Jumping Finite Automata: New Results

Part Two: New Models

Radim Kocman and Zbyněk Křivka

Faculty of Information Technology
Brno University of Technology
Božetěchova 2, Brno Czech Republic
\{ikocman,krivka\}@fit.vutbr.cz

- | BRNO FACULTY |
| :--- |
| UNIVERSITY OF INFORMATION |
| OF TECHNOLOGY TECHNOLOGY |

LTA 2016 (December 5, 2016)

- Motivation
- n -Parallel Jumping Finite Automata
- Double-Jumping Finite Automata
- One-Way Jumping Finite Automata

Motivation

Why study other models?

Possible Advantages

- completely discontinuous reading
- can accept some CF and CS languages

Possible Advantages

- completely discontinuous reading
- can accept some CF and CS languages

Possible Disadvantages

- cannot guarantee any specific reading order
- therefore it cannot accept languages like $a^{*} b^{*}$
- heavily nondeterministic behavior

Definition

A GJFA makes a right jump from wpyxz to $w x q z$ by $p y \rightarrow q$:

$$
w p y x z_{r} \curvearrowright w x q z
$$

where $w, x, y, z \in \Sigma^{*}$.

Definition

A GJFA makes a right jump from wpyxz to $w x q z$ by $p y \rightarrow q$:

$$
w p y x z_{r} \curvearrowright w x q z
$$

where $w, x, y, z \in \Sigma^{*}$.

Definition

A GJFA makes a left jump from $w x p y z$ to $w q x z$ by py \rightarrow :

$$
w x p y z \text { ı } w q x z
$$

where $w, x, y, z \in \Sigma^{*}$.

Properties of Right Jumps

- consider the configuration $u p v$, where $p \in Q, u, v \in \Sigma^{*}$
- the automaton will get stuck for any $|u|>0$
- result: the same power as FAs

Properties of Right Jumps

- consider the configuration $u p v$, where $p \in Q, u, v \in \Sigma^{*}$
- the automaton will get stuck for any $|u|>0$
- result: the same power as FAs

Properties of Left Jumps

- open problem
- can define some non-regular languages

Motivation for New Models

- partially discontinuous reading
- partially continuous reading
- explore new possibilities
- more deterministic behavior

n-Parallel Jumping Finite Automata

Based on

Radim Kocman and Alexander Meduna On Parallel Versions of Jumping Finite Automata Proceedings of SDOT 2015

- heavily used in formal grammars (n-parallel grammars, simple matrix grammars, ...)
- heavily used in formal grammars (n-parallel grammars, simple matrix grammars, ...)

Example Derivations
$S \Rightarrow A B C \Rightarrow a A b B c C \Rightarrow a a A b b B c c C \Rightarrow a a a b b b c c c$

- heavily used in formal grammars (n-parallel grammars, simple matrix grammars, ...)

Example Derivations
 $S \Rightarrow A B C \Rightarrow a A b B c C \Rightarrow a a A b b B c c C \Rightarrow a a a b b b c c c$

- rarely used in classical automata (multiple tapes, more heads reading the same input, ...)
- heavily used in formal grammars (n-parallel grammars, simple matrix grammars, ...)

Example Derivations
 $S \Rightarrow A B C \Rightarrow a A b B c C \Rightarrow a a A b b B c c C \Rightarrow a a a b b b c c c$

- rarely used in classical automata (multiple tapes, more heads reading the same input, ...)
- What if the parallelism is combined with the jumping?

Definition

An n-parallel general jumping finite automaton (n-PGJFA) is a quintuple

$$
M=(Q, \Sigma, R, S, F)
$$

where
Q is a finite set of states;
Σ is an input alphabet, $Q \cap \Sigma=\emptyset$;
R is a finite set of rules: $p y \rightarrow q$, where $p, q \in Q, y \in \Sigma^{*}$;
S is a set of start state strings, $S \subseteq Q^{n}$;
F is a set of final states.

- arbitrary splits the input into n parts
- steps of all heads are synchronized
- different types of the jumping:
- unrestricted jumps - each part is processed as in JFA
- right jumps - each part is processed as in FA

Example

Consider the 3-PGJFA

$$
M=(\{s, r, p\}, \Sigma, R,\{s r p\},\{s, r, p\}),
$$

where $\Sigma=\{a, b, c\}$ and R consists of the rules

$$
s a \rightarrow s, r b \rightarrow r, \quad p c \rightarrow p
$$

$L(M, 3-r)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Example

Consider the 3-PGJFA

$$
M=(\{s, r, p\}, \Sigma, R,\{s r p\},\{s, r, p\}),
$$

where $\Sigma=\{a, b, c\}$ and R consists of the rules

$$
s a \rightarrow s, r b \rightarrow r, \quad p c \rightarrow p
$$

$L(M, 3-r)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Example Steps (for $n=3$ with only right jumps) $|a a a| b b b|c c c \curvearrowright| a a|b b| c c \curvearrowright|a| b|c \curvearrowright||\mid$

Theorem

For every n-PRLG $G=\left(N_{1}, \ldots, N_{n}, T, S 1, P\right)$, there is an n-PGJFA using only right n-jumps $M=(Q, \Sigma, R, S 2, F)$, such that $L(M, n-r)=L(G)$.

