Information and
Control, 8:611–618, 1967.

[90] A. J. Korenjak and J. E. Hopcroft. Simple deterministic languages. In Proceedings
of the Seventh Annual Symposium on Switching and Automata Theory, pages 36–46,
Berkeley, California, 1966. IEEE.

[91] J. Kral. A note on grammars with regular restrictions. Kybernetika, 9(3):159–161,
1973.

[92] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag, New
York, 1985.

[93] L. C. Larson. Problem-Solving through Problems. Springer-Verlag, New York, 1983.

[94] P. E. Lauer, P. R. Torrigiani, and M. W. Shields. Cosy: A system specification
language based on paths and processes. Acta Informatica, 12:109–158, 1979.

[95] R. C. Linger, H. D. Mills, and B. I. Witt. Structured Programming: Theory and
Practice. Addison-Wesley, Reading, Massachusetts, 1979.

[96] J. Loeckxx and K. Sieber. The Foundations of Program Verification. Wiley, New
York, 1978.

[97] J. S. Mallozi and N. J. De Lillo. Computability with PASCAL. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1984.

[98] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort
and D. Hirschberg, editors, Programming and Formal Systems, pages 33–70. North-
Holland, Amsterdam, 1963.

[99] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[100] A. Meduna. A note on exponential density of ET0L languages. Kybernetika, 22:514–
518, 1986.

BIBLIOGRAPHY 167

[101] A. Meduna. Characterization of the Chomsky hierarchy through sequential-parallel
grammars. Rostocker Mathematische Kolloquium, 32:4–14, 1987.

[102] A. Meduna. Evaluated grammars. Acta Cybernetika, 8:169–176, 1987.

[103] A. Meduna. Context-free derivations on word monoids. Acta Informatica, 27:781–
786, 1990.

[104] A. Meduna. Generalized forbidding grammars. International Journal of Computer
Mathematics, 36:31–38, 1990.

[105] A. Meduna. Symbiotic E0L systems. Acta Cybernetica, 10:165–172, 1992.

[106] A. Meduna. Canonical scattered rewriting. International Journal of Computer
Mathematics, 51:122–129, 1993.

[107] A. Meduna. A formalization of sequential, parallel and continuous rewriting. Inter-
national Journal of Computer Mathematics, 47:153–161, 1993.

[108] A. Meduna. Matrix grammars under leftmost and rightmost restrictions. In Gh.
Paun, editor, Mathematical Linguistics and Related Topics, pages 243–257. Roma-
nian Academy of Sciences, Bucharest, 1994.

[109] A. Meduna. Syntactic complexity of scattered context grammars. Acta Informatica,
32:285–298, 1995.

[110] A. Meduna. A trivial method of characterizing the family of recursively enumerable
languages by scattered context grammars. EATCS Bulletin, 56:104–106, 1995.

[111] A. Meduna. Syntactic complexity of context-free grammars over word monoids. Acta
Informatica, 33:457–462, 1996.

[112] A. Meduna. Four-nonterminal scattered context grammars characterize the family of
recursively enumerable languages. International Journal of Computer Mathematics,
63:67–83, 1997.

[113] A. Meduna. On the number of nonterminals in matrix grammars with leftmost
derivations. LNCS, 1217:27–38, 1997.

[114] A. Meduna. Six-nonterminal multi-sequential grammars characterize the family of
recursively enumerable languages. International Journal of Computer Mathematics,
65:179–189, 1997.

[115] A. Meduna. Descriptional complexity of multi-continuous grammars. Acta Cyber-
netica, 13:375–384, 1998.

[116] A. Meduna. Economical transformation of phrase-structure grammars to scattered
context grammars. Acta Cybernetica, 13:225–242, 1998.

[117] A. Meduna. Prefix pushdown automata. International Journal of Computer Math-
ematics, 71:215–228, 1999.

168 BIBLIOGRAPHY

[118] A. Meduna. Automata and Languages: Theory and Applications. Springer, London,
2000.

