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By the inductive hypothesis, sn = 1 + 3 + 5 + ... + (2n − 1) = n2.  Hence, 
 

1 + 3 + 5 + ... + (2n − 1) + (2(n + 1) − 1) = n2 + 2n + 1 = (n + 1)2. 
 
Consequently, sn+1 holds, and the inductive proof is completed. 

 

1.2 Compilation 

A compiler reads a source program written in a source language and translates this program into a 
target program written in a target language so that both programs are functionally 
equivalent⎯that is, they specify the same computational task to perform.  As a rule, the source 
language is a high-level language, such as Pascal or C, while the target language is the machine 
language of a particular computer or an assembly language, which is easy to transform to the 
machine language.  During the translation, the compiler first analyzes the source program to verify 
that the source program is correctly written in the source language.  If so, the compiler generates 
the target program; otherwise, the compiler reports the errors and unsuccessfully ends the 
translation. 
 
Compilation Phases 
 
In greater detail, the compiler first makes the lexical, syntax, and semantic analysis of the source 
program.  Then, from the information gathered during this threefold analysis, it generates the 
intermediate code of the source program, makes its optimization, and creates the resulting target 
code.  As a whole, the compilation thus consists of these six compilation phases, each of which 
transforms the source program from one inner representation to another: 
 
• lexical analysis 
• syntax analysis 
• semantic analysis 
• intermediate code generation 
• optimized intermediate code generation 
• target code generation 
 
Lexical analysis breaks up the source program into lexemes⎯that is, logically cohesive lexical 
entities, such as identifiers or integers.  It verifies that these entities are well-formed, produces 
tokens that uniformly represent lexemes in a fixed-sized way, and sends these tokens to the syntax 
analysis.  If necessary, the tokens are associated with attributes to specify them in more detail.  
The lexical analysis recognizes every single lexeme by its scanner, which reads the sequence of 
characters that make up the source program to recognize the next portion of this sequence that 
forms the lexeme.  Having recognized the lexeme in this way, the lexical analysis creates its 
tokenized representation and sends it to the syntax analysis. 
 
Syntax analysis determines the syntax structure of the tokenized source program, provided by the 
lexical analysis.  This compilation phase makes use of the concepts and techniques developed by 
modern mathematical linguistics.  Indeed, the source-language syntax is specified by grammatical 
rules, from which the syntax analysis constructs a parse⎯that is, a sequence of rules that 
generates the program.  The way by which a parser, which is the syntax-analysis component 
responsible for this construction, works is usually explained graphically.  That is, a parse is 
displayed as a parse tree whose leaves are labeled with the tokens and each of its parent-children 
portion forms a rule tree that graphically represents a rule.  The parser constructs this tree by 
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smartly selecting and composing appropriate rule trees.  Depending on the way it makes this 
construction, we distinguish two fundamental types of parsers.  A top-down parser builds the parse 
tree from the root and proceeds down toward the frontier while a bottom-up parser starts from the 
frontier and works up toward the root.  If the parser eventually obtains a complete parse tree for 
the source program, it not only verifies that the program is syntactically correct but also obtains its 
syntax structure.  On the other hand, if this tree does not exist, the source program is syntactically 
erroneous. 
 
Semantic analysis checks that the source program satisfies the semantic conventions of the source 
language.  Perhaps most importantly, it performs type checking to verify that each operator has 
operands permitted by the source-language specification.  If the operands are not permitted, this 
compilation phase takes an appropriate action to handle this incompatibility.  That is, it either 
indicates an error or makes type coercion, during which the operands are converted so they are 
compatible. 
 
Intermediate code generation turns the tokenized source program to a functionally equivalent 
program in a uniform intermediate language.  As its name indicates, this language is at a level 
intermediate between the source language and the target language because it is completely 
independent of any particular machine code, but its conversion to the target code represents a 
relatively simple task.  The intermediate code fulfills a particularly important role in a retargetable 
compiler, which is adapt or retarget for several different computers.  Indeed, an installation of a 
compiler like this on a specific computer only requires the translation of the intermediate code to 
the computer’s machine code while all the compiler part preceding this simple translation remains 
unchanged. 