Theorem

For every n-PGJFA using only right n-jumps $M=(Q, \Sigma, R, S 2, F)$, there is an n-PRLG $G=\left(N_{1}, \ldots, N_{n}, T, S 1, P\right)$, such that $L(G)=L(M, n-r)$.

Theorem

${ }_{r} l$-PGJFA $={ }_{r} \mathbf{G J F A}=$ REG.
Theorem
r2-PGJFA \subset CF.

Theorem

${ }_{r} n$-PGJFA $\subset \mathbf{C S}$ and there exist non-context-free languages in ${ }_{r} n$-PGJFA for all $n>2$.

Theorem

For all $n \in \mathbb{N},{ }_{r} n-$ PGJFA $\subset_{r}(n+1)$-PGJFA.

Double-Jumping Finite Automata

Based on
Radim Kocman, Zbyněk KY̌ivka and Alexander Meduna On Double-Jumping Finite Automata Proceedings of NCMA 2016

Definition

A general jumping finite automaton (GJFA) is a quintuple

$$
M=(Q, \Sigma, R, s, F)
$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- R is a finite set of rules of the form

$$
p y \rightarrow q \quad\left(p, q \in Q, y \in \Sigma^{*}\right)
$$

- s is the start state;
- F is a set of final states.

Used Symbols

- - Right Jump

4 - Left Jump

- Both Directions

Studied Modes

- \curvearrowright - Unrestricted 2-Jumps
$\rightarrow \curvearrowright$ - Right-Left 2-Jumps
- \curvearrowright-Left-Right 2-Jumps
-ค - Right-Right 2-Jumps
«८-Left-Left 2-Jumps

Used Symbols

- - Right Jump
« - Left Jump
- Both Directions

Studied Modes

- \curvearrowright - Unrestricted 2-Jumps
$\rightarrow \curvearrowright$ - Right-Left 2-Jumps
- \curvearrowright - Left-Right 2-Jumps
$\rightarrow \curvearrowright-$ Right-Right 2-Jumps
«८ \curvearrowright-Left-Left 2-Jumps

Example

$$
L\left(M_{\triangleleft}\right)=\left\{u v w \mid u, v, w \in \Sigma^{*}, u s v s w \leadsto \curvearrowright^{*} f f, f \in F\right\} .
$$

Conditions for 2-Jumps

- both jumps follow the same rule
- the jumps cannot ever cross each other

Conditions for 2-Jumps

- both jumps follow the same rule
- the jumps cannot ever cross each other

Example with $\uparrow \curvearrowright$

- configuration: uu'apvpaw'w, where $a, u, u^{\prime}, v, w, w^{\prime} \in \Sigma^{*}, p \in Q$
- rule: (p, a, q)

Properties

- required initial configuration: $s x s$, where $x \in \Sigma^{*}$
- cannot jump over any symbols
- every $x \in L\left(M_{\sim}\right)$ can be written as $x=u_{1} u_{2} \ldots u_{n} u_{n} \ldots u_{2} u_{1}$, where $n \in \mathbb{N}$, and $u_{i} \in \Sigma^{*}, 1 \leq i \leq n$
- accept string palindromes of even length

Properties

- required initial configuration: $s x s$, where $x \in \Sigma^{*}$
- cannot jump over any symbols
- every $x \in L\left(M_{\curvearrowright}\right)$ can be written as $x=u_{1} u_{2} \ldots u_{n} u_{n} \ldots u_{2} u_{1}$, where $n \in \mathbb{N}$, and $u_{i} \in \Sigma^{*}, 1 \leq i \leq n$
- accept string palindromes of even length

Language Family ($\mathscr{L}_{>\uparrow \curvearrowright}$)

- a subfamily of the family of linear languages
- the same as \mathscr{L} ค

Properties

- the first jump should not skip symbols
- the second jump can skip symbols

Properties

- the first jump should not skip symbols
- the second jump can skip symbols

Example Behavior

- $u_{1} u_{1}^{\prime} u_{2} u_{2}^{\prime} \ldots u_{n} u_{n}^{\prime}$, where $n \in \mathbb{N}, u_{i}, u_{i}^{\prime} \in \Sigma, u_{i}=u_{i}^{\prime}, 1 \leq i \leq n$
- red symbols can be also shifted to the right over blue symbols

Properties

- the first jump should not skip symbols
- the second jump can skip symbols

Example Behavior

- $u_{1} u_{1}^{\prime} u_{2} u_{2}^{\prime} \ldots u_{n} u_{n}^{\prime}$, where $n \in \mathbb{N}, u_{i}, u_{i}^{\prime} \in \Sigma, u_{i}=u_{i}^{\prime}, 1 \leq i \leq n$
- red symbols can be also shifted to the right over blue symbols

Language Family ($\mathscr{L}_{\gg \wedge}$)