[119] A. Meduna. Generative power of three-nonterminal scattered context grammars.
Theoretical Computer Science, 246:276–284, 2000.

[120] A. Meduna. Terminating left-hand sides of scattered context productions. Theoret-
ical Computer Science, 237:423–427, 2000.

[121] A. Meduna. Uniform generation of languages by scattered context grammars. Fun-
damenta Informaticae, 44:231–235, 2001.

[122] A. Meduna. Descriptional complexity of scattered rewriting and multirewriting: An
overview. Journal of Automata, Languages and Combinatorics, 7:571–577, 2002.

[123] A. Meduna. Coincidental extension of scattered context languages. Acta Informatica,
39:307–314, 2003.

[124] A. Meduna. Simultaneously one-turn two-pushdown automata. International Jour-
nal of Computer Mathematics, 80:679–687, 2003.

[125] A. Meduna, C. Crooks, and M. Sarek. Syntactic complexity of regulated rewriting.
Kybernetika, 30:177–186, 1994.

[126] A. Meduna and E. Csuhaj-Varju. Grammars with context conditions. EATCS
Bulletin, 32:112–124, 1993.

[127] A. Meduna and H. Fernau. On the degree of scattered context-sensitivity. Theoretical
Computer Science, 290:2121–2124, 2003.

[128] A. Meduna and H. Fernau. A simultaneous reduction of several measures of descrip-
tional complexity in scattered context grammars. Information Processing Letters,
86:235–240, 2003.

[129] A. Meduna and A. Gopalaratnam. On semi-conditional grammars with productions
having either forbidding or permitting conditions. Acta Cybernetica, 11:307–323,
1994.

[130] A. Meduna and G. Horvath. On state grammars. Acta Cybernetica, 8:237–245, 1988.

[131] A. Meduna and D. Kolář. Descriptional complexity of multi-parallel grammars with
respect to the number of nonterminals. In Grammars and Automata for String
Processing: from Mathematics and Computer Science to Biology and Back, pages
724–732. Francis and Taylor, London, 2000.

[132] A. Meduna and D. Kolář. Regulated pushdown automata. Acta Cybernetica, 18:653–
664, 2000.

[133] A. Meduna and D. Kolář. Homogenous grammars with a reduced number of non-
context-free productions. Information Processing Letters, 81:253–257, 2002.

BIBLIOGRAPHY 169

[134] A. Meduna and D. Kolář. One-turn regulated pushdown automata and their reduc-
tion. Fundamenta Informaticae, 16:399–405, 2002.

[135] A. Meduna and M. Švec. Reduction of simple semi-conditional grammars with
respect to the number of conditional productions. Acta Cybernetica, 15:353–360,
2002.

[136] A. Meduna and M. Švec. Descriptional complexity of generalized forbidding gram-
mars. International Journal of Computer Mathematics, 80(1):11–17, 2003.

[137] A. Meduna and M. Švec. Forbidding ET0L grammars. Theoretical Computer Sci-
ence, 306:449–469, 2003.

[138] A. Meduna and P. Vurm. Multisequential grammars with homogeneous selectors.
Fundamenta Informaticae, 34:1–7, 2001.

[139] G. B. Moore, J. L. Kuhns, J. L. Trefftzs, and C. A. Montgomery. Accessing Individ-
ual Records from Personal Data Files Using Non-Unique Identifiers. NBS Special
Publication 500-2, US Department of Commerce, National Bureau of Standards,
Washington, DC, 1977.

[140] P. Naur. Report on the algorithmic language ALGOL 60. Communications of the
ACM, 3:299–314, 1960. Revised in Communications of the ACM 6 (1963), 1–17.

[141] E. Navrátil. Context-free grammars with regular conditions. Kybernetika, 6(2):118–
125, 1970.

[142] W. Newman and R. Sproul. Principles of Interactive Computer Graphics. McGraw-
Hill, New York, 2nd edition, 1979.

[143] A. G. Oettinger. Automatic syntactic analysis and pushdown store. In Proceed-
ings of the Symposia in Applied Mathematics, volume 12, pages 104–109, American
Mathematical Society, Providence, Rhode Island, 1961.

