
Approximate Computing

Radek Hrbáček
ihrbacek@fit.vutbr.cz

Approximate computing has recently emerged as a promising approach to digital systems
design with respect to energy-efficiency or fault-tolerance. Many computer systems or programs
have the ability to tolerate some loss of accuracy or quality in the computational process and
still produce meaningful and useful results. Significant energy-efficiency or fault-tolerance im-
provements can be acchieved by relaxing the need for fully precise operations. With the growing
popularity of portable multimedial devices (e.g. smartphones, tablets, etc.), great scope for ap-
proximate computation is arising, since human perception is limited and the users are ready to
tolerate degraded quality of the multimedial content (e.g. video playback) in exchange for longer
battery life. Automatical approximate computing techniques are being developed to speed-up the
design process and to find the best trade-off between the resources being shrinked (e.g. energy,
time, area) and the inaccuracy of the computation.

The development of automatical design methods infers the need of a mathematical model for
digital logic circuits. Inspired by computational complexity theory or circuit complexity theory,
Boolean circuit model seems to be suitable for this purpose. Since a formal language can be
decided by a family of Boolean circuits, common theoretical findings regarding formal languages
or automata can be applied.

For the purpose of a formal definition of Boolean circuit, Boolean function has to be defined.
A Boolean function is a function of the form f : Dk → D, where D = {0, 1} is a Boolean domain
and k ≥ 0 is the arity of the function. The Boolean circuit with ni inputs and no outpus over
a basis set B of Boolean functions, representing the logic gates allowable in the circuit model, is
defined as a finite directed acyclic graph. Each vertex corresponds to either one of the inputs or a
basis function, exactly no vertices are labeled as outputs. The basis set B can comprise common
logic gates {AND,OR,NOT}, single NAND gate or other logic gates of arbitrary complexity.

In order to quantify the accuracy loss, we have to introduce proper metrics for approximate
computing. The obtained benefit in terms of energy, time, area or other savings has to be
measured as well. Each application area has its own specifics and thus the metrics have to be
conscientiously chosen with respect to the application specifics to achieve desired results. In the
case of general logic circuits, the ratio of incorrect outputs to the total number of outputs (error
rate) can be used as a metric of accuracy. This can be insufficient for some other applications,
e.g. arithmetic blocks, thus a generalized metric error distance given by the arithmetical distance
between an inexact output and correct output has been proposed.

Since the approximate circuit design can be seen as an (multi-objective) optimization problem,
it is possible to exploit evolutionary algorithms (or other biologically inspired techniques) to
solve this problem. Cartesian genetic programming (CGP), a variant of genetic programming
with a structure very similar to Boolean Circuits, has recently been used to design energy-
efficient adders, polymorphic FIR filters or polymorphic image filters. Using multi-objective CGP,
multiple constant multipliers (digital circuit which multiplies its single input by N constants)
offering Pareto-optimal trade-offs have been designed.

Unfortunatelly, for large-scale circuits (e.g. adders or even worse multipliers) with a high
number of inputs, the evaluation can be very time demanding because of a very high number
of test cases. In order to speed-up the design process, several techniques can be used including
common parallel programming techniques (custom hardware accelerators, computer clusters),
coevolutionary principles or formal verification methods (e.g. SAT solvers).

In the upcoming presentation, brief introduction to approximate computing, its formal defini-
tion and applications will be given. Great emphasis will be put on formal methods in approximate
computing, especially on SAT solvers and their usage for circuit correctness checking (or more
precisely for checking if the output value is in given tolerance range).


