
Topic 14: Crafting A Compiler – Chapter 8: Symbol Tables

Jiri Mikulka, David Rusek
{xmikul39,xrusek02}@stud.fit.vutbr.cz

Abstract

Symbol tables are data structures that are used by compilers to hold information about source program con-
structs. A symbol table is a necessary component of a compiler because the definition of a name appears in only
one place in a source program, its declaration, whereas the name may be used in any number of places within
the source program. It is a mechanism that associates values (attributes) with names, therefore a symbol table
is sometimes called a dictionary.

Two aspects of symbol tables are of interest to us: the operations associated with a symbol table, which
are visible to other components of the compiler, and the implementation of those operations. The operations
associated with a symbol table are:

• search (whether a name has been used),

• insert (add a new name),

• delete (remove a name when its scope is closed).

This talk is mainly concerned with implementation issues of a symbol table and its operations. Depending on
the number of names we wish to accommodate and the performance we desire, a wide variety of implementations
is possible:

• unordered list

– good for a very small set of variables (but bad performance for a large number of variables)

– easy coding

• ordered list

– use binary search (but insertion and deletion are expensive operations)

– relatively easy coding

• binary search trees

– O(log n) time per operation (search, insert, delete) for n variables

– relatively difficult coding

• hash tables

– most commonly used (but performance may be bad if unlucky or the table is saturated)

– very efficient memory allocation (the memory space is adequately larger then the number of variables)

– not too difficult coding

In the talk we will show and explain the best practises for implementing symbol tables using hash tables.

References

[1] Charles N. Fischer and Ron K. Cytron and Richard J. LeBlanc Jr., Crafting A Compiler. Addison-Wesley,
Massachusetts, 1st Edition, 2009.

1