[144] F. G. Pagan. Formal Specification of Programming Languages L: A Panoramic
Primer. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[145] Gh. Paun. On the generative capacity of conditional grammars. Information and
Control, 43:178–186, 1979.

[146] Gh. Paun. A variant of random context grammars: Semi-conditional grammars.
Theoretical Computer Science, 41:1–17, 1985.

[147] M. Penttonen. One-sided and two-sided context in formal grammars. Information
and Control, 25:371–392, 1974.

[148] M. Penttonen. ET0L-grammars and N-grammars. Information Processing Letters,
4:11–13, 1975.

[149] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. L-systems: From the theory
to visual models of plants. In M. T. Michalewicz, editor, Proceedings of the 2nd
CSIRO Symposium on Computational Challenges in Life Sciences, Collingwood,
Victoria, Australia, 1996. CSIRO Publishing.

170 BIBLIOGRAPHY

[150] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-
Verlag, New York, 1990.

[151] G. E. Revesz. Introduction to Formal Language Theory. McGraw-Hill, New York,
1983.

[152] D. J. Rosenkrantz. Matrix equations and normal forms for contex-free grammars.
Journal of the ACM, 14:501–507, 1967.

[153] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal
of the ACM, 16:107–131, 1969.

[154] G. Rozenberg. Selective substitution grammars (towards a framework for rewriting
systems), Part I: Definitions and examples. Journal of Information Processes in
Cybernetics, 13:455–463, 1977.

[155] G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

[156] G. Rozenberg and A. Salomaa. The Book of L. Springer-Verlag, Berlin, 1986.

[157] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, volume 1–3.
Springer, Berlin, 1997.

[158] G. Rozenberg and S. H. von Solms. Priorities on context conditions in rewriting
systems. Information Sciences, 14:15–50, 1978.

[159] R. Rustin. Formal Semantics of Programming Languages. Prentice-Hall, Englewood
Cliffs, New Jersey, 1972.

[160] A. Salomaa. Theory of Automata. Pergamon Press, London, 1969.

[161] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[162] A. Salomaa. Computation and Automata. Cambridge University Press, Cambridge,
1985.

[163] C. E. Shannon and J. McCarthy (eds.). Automata Studies. Princeton University
Press, Princeton, New Jersey, 1956.

[164] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer-Verlag, New York,
1987.

[165] A. R. Smith. Plants, fractals, and formal languages. Computer Graphics, 18:1–10,
1984.

[166] S. H. von Solms. Modelling the growth of simple biological organisms using formal
language theory. Manuscript.

[167] S. H. von Solms. Random context grammars with sequential rewriting and priorities
on conditions. Manuscript.

BIBLIOGRAPHY 171

[168] S. H. von Solms. Rewriting systems with limited distance permitting context. In-
ternational Journal of Computer Mathematics, 8, 1979.

[169] S. H. von Solms. Random context array grammars. Information Processing, 80:59–
64, 1980.

[170] S. H. von Solms. Rewriting systems with limited distance forbidding context. Inter-
national Journal of Computer Mathematics, 15:39–49, 1984.

[171] T. A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, Massachusetts,
1988.

[172] R. E. Tarjan. A unified approach to path problems. Journal of the ACM, 28:577–593,
1981.

[173] F. J. Urbanek. A note on conditional grammars. Revue Roumaine de Mathématiques
Pures at Appliquées, 28:341–342, 1983.

[174] G. Vaszil. On the number of conditional rules in simple semi-conditional grammars.
Theoretical Computer Science, 2004 (in press).

[175] A. P. J. van der Walt. Random context grammars. In Proceedings of the Symposium
on Formal Languages, 1970.

[176] P. Wegner. Programming language semantics. In R. Rustin, editor, Formal Seman-
tics of Programming Languages, pages 149–248. Prentice-Hall, Englewood Cliffs,
New Jersey, 1972.

