
Purple Dragon book - Chapter 12.5 & 12.6 (Context-Insensitive
Interprocedural Analysis & Context-Sensitive Pointer Analysis)

Ondřej Hamada (xhamad00), Marek Hložánka (xhloza01)

Our presentation discusses interprocedural pointer analysis. By interpocedural analysis we
mean data-flow analysis that tracks information across procedure boundaries. Because of this we
have to deal with method invocations.

In the first part we discuss context-insensitive analysis. Such analysis does not take history
of method calls into consideration. Also the parameters and returned values are modeled by copy
statements. Still, we have to find a way to determine the type of the receiver object. This is getting
complicated in real-world programs that use object hierarchies and include large libraries. The
analysis tends to become slow and imprecise under such conditions.

In order to do the analysis we need to compute the call targets. Call targets are represented
by call graphs that are bipartite graphs with nodes for call sites and procedures and edges going
from call site to procedure if that procedure can be called from that site. Call sites are points in a
program from which procedure is being called.

Problem is that this task requires the knowledge of what the variables point to, but this data
can be computed only when the call graphs are known. Solution lays in discovering the call graphs
on the fly while computing the points-to set. This analysis is running until no new call targets or
points-to relations are found.

For computation of the call graph we introduce several 'Datalog' rules. 'Datalog' is language
that presents simple notation of if-then rules that can be used to describe data-flow analysis at a
high level. The notation of rules in 'Datalog' are similar to Prolog programming language. The
newly proposed rules for computation of the call graph will be further described in our presentation.

Second part of our presentation focuses on context-sensitive pointer analysis. Taking context
into consideration brings additional difficulties. The summaries of points-to information are getting
too large – usually up to the size that makes it impossible to do any computation over it. To
overcome this problem we use cloning-based context-sensitive analysis.

Cloning-based context-sensitive analysis means that once we establish the different contexts
in which a procedure can be called, we can imagine that there is a clone of each procedure for each
context. So in fact we use context-insensitive analysis to work as a context-sensitive. Product of
this analysis is cloned call graph.

In a cloned call graph we must deal with recursive functions because they cause the number
of possible call strings to be infinite. To avoid that, we have to find the mutually recursive
functions. Mutually recursive functions are formed by strongly connected components (SCC) in call
graph, so we have to rule out the context of any calls within the SCC to other functions in the same
SCC. Complete algorithm and improved 'Datalog' rules with examples will be shown in our
presentation.

The proposed solution still lacks the ability to handle large programs and ignores object
sensitivity. Also the count of computed contexts is still large so we have to use binary decision
diagrams in order to represent them, but all of this problems are beyond the scope of our
presentation.

	Ondřej Hamada (xhamad00), Marek Hložánka (xhloza01)