As a matter of fact, this generation usually makes several conversions of the source 
program from one internal representation to another.  Typically, this compilation phase first 
creates the abstract syntax tree, which is easy to generate by using the information obtained during 
syntax analysis.  Indeed, this tree compresses the essential syntactical structure of the parse tree.  
Then, the abstract syntax tree is transformed to the three-address code, which represents every 
single source-program statement by a short sequence of simple instructions.  This kind of 
representation is particularly convenient for the optimization.   
 
Optimized intermediate code generation or, briefly, optimization reshapes the intermediate code so 
it works in a more efficient way.  This phase usually involves numerous subphases, many of which 
are applied repeatedly.  It thus comes as no surprise that this phase slows down the translation 
significantly, so a compiler usually allows optimization to be turned off. 

In greater detail, we distinguish two kinds of optimizations⎯machine-independent 
optimization and machine-dependent optimization.  The former operates on the intermediate code 
while the latter is applied to the target code, whose generation is sketched next. 
 
Target code generation maps the optimized intermediate representation to the target language, 
such as a specific assembly language.  That is, it translates this intermediate representation into a 
sequence of the assembly instructions that perform the same task.  As obvious, this generation 
requires detailed information about the target machine, such as memory locations available for 
each variable used in the program.  As already noted, the optimized target code generation 
attempts to make this translation as economically as possible so the resulting instructions do not 
waste space or time.  Specifically, considering only a tiny target-code fragment at a time, this 
optimization shortens a sequence of target-code instructions without any functional change by 
some simple improvements.  Specifically, it eliminates useless operations, such as a load of a 
value into a register when this value already exists in another register. 
 
All the six compilation phases make use of error handler and symbol table management, sketched 
next. 
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Error Handler.  The three analysis phases can encounter various errors.  For instance, the lexical 
analysis can find out that the upcoming sequence of numeric characters represents no number in 
the source language.  The syntax analysis can find out that the tokenized version of the source 
program cannot be parsed by the grammatical rules.  Finally, the semantic analysis may detect an 
incompatibility regarding the operands attached to an operator.  The error handler must be able to 
detect any error of this kind.  After issuing an error diagnostic, however, it must somehow recover 
from the error so the compiler can complete the analysis of the entire source program.  On the 
other hand, the error handler is no mind reader, so it can hardly figure out what the author actually 
meant by an erroneous passage in the source program code.  As a result, no mater how 
sophisticatedly the compiler handles the errors, the author cannot expect that a compiler turns an 
erroneous program to a properly coded source program.  Therefore, no generation of the target 
program follows the analysis of an erroneous program. 
 
Symbol table management is a mechanism that associates each identifier with relevant 
information, such as its name, type, and scope.  Most of this information is collected during the 
analysis; for instance, the identifier type is obtained when its declaration is processed.  This 
mechanism assists almost every compilation phase, which can obtain the information about an 
identifier whenever needed.  Perhaps most importantly, it provides the semantic analyzer with 
information to check the source-program semantic correctness, such as the proper declaration of 
identifiers.  Furthermore, it aids the proper code generation.  Therefore, the symbol-table 
management must allow the compiler to add new entries and find existing entries in a speedy and 
effective way.  In addition, it has to reflect the source-program structure, such as identifier scope 
in nested program blocks.  Therefore, a compiler writer should carefully organize the symbol-table 
so it meets all these criteria.  Linked lists, binary search trees, and hash tables belong to commonly 
used symbol-table data structures. 
 
Convention 1.4.  For a variable x, x denotes a pointer to the symbol-table entry recording the 
information about x throughout this book. 

 
 
Case Study 1/35 FUN Programming Language.  While discussing various methods concerning 
compilers in this book, we simultaneously illustrate how they are used in practice by designing a 
new Pascal-like programming language and its compiler.  This language is called FUN because it 
is particularly suitable for the computation of mathematical functions. 

In this introductory part of the case study, we consider the following trivial FUN program 
that multiplies an integer by two.  With this source program, we trace the six fundamental 
compilation phases described above.  Although we have introduced all the notions used in these 
phases quite informally so far, they should be intuitively understood in terms of this simple 
program. 
 
program DOUBLE; 
{This FUN program reads an integer value and multiplies it by two.} 
 
integer u;  
 
begin 

read(u); 
u = u * 2; 
write(u); 

end. 
 
