
ANTLR: Parser generator

Jiřı́ Kučera, xkucer28@stud.fit.vutbr.cz
Jiřı́ Raška, xraska07@stud.fit.vutbr.cz

November 13, 2011

Abstract

ANTLR (ANother Tool for Language Recognition) is a powerfull parser generator developed by Ter-
ence Parr. This tool, written in Java programming language, is result of 20 years1 of development (the
current major version is 3). ANTLR parser generator generates human-readable code (compared to
other parser generators, like famous yacc or bison) into many target languages, like C, C#, Java,
Python etc. ANTLR also contains graphical IDE (called ANTLRWorks) in which we can write our
grammar definition and then debug our written grammar. Other ANTLR features[1] are powerfull
string template engine called StringTemplate (with this engine, we can extend set of supported target
languages, simply by writing source code template for our favourite programming language), run-
time support for target languages to bind generated parser with our application, powerfull parsing
algorithm (called LL(*)2) used by generated parsers, and great documentation. The LL(*) parsing
technique used by ANTLR is similar to LL(k) parsing technique (used by earlier versions of ANTLR),
but with one difference — the lookahead is unlimited[1] (in LL(k) the lookahead is given by k). This
difference is denoted by * in LL(*).

The language of grammar definition file is very simple, based on EBNF. The grammar definition
file consists of three[1] parts: the definition of scanner, the definition of parser, and the definition of
tree grammar — the grammar used for the abstract syntax tree (as known as computational tree) parser
description. These parts are also included in the generated parser. In our application, we call parser
firstly (the scanner is called by parser), which give us an abstract syntax tree as its result, and after
that we call tree parser, which do the rest of the job (intermediate code generation, optimization and
target code generation). Because the ANTLR generates[1] recursive descent parsers (not table-driven,
like yacc or bison) we cannot use rules with left recursion in our grammars.

References

[1] PARR, Terence. The Definitive ANTL Reference : Building Domain-Specific Languages. First
printing. Printed in the United States of America : The Pragmatic Bookshelf, May 2007. 369 p.
ISBN-10 0-9787392-5-6. ISBN-13 978-09787392-4-9.

1http://www.antl.org/about.html
2The name LL(*) for parsing technique used in ANTLR was introduced by Sriram Srinivasan[1], co-inventer of this

technique and Terence Parr’s friend.