[177] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster, M. Sintzoff,
C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker (eds.). Revised report on the
algorithmic language ALGOL 68. Acta Informatica, 5:1–236, 1974.

[178] P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, Massachusetts,
1977.

[179] N. Wirth. Systematic Programming: An Introduction. Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

[180] N. Wirth. Data structures and algorithms. Scientific American, 251:60–69, 1984.

[181] D. Wood. Paradigms and Programming with PASCAL. Computer Science Press,
Rockville, Maryland, 1984.

[182] D. Wood. Theory of Computation. Harper and Row, New York, 1987.

[183] D. H. Younger. Recognition and parsing of context-free languages in time n 3.
Information and Control, 10:189–208, 1976.

Index

0L grammar, 10

alph, 6
alphabet, 5
axiom, 7

bijection, 7

cardinality, 5
Cartesian product, 7
CE0L grammar, 74
CEP0L grammar, 74
CEPT0L grammar, 74
CET0L grammar, 73
closure

of language, 6
reflexive and transitive, 7
transitive, 7

concatenation, 6
context-conditional ET0L grammar, 73
context-conditional grammar, 27
context-free grammar, 8

over word monoid, 13
context-sensitive grammar, 8

degree, 13, 28, 74, 102
derivation, 8
derivation simulator, 134

homomorphic, 134
direct derivation, 8
domain, 7

E(m,n)L grammar, 10
E0L grammar, 10

on word monoid, 20
symbiotic, 21

EIL grammar, 11
simulation of, 138

EP0L grammar, 10
EPT0L grammar, 10
equivalent grammars, 11
ET0L grammar, 10

forbidding, 78

simple semi-conditional, 93

family, 5

FE0L grammar, 78
FEP0L grammar, 78
FEPT0L grammar, 78
FET0L grammar, 78

first, 6
forbidding ET0L grammar, 78
forbidding grammar, 33
function, 7

partial, 7
total, 7

gcc-grammar, 102
generalized forbidding grammar, 37
gf-grammar, 37
global context conditional grammar, 102

grammar
context-free, 8
context-sensitive, 8
phrase-structure, 7

grammatical simulation, 138

homomorphic derivation simulator, 134

homomorphism, 7

injection, 7

k-fold product, 7

language, 6
complement, 6

172

INDEX 173

context-free, 8
context-sensitive, 8
family, 6
finite, 6
of context-free grammar, 8
reversal of, 6

max, 6
microbiology, 145
morphism, 7

nonterminal, 8

Penttonen normal form, 9
permitting grammar, 33
phrase-structure grammar, 7
power set, 5
prefix, 6

proper, 6
production

conditional, 28

queue grammar, 11

random-context grammar, 33
with appearance checking, 32

range, 7
rc-grammar, 33
red alga, 147
relation, 7

binary, 7
inverse, 7

rev, 6

sc-grammar, 47
scattered context grammar, 116
semi-conditional grammar, 47
sentential form, 8
sequence, 5

finite, 5
length, 5

set, 5
complement of, 5
finite, 5
member of, 5

simple semi-conditional ET0L grammar, 93
simple semi-conditional grammar, 50
simulation

grammatical, 138
m-close, 134
of a yield sequence, 134

SSC-E0L grammar, 93
SSC-EP0L grammar, 93
SSC-EPT0L grammar, 93
SSC-ET0L grammar, 93
ssc-grammar, 50
string, 5

empty, 5
permutation, 6
power of, 6
reversal of, 6

string-relation sequence, 133
string-relation system, 133
subrelation, 7
subset, 5

proper, 5
substitution, 7
substring, 6

proper, 6
subword, 6

proper, 6
successful-derivation simulator, 134
suffix, 6

proper, 6
surjection, 7
symbiotic E0L grammar, 21
symbol, 5

terminal, 7
translation, 7

uniform rewriting
parallel, 113
semi-parallel, 127
sequential, 108

virus, 145

wm-grammar, 13
WME0L grammar, 20
word, 5

yield sequence, 134
simulation of, 134
successful, 134