Lexical analyzer divides the source program into lexemes and translates them into tokens, some of 
which have attributes.  In general, an attributed token has the form t{a}, where t is a token and a 
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represents t’s attribute that provides further information about t.  Specifically, the FUN lexical 
analyzer represents each identifier x by an attributed token of the form i{ x}, where i is the token 
specifying an identifier as a generic type of lexemes and the attribute x is a pointer to the 
symbol-table entry that records all needed information about this particular identifier x, such as its 
type.  Furthermore, #{n} is an attributed token, where # represents an integer in general and its 
attribute n is the integer value of the integer in question.  Next, we give the tokenized version of 
program DOUBLE, where | separates the tokens of this program.  Figure 1.5 gives the symbol 
table created for DOUBLE’s identifiers. 
 
program | i{ DOUBLE} |  ; | integer  | i{ u} | ; | begin | read |  ( | i{ u} | ) | ; |  i{ u} |  =  | 
i{ u} | * | #{2} | ; | write| ( | i{ u} | )  | end | . 
 
 

Name Type … 
DOUBLE      
u integer   
M   

 
Figure 1.5 Symbol Table. 

 
Syntax analyzer reads the tokenized source program from left to right and verifies its syntactical 
correctness by grammatical rules.  Graphically, this grammatical verification is expressed by 
constructing a parse tree, in which each parent-children portion represents a rule.  This analyzer 
works with tokens without any attributes, which play no role during the syntax analysis.  In 
DOUBLE, we restrict our attention just to the expression i{ u} * #{2}, which becomes i * # 
without the attributes.  Figure 1.6 gives the parse tree for this expression. 
 
 

 
Figure 1.6 Parse Tree. 

 
Semantic analyzer checks semantic aspects of the source program, such as type checking.  In 
DOUBLE, it consults the symbol table to find out that u is declared as integer. 
 
Intermediate code generator produces the intermediate code of DOUBLE.  First, it implements its 
syntax tree (see Figure 1.7). 
 
 

〈expression〉 

〈term〉 

〈term〉 

〈factor〉 

  #  * 

〈factor〉 

  i 
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Figure 1.7 Syntax Tree. 
 
Then, it transforms this tree to the following three-address code, which makes use of a temporary 
variable t produced by the compiler.  The get instruction moves the input integer value into u.  The 
mul instruction multiplies the value of u by 2 and sets t to the result of this multiplication.  The 
mov instruction moves the value of t to u.  Finally, the put instruction prints the value of u out. 
 
[get,  ,  , u] 
[mul, u, 2, t] 
[mov, t,   , u] 
[put,  ,  , u] 
 
Optimizer reshapes the intermediate code to perform the computational task more efficiently.  
Specifically, in the above three-address program, it replaces t with u, and removes the third 
instruction to obtain this shorter one-variable three-address program 
 
[get,  ,  , u] 
[mul, u, 2,  u] 
[put,  ,  , u] 
 
Target code generator turns the optimized three-address code into a target program, which 
performs the computational task that is functionally equivalent to the source program.  Of course, 
like the previous optimizer, the target code generator produces the target program code as 
succinctly as possible.  Specifically, the following hypothetical assembly-language program, 
which is functionally equivalent to DOUBLE, consists of three instructions and works with a 
single register, R.  First, instruction GET R reads the input integer value into R.  Then, instruction 
MUL R, 2 multiplies the contents of R by 2 and places the result back into R, which the last 
instruction PUT R prints out. 
 