- a subfamily of the family of context-sensitive languages
- not the same as \mathscr{L} ｣
___ identity
\longrightarrow proper inclusion
- incomparability

	$\mathscr{L}_{\bullet+\wedge} \mathscr{L}_{\text {a }}$	$\mathscr{L}_{\rightarrow \sim}$	$\mathscr{L}^{4 \sim}$
endmarking (both sides)	-(+)	-(-)	-(-)
concatenation	-	-	-
square (L^{2})	-	-	-
shuffle	-	-	-
union	+	+	+
complement	-	-	-
intersection	+	-	-
int. with regular languages	+	-	-
mirror image	+	-	-
finite substitution	-	-	-
homomorphism	+	-	-
ε-free homomorphism	+	-	-
inverse homomorphism	-	-	-

One-Way Jumping Finite Automata

Based on

Ei Hiroyuki Chigahara, Szilárd Zsolt Fazekas and Akihiro Yamamura One-way Jumping Finite Automata Int. J. Found. Comput. Sci. 27, 391 (2016)

Szilárd Zsolt Fazekas and Akihiro Yamamura On Regular Languages accepted by One-Way Jumping Finite Automata Short Papers of NCMA 2016

Definition

A right one-way jumping finite automaton (ROWJFA) is a quintuple $M=(Q, \Sigma, R, s, F)$, where Q, Σ, R, s and F are defined as in a DFA.

Definition

A right one-way jumping finite automaton (ROWJFA) is a quintuple $M=(Q, \Sigma, R, s, F)$, where Q, Σ, R, s and F are defined as in a DFA.

Definition

The right one-way jumping relation, symbolically denoted by 〕, over $Q \Sigma^{*}$, is defined as follows. Suppose that x and y belong to Σ^{*}, a belongs to Σ, p and q are states in Q and $p a \rightarrow q \in R$. Then the ROWJFA M makes a jump from the configuration pxay to the configuration $q y x$, written as
pxay ঠ qyx
if x belongs to $\left\{\Sigma \backslash \Sigma_{p}\right\}^{*}$ where
$\Sigma_{p}=\{b \in \Sigma \mid(p, b, q) \in R$ for some $q \in Q\}$.

Definition

The language accepted by M, denoted by $L(M)$, is defined as

$$
L(M)=\left\{w \in \Sigma^{*} \mid s w \circlearrowright^{*} f, f \in F\right\}
$$

Definition

The language accepted by M, denoted by $L(M)$, is defined as

$$
L(M)=\left\{w \in \Sigma^{*} \mid s w \circlearrowright^{*} f, f \in F\right\}
$$

- fully deterministic behavior
- There is also a similar definition for the left one-way jumping finite automaton.

Example 1

Let M_{1} be a ROWJFA given by

$$
M_{1}=\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma, R, q_{0},\left\{q_{0}\right\}\right)
$$

where $\Sigma=\{a, b, c\}$ and R consists of the rules

$$
q_{0} a \rightarrow q_{1}, \quad q_{1} b \rightarrow q_{2}, \quad q_{2} c \rightarrow q_{0} .
$$

$$
L\left(M_{1}\right)=\left\{\left.w \in \Sigma| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}
$$

Example 1

Let M_{1} be a ROWJFA given by

$$
M_{1}=\left(\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma, R, q_{0},\left\{q_{0}\right\}\right),
$$

where $\Sigma=\{a, b, c\}$ and R consists of the rules

$$
q_{0} a \rightarrow q_{1}, \quad q_{1} b \rightarrow q_{2}, \quad q_{2} c \rightarrow q_{0} .
$$

$$
L\left(M_{1}\right)=\left\{\left.w \in \Sigma| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}
$$

Example 2

Let M_{2} be a ROWJFA given by

$$
M_{2}=\left(\left\{q_{0}, q_{1}\right\}, \Sigma, R, q_{0},\left\{q_{0}, q_{1}\right\}\right),
$$

where $\Sigma=\{a, b\}$ and R consists of the rules

$$
q_{0} a \rightarrow q_{0}, \quad q_{0} b \rightarrow q_{1}, \quad q_{1} b \rightarrow q_{1} .
$$

$L\left(M_{2}\right)=a^{*} b^{*}$

Theorem
ROWJ properly includes REG.
Theorem
ROWJ and LOWJ are incomparable.
Theorem
ROWJ $\not \subset$ JFA.
Theorem
CF and ROWJ are incomparable.

Theorem

The class ROWJ is not closed under

- intersection,
- concatenation,
- reversal,
- intersection with regular languages,
- concatenation with regular languages,
- substitution,
- Kleene star,
- Kleene plus.

Theorem

Let M be a ROWJFA. If there exists a constant k, such that for any word $w \in L(M)$ the number of sweeps needed by M to process w is at most k, then the language $L(M)$ is regular.

Overall Conclusion

n-Parallel Jumping Finite Automata

- combination of the parallel and jumping behavior

Double-Jumping Finite Automata
- parallel combination of different jumping modes

One-Way Jumping Finite Automata

- fully deterministic behavior

Thank you for your attention!

