

Project to VYPe course

Lexical and syntactical
structures in programming

language Miranda

Abstract

Vojtěch Beneš, xbenes04 October 2011
Jakub Horčička, xhorci01

 2

This document deals with the content of the presentation which topic is Lexical and syntactical
structures in programming language Miranda. Step by step, main characteristics of this language will
be described there. They will be supported by suitable examples during the presentation.

1. Basics
The origin of the name Miranda comes from the William Shakespeare’s character of the same name
that in the play The Tempest utters the words: “O Brave New World”. The idea is that the Miranda
language is an introduction to the Brave New World of functional programming.
 Miranda is a non-strict purely functional programming language with lazy evaluation (call-by-
need). It was designed by David Turner in 1985 as a fast interpreter in C for Unix-like operation
systems. It is a predecessor of functional programming language Haskell.
 The program (script) in Miranda is a set of equations (the order is irrelevant) that define
various mathematical functions and abstract data types.

2. Data types and structures
There are three basic data types in Miranda: char, num, and bool. Types can be polymorphic
which is indicated by using the symbols * ** *** etc. The user may introduce new data types, for
example binary tree, enumerations, or unions. The definition of a new type is introduced by “::==” and
consists of its name and one or more constructors. In addition, Miranda permits the definition of
abstract data types.
 The most commonly used data structure in Miranda is list, which is written with square
brackets and commas. The list is a homogeneous data type (all elements have the same type). There
are several operators used with lists: append “++”, subtraction “--”, length “#”, infix “:” that prefixes
element to the front of the list, and infix “!” for subscripting. Miranda permits nested lists and thanks
to lazy evaluation infinite lists too. A rather general definition of the list is provided by list
comprehension that has similar notation as it is used in the set theory.
 On the other hand, tuples are sequences of elements with potentially mixed types. They are
written using parentheses instead of square brackets. Tuples cannot be subscripted – elements are
extracted by the pattern matching.

3. Functions, currying, and high order functions
Functions in Miranda can be passed as parameters and returned as results (high order function). Their
application is left associative. Functions with two or more parameters may be partially parameterized
or curried. Currying1 provides transforming function with multiple parameters in such way that it can
be called as a chain of functions each with a single argument. Miranda has also a quite large library of
standard functions.

4. Guarded equations, block structure, and modules
An equation can have several alternative right hand sides distinguished by “guards”. Guards are
written on the right following a comma. The last guard indicating the default case can be written as
“otherwise”.

1 http://freaknet.org/martin/libri/Miranda/Overview.html#Curry

 3

 Miranda also permits a local definition on the right hand side which is introduced by “where”
clause. Miranda allows to organize programs with a nested block structure using where clauses. Since
used by the parser, the indentation of inner blocks is compulsory.
 Miranda provides a basic mechanism to separate the compilation and linking. A script can
contain one or more directives %include, %export, or %free.