GET  R 
MUL R, 2 
PUT R 

 
 
Compiler Construction 
 
The six fundamental compilation phases⎯lexical analysis, syntax analysis, semantic analysis, 
intermediate code generation, optimization, and target code generation⎯are abstracted from the 

mov 

get 

 u  

  * 

2 

put 

 u 

 u 
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translation process made by a real compiler, which does not execute these phases strictly 
consecutively.  Rather, their execution somewhat overlaps in order to complete the whole 
compilation process as fast as possible (see Figure 1.8).  Since the source-program syntax structure 
represents probably the most important information to the analysis as a whole, the syntax analyzer 
guides the performance of all the analysis phases as well as the intermediate code generator.  
Indeed, the lexical analyzer goes into operation only when the syntax analyzer requests the next 
token.  The syntax analyzer also calls the semantic analysis routines to make their semantic-related 
checks.  Perhaps most importantly, the syntax analyzer directs the intermediate code generation 
actions, each of which translates a bit of the tokenized source program to a functionally equivalent 
portion of the intermediate code.  This syntax-directed translation is based on grammatical rules 
with associated actions over attributes attached to symbols occurring in these rules to provide the 
intermediate code generator with specific information needed to produce the intermediate code.  
For instance, these actions generate some intermediate code operations with operands addressed 
by the attributes.  When this generation is completed, the resulting intermediate code usually 
contains some useless or redundant instructions, which are removed by a machine-independent 
optimizer.  Finally, in a close cooperation with a machine-dependent optimizer, the target code 
generator translates the optimized intermediate program into the target program and, thereby, 
completes the compilation process. 
 
Passes.  Several compilation phases may be grouped into a single pass consisting of reading an 
internal version of the program from a file and writing an output file.  As passes obviously slow 
down the translation, one-pass compilers are usually faster than multi-pass compilers.  
Nevertheless, some aspects concerning the source language, the target machine, or the compiler 
design often necessitate an introduction of several passes.  Regarding the source language, some 
questions raised early in the source program may remain unanswered until the compiler has read 
the rest of the program.  For example, there may exist references to procedures that appear later in 
the source code.  Concerning the target machine, unless there is enough memory available to hold 
all the intermediate results obtained during compilation, these results are stored into a file, which 
the compiler reads during a subsequent pass.  Finally, regarding the compiler design, the 
compilation process is often divided into two passes corresponding to the two ends of a compiler 
as explained next. 
 
Ends.  The front end of a compiler contains the compilation portion that heavily depends on the 
source language and has no concern with the target machine.  On the other hand, the back end is 
primarily dependent on the target machine and largely independent of the source language.  As a 
result, the former contains all the three analysis phases, the intermediate code generation, and the 
machine-independent optimization while the latter includes the machine-dependent optimization 
and the target code generator.  In this two-end way, we almost always organize a retargetable 
compiler.  Indeed, to adapt it for various target machines, we use the same front end and only redo 
its back end as needed.  On the other hand, to obtain several compilers that translate different 
programming languages to the same target language, we use the same back end with different front 
ends. 

Compilation in Computer Context.  To sketch where the compiler fits into the overall context of 
writing and executing programs, we sketch the computational tasks that usually precede or follow 
a compilation process. 

Before compilation, a source program may be stored in several separate files, so a 
preprocessor collects them together to create a single source program, which is subsequently 
translated as a whole. 

After compilation, several post-compilation tasks are often needed to run the generated program 
on computer.  If a compiler generates assembly code as its target language, the resulting target 
program is translated into the machine code by an assembler.  Then, the resulting machine code is 
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usually linked together with some library routines, such as numeric functions, character string 
operations, or file handling routines.  That is, the required library services are identified, loaded 
into memory, and linked together with the machine code program to create an executable code (the 
discussion of linkers and loaders is beyond the scope of this book).  Finally, the resulting 
executable code is placed in memory and executed, or by a specific request, this code is stored on 
a disk and executed later on. 
 
 

 
Figure 1.8 Compiler Construction. 
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1.3 Rewriting Systems 

As explained in the previous section, each compilation phase actually transforms the source 
program from one compiler inner representation to another.  In other words, it rewrites a string 
that represents an inner form of the source program to a string representing another inner form that 
is closer to the target program, and this rewriting is obviously ruled by an algorithm.  It is thus 
only natural to formalize these phases by rewriting systems, which are based on finite many rules 
that abstractly represent the algorithms according to which compilation phases are performed. 
 
Definition 1.5 Rewriting System.  A rewriting system is a pair, M = (Σ, R), where Σ is an alphabet, 
and R is a finite relation on Σ*.  Σ is called the total alphabet of M or, simply, M’s alphabet.  A 
member of R is called a rule of M, so R is referred to as M’s set of rules. 

 
 
Convention 1.6.  Each rule (x, y) ∈ R is written as x → y throughout this book.  For brevity, we 
often denote x → y with a label r as r: x → y, and instead of r: x → y ∈ R, we sometimes write r ∈ 
R.  For r: x → y ∈ R, x and y represent r’s left-hand side, denoted by lhs(r), and r’s right-hand 
side, denoted by rhs(r), respectively.  R* denotes the set of all sequences of rules from R; as a 
result, by ρ ∈ R*, we briefly express that ρ is a sequence consisting of |ρ| rules from R.  By 
analogy with strings (see Convention 1.1), in sequences of rules, we simply juxtapose the rules and 
omit the parentheses as well as all separating commas in them.  That is, if ρ = (r1, r2, …, rn), we 
simply write ρ as r1r2…rn.  To explicitly express that Σ and R represent the components of M, we 
write MΣ and MR instead of Σ and R, respectively. 

 
 
Definition 1.7 Rewriting Relation.  Let M = (Σ, R) be a rewriting system.  The rewriting relation 
over Σ* is denoted by ⇒ and defined so that for every u, v ∈ Σ*, u ⇒ v in M if and only if there 
exist x → y ∈ R and w, z ∈ Σ* such that u = wxz and v = wyz. 

 
 
Let u, v ∈ Σ*.  If u ⇒ v in M, we say that M directly rewrites u to v.  As usual, for every n ≥ 0, the 
n-fold product of ⇒ is denoted by ⇒n.  If u ⇒n v, M rewrites u to v in n steps.  Furthermore, the 
transitive-reflexive closure and the transitive closure of ⇒ are ⇒* and ⇒+, respectively.  If u ⇒* v, 
we simply say that M rewrites u to v, and if u ⇒+ v, M rewrites u to v in a nontrivial way.  In this 
book, we sometimes need to explicitly specify the rules used during rewriting.  Suppose M makes 
u ⇒ v so that u = wxz, v = wyz and M replaces x with y by applying r: x → y ∈ R.  To express this 
application, we write u ⇒ v [r] or, in greater detail, wxz ⇒ wyz [r] in M and say that M directly 
rewrites uxv to uyv by r.  More generally, let n be a non-negative integer, w0, w1, …, wn be a 
sequence with wi ∈ Σ*, 0 ≤ i ≤ n, and rj ∈ R for 1 ≤ j ≤ n.  If wj-1 ⇒ wj [rj] in M for 1 ≤ j ≤ n, M 
rewrites w0 to wn in n steps by r1r2…rn, symbolically written as w0 ⇒n wn [r1r2…rn] in M (n = 0 
means w0 ⇒0 w0 [ε]).  By u ⇒* v [ρ], where ρ ∈ R*, we express that M makes u ⇒* v by using ρ; 
u ⇒+ v [ρ] has an analogical meaning.  Of course, whenever the specification of applied rules is 
superfluous, we omit it and write u ⇒ v, u ⇒n v, and u ⇒* v for brevity. 
 
Language Models 
 
The language constructs used during some compilation phases, such as the lexical and syntax 
analysis, are usually represented by formal languages defined by a special case of rewriting 
systems, customarily referred to as language-defining models underlying the phase.  Accordingly, 
the compiler parts that perform these phases are usually based upon algorithms that implement the 
corresponding language models. 



16  1  Introduction 

Convention 1.8.  Throughout this book, the language defined by a model M is denoted by L(M).  
In an algorithm that implements M working with a string, w, we write ACCEPT to announce that 
w ∈ L(M) while REJECT means w ∉ L(M). 

 
 
By the investigation of the language models, we obtain a systematized body of knowledge about 
the compiler component that performs the compilation phase, and making use of this valuable 
knowledge, we try to design the component as sophisticatedly as possible.  In particular, the 
language models underlying the phases that are completely independent of the target machine, 
such as the analysis phases, allow us to approach these phases in a completely general and 
rigorous way.  This approach to the study of compilation phases has become so common and 
fruitful that it has given rise to several types of models, some of which define the same languages.  
We refer to the models that define the same language as equivalent models, and from a broader 
perspective, we say that some types of models are equally powerful if the family of languages 
defined by models of each of these types is the same. 
 
Synopsis of the Book 
 
Specifically, regarding the compilation process discussed in this book, the lexical analysis is 
explained by equally powerful language-defining models called finite automata and regular 
expressions (see Chapter 2).  The syntax analysis is expressed in terms of equally powerful 
pushdown automata and grammars (see Chapters 3 through 5), and the syntax-directed translation 
is explained by attribute grammars (see Chapter 6), which represent an extension of the grammars 
underlying the syntax analysis.  The optimization and the target code generation are described 
without any formal models in this introductory book (see Chapter 7).  In its conclusion, we suggest 
the contents of an advanced course about compilers following a class based upon the present book 
(see Chapter 8).  In the appendix, we demonstrate how to implement a real compiler. 

Exercises 

1.1.  Let L = {an| n ≥ 2} be a language over an alphabet, Σ.  Determine complement(L) for Σ = {a}, 
Σ = {a, b}, and Σ = {a, b, …, z}. 
 
1.2.  By using the notions introduced in Section 1.1, such as various language operations, define 
integer and real numbers in your favorite programming language. 
 
1.3.  Let Σ be a subset of the set of all non-negative integers, and let φ be the total function from 
the set of all non-negative integers to {0, 1} defined by this equivalence φ(i) = 1 if and only if 
i ∈ Σ, for all non-negative integers, i.  Then, φ is the characteristic function of Σ.  Illustrate this 
notion in terms of formal languages. 
 
1.4.  Let X = {i| i is a positive integer} ∪ {and, are, even, Integers, odd, respectively}.  Describe 
the language of all well-constructed English sentences consisting of X’s members, commas and a 
period.  For instance, this language contains Integers 2 and 5 are even and odd, respectively.  Is 
this language infinite? Can you define this language by using X and operations concatenation, 
union, and iteration? 
 
1.5.  Let Σ and Ω be two sets, and let ρ and ρ' be two relations from Σ to Ω.  If ρ and ρ' represent 
two identical subsets of Σ × Ω, then ρ equals ρ', symbolically written as ρ = ρ'.  Illustrate this 
definition in terms of language translations. 
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1.6.  Let Σ be a set, and let ρ be a relation on Σ.  Then, 
 
• if for all a ∈ Σ, aρa, then ρ is reflexive; 
• if for all a, b ∈ Σ, aρb implies bρa, then ρ is symmetric;  
• if for all a, b ∈ Σ, (aρb and bρa) implies a = b, then ρ is antisymmetric; 
• if for all a, b, c ∈ Σ, (aρb and bρc) implies aρc, then ρ is transitive. 
 
Illustrate these notions in terms of language translations. 
 
1.7.  Let Σ = {1, 2, …, 8}.  Consider the following binary relations over Σ: 
 
• ∅; 
• {(1, 3), (3, 1), (8, 8)}; 
• {(1, 1), (2, 2), (8, 8)}; 
• {(a, a)| a  ∈ Σ}; 
• {(a, b)| a, b ∈ Σ, a < b}; 
• {(a, b)| a, b ∈ Σ, a ≤ b}; 
• {(a, b)| a, b ∈ Σ, a + b = 9}; 
• {(a, b)| a, b ∈ Σ, b is divisible by a}; 
• {(a, b)| a, b ∈ Σ, a – b is divisible by 3}. 
 
Note that a is divisible by b if there exists a positive integer c such that a = bc.  For each of these 
relations, determine whether it is reflexive, symmetric, antisymmetric, or transitive. 
 
1.8.  Let Σ be a set, and let ρ be a relation on Σ.  If ρ is reflexive, symmetric, and transitive, then ρ 
is an equivalence relation.  Let ρ be an equivalence relation on Σ.  Then, ρ partitions Σ into 
disjoint subsets, called equivalence classes, so that for each a ∈ Σ, the equivalence class of a is 
denoted by [a] and defined as [a] = {b| aρb}.  Prove that for all a and b in Σ, either [a] = [b] or 
[a] ∩ [b] = ∅. 
 
1.9Solved.  Let Σ be a set, and let ρ be a relation on Σ.  If ρ is reflexive, antisymmetric, and 
transitive, then ρ is a partial order.  If ρ is a partial order satisfying for all a, b ∈ Σ, aρb, bρa, or 
a = b, then ρ is a linear order.  Formalize the usual dictionary order as a lexicographic order based 
upon a linear order. 
 
1.10.  Write a program that implements the lexicographic order constructed in Exercise 1.9.  Test 
this program on a large file of English words. 
 
1.11.  Let Σ be a set.  Define the relation ρ on Power(Σ) as ρ = {(A, B)| A, B ∈ Power(Σ), A ⊆ B} 
(see Section 1.1 for Power(Σ)).  Prove that ρ represents a partial order. 
 
1.12.  By induction, prove that for any set Σ, card(Power(Σ)) = 2card(Σ). 
 
1.13Solved.  Prove Theorem 1.9, given next. 
 
Theorem 1.9.  Let Σ be a set, ρ be a relation on Σ, and ρ+ be the transitive closure of ρ.  Then, (1) 
ρ+ is a transitive relation, and (2) if ρ' is a transitive relation such that ρ ⊆ ρ', then ρ+ ⊆  ρ'. 
 
1.14.  Prove Theorem 1.10, given next. 
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Theorem 1.10.  Let Σ be a set, ρ be a relation on Σ, and ρ* be the transitive and reflexive closure 
of ρ.  Then, (1) ρ* is a transitive and reflexive relation, and (2) if ρ' be a transitive and reflexive 
relation such that ρ ⊆ ρ', then ρ* ⊆ ρ'. 
 
1.15.  Generalize the notion of a binary relation to the notion of an n-ary relation, where n is a 
natural number. 
 
1.16Solved.  Define the prefix Polish notation. 
 
1.17Solved.  In Section 1.1, we translate the infix expression (a + b) * c into the postfix notation 
ab+c*.  Translate (a + b) * c into the prefix notation.  Describe this translation in a step-by-step 
way. 
 
1.18.  Consider the one-dimensional representation of trees, ℜ (see Section 1.1).  Prove that the 
prefix Polish notation is the same as ℜ with parentheses deleted. 
 
1.19.  Design a one-dimensional representation for trees, different from ℜ. 
 
1.20.  Introduce the notion of an n-ary function, where n is a natural number.  Illustrate this notion 
in terms of compilation. 
 
1.21.  Consider the directed graphs defined and discussed in Section 1.1.  Intuitively, undirected 
graphs are similar to these graphs except that their edges are undirected.  Define them rigorously.     
 
1.22.  Recall that Section 1.1 has defined a tree as an acyclic graph, G = (Σ, ρ), satisfying these 
three properties: 
 
(1) G has a specified node whose in-degree is 0; this node represents the root of G, denoted by 

root(G). 
(2) If a ∈ Σ and a ≠ root(G), then a is a descendent of root(G) and the in-degree of a is 1. 
(3) Each node, a ∈ Σ, has its direct descendents, b1 through bn, ordered from the left to the right 

so that b1 is the leftmost direct descendent of a and bn is the rightmost direct descendent of a. 
 
Reformulate (3) by using the notion of a partial order, defined in Exercise 1.9. 
 
1.23.  A tautology is a statement that is true for all possible truth values of the statement variables.  
Explain why every theorem of a formal mathematical system represents a tautology. 
 
1.24.  Prove that the contrapositive law represents a tautology.  State a theorem and prove this 
theorem by using the contrapositive law. 
 
1.25.  A Boolean algebra is a formal mathematical system, which consists of a set, Σ, and 
operations and, or, and not.  The axioms of Boolean algebra follow next. 
 
Associativity. (1) a or (b or c) = (a or b) or c, and  
 (2) a and (b and c) = (a and b) and c, for all a, b, c ∈ Σ. 
Commutativity. (1) a or b = b or a, and  
 (2) a and b = b and a, for all a, b ∈ Σ. 
Distributivity. (1) a and (b or c) = (a and b) or (a and c), and  
 (2) a or (b and c) = (a or b) and (a or c), for all a, b ∈ Σ. 
 
In addition, Σ contains two distinguished members, 0 and 1, which satisfy these laws for all a ∈ Σ, 
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(1) a or 0 = a, (2) a and 1 = a, (3) a or (not a) = 1, and (4) a and (not a) = 0. 
 
The rule of inference is substitution of equals for equals.  Discuss the Boolean algebra in which 
Σ’s only members are 0 and 1, representing falsehood and truth, respectively.  Why is this algebra 
important to the mathematical foundations of computer science? 
 
1.26.  Consider your favorite programming language, such as Pascal or C.  Define its lexical units 
by the language operations introduced in Section 1.1.  Can the syntax be defined in the same way?  
Justify your answer. 
 
1.27.  Learn the syntax diagram from a good high-level programming language manual.  Design a 
simple programming language and describe its syntax by these diagrams. 
 
1.28Solved.  Recall that a rewriting system is a pair, M = (Σ, R), where Σ is an alphabet, and R is a 
finite relation on Σ* (see Definition 1.5).  Furthermore, the rewriting relation over Σ* is denoted by 
⇒ and defined so that for every u, v ∈ Σ*, u ⇒ v in M if and only if there exist x → y ∈ R and w, 
z ∈ Σ* such that u = wxz and v = wyz (see Definition 1.7).  For every n ≥ 0, the n-fold product of 
⇒ is denoted by ⇒n.  Determine a non-negative integer, m ≥ 0, satisfying for all u, v ∈ Σ*, if u ⇒n 
v in M, then |v| ≤ nm|u|. 

Solutions to Selected Exercises 

1.9.  Let Σ be a set, and let β be a linear order on Σ.  We extend β to Σ* so that for any x, y ∈ Σ*, 
x β y if x ∈ prefixes(y) – {y}, or for some k ≥ 1 such that |x| > k and |y| > k, prefix(x, k – 1) = 
prefix(y, k – 1) and symbol(x, k) β symbol(y, k).  This extended definition of β is referred to as the 
lexicographic order β on Σ*.  Take, for instance, Σ as the English alphabet and β as its alphabetical 
order.  Then, the lexical order β extended in the above way represents the usual dictionary order on 
Σ*. 
 
1.13.  To demonstrate that Theorem 1.9 holds, we next prove that (1) and (2) hold true. 
 
(1) To prove that ρ+ is a transitive relation, we demonstrate that if aρ+b and bρ+c, then aρ+c.  As 

aρ+b, there exist x1, …, xn in Σ so x1ρx2, …, xn-1ρxn, where x1 = a and xn = b.  As bρ+c, there 
also exist y1, …, ym in Σ so y1ρy2, …, ym-1ρym, where y1 = b and ym = c.  Consequently, x1ρx2, 
…, xn-1ρxn, y1ρy2, …, ym-1ρym, where x1 = a, xn = b = y1, and ym = c.  As a result, aρ+c. 

(2) We demonstrate that if ρ' is a transitive relation such that ρ ⊆ ρ', then ρ+ ⊆ ρ'.  Less formally, 
this implication means that ρ+ is the smallest transitive relation that includes ρ.  Let ρ' be a 
transitive relation such that ρ ⊆ ρ', and let aρ+b.  Then, there exist x1, …, xn in Σ so x1ρx2, …,  
xn-1ρxn, where x1 = a and xn = b.  As ρ ⊆  ρ', x1ρ'x2, …, xn-1ρ'xn where x1 = a and xn = b.  
Because ρ' is transitive, aρ'b.  Consequently, aρ+b implies aρ'b. 

 
1.16.  The prefix notation is defined recursively as follows.  Let Ω be a set of binary operators, and 
let Σ be a set of operands. 
 
• Every a ∈ Σ is a prefix representation of a. 
• Let AoB be an infix expression, where o ∈ Ω, and A, B are infix expressions.  Then, oCD is the 

prefix representation of AoB, where C and D are the prefix representations of A and B, 
respectively. 

• Let C be the prefix representation of an infix expression A.  Then, C is the prefix representation 
of (A). 
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1.17.  The expression (a + b) * c is of the form A * B with A = (a + b) and B = c.  The prefix 
notation for B is c.  The prefix notation for A is +ab.  Thus the prefix expression for (a + b) * c is 
*+abc. 
 
1.28.  Take m as any non-negative integer satisfying m ≥ |y| − |x|, for all x → y ∈ R. 
 


