Jumping Finite Automata: New Results

Part Two: New Models

Radim Kocman and Zbyněk Křivka

Faculty of Information Technology Brno University of Technology Božetěchova 2, Brno Czech Republic

{ikocman,krivka}@fit.vutbr.cz

LTA 2016 (December 5, 2016)

- Motivation
- n-Parallel Jumping Finite Automata
- Double-Jumping Finite Automata
- One-Way Jumping Finite Automata

Motivation Why study other models?

Motivation – Jumping Finite Automata

Possible Advantages

- completely discontinuous reading
- can accept some CF and CS languages

Possible Advantages

- completely discontinuous reading
- can accept some CF and CS languages

Possible Disadvantages

- cannot guarantee any specific reading order
- therefore it cannot accept languages like a*b*
- heavily nondeterministic behavior

Motivation – Right and Left Jumps

Definition

A GJFA makes a right jump from w_pyxz to wxqz by $py \rightarrow q$:

 $W p y X Z_r \sim W X q Z$

where $w, x, y, z \in \Sigma^*$.

Motivation – Right and Left Jumps

Definition

A GJFA makes a right jump from w_pyxz to wxqz by $py \rightarrow q$:

 $W P Y X Z_r \cap W X Q Z$

where $w, x, y, z \in \Sigma^*$.

Definition

A GJFA makes a left jump from wxpyz to wqxz by $py \rightarrow q$:

WXDYZ I ~ WQXZ

where $w, x, y, z \in \Sigma^*$.

Properties of Right Jumps

- consider the configuration u p v, where $p \in Q$, $u, v \in \Sigma^*$
- the automaton will get stuck for any |u| > 0
- result: the same power as FAs

Properties of Right Jumps

- consider the configuration u p v, where $p \in Q$, $u, v \in \Sigma^*$
- the automaton will get stuck for any |u| > 0
- result: the same power as FAs

Properties of Left Jumps

- open problem
- can define some non-regular languages

Motivation for New Models

- partially discontinuous reading
- partially continuous reading
- explore new possibilities
- more deterministic behavior

n-Parallel Jumping Finite Automata

Based on

Radim Kocman and Alexander Meduna On Parallel Versions of Jumping Finite Automata Proceedings of SDOT 2015

Example Derivations

$S \Rightarrow ABC \Rightarrow aAbBcC \Rightarrow aaAbbBccC \Rightarrow aaabbbccc$

Example Derivations

 $S \Rightarrow ABC \Rightarrow aAbBcC \Rightarrow aaAbbBccC \Rightarrow aaabbbccc$

 rarely used in classical automata (multiple tapes, more heads reading the same input, ...)

Example Derivations

 $S \Rightarrow ABC \Rightarrow aAbBcC \Rightarrow aaAbbBccC \Rightarrow aaabbbccc$

- rarely used in classical automata (multiple tapes, more heads reading the same input, ...)
- What if the parallelism is combined with the jumping?

An *n*-parallel general jumping finite automaton (*n*-PGJFA) is a quintuple

$$M = (Q, \Sigma, R, \frac{S}{S}, F)$$

where

- \bigcirc is a finite set of states;
- Σ is an input alphabet, $Q \cap \Sigma = \emptyset$;
- *R* is a finite set of rules: $py \rightarrow q$, where $p, q \in Q$, $y \in \Sigma^*$;
- S is a set of start state strings, $S \subseteq Q^n$;
- F is a set of final states.

- arbitrary splits the input into *n* parts
- steps of all heads are synchronized
- different types of the jumping:
 - unrestricted jumps each part is processed as in JFA
 - right jumps each part is processed as in FA

Example

Consider the 3-PGJFA

 $M = (\{s, r, p\}, \Sigma, R, \{srp\}, \{s, r, p\}),$

where $\Sigma = \{a, b, c\}$ and *R* consists of the rules

$$sa \rightarrow s, rb \rightarrow r, pc \rightarrow p.$$

 $L(M,3-r) = \{a^n b^n c^n \mid n \ge 0\}$

Example

Consider the 3-PGJFA

 $M = (\{s, r, p\}, \Sigma, R, \{srp\}, \{s, r, p\}),$

where $\Sigma = \{a, b, c\}$ and *R* consists of the rules

$$sa \rightarrow s, rb \rightarrow r, pc \rightarrow p.$$

 $L(M,3-r) = \{a^n b^n c^n \mid n \ge 0\}$

Example Steps (for n = 3 with only right jumps)

aaa bbb ccc \sim aa bb cc \sim a b c \sim

Theorem

For every *n*-PRLG $G = (N_1, ..., N_n, T, S1, P)$, there is an *n*-PGJFA using only right *n*-jumps $M = (Q, \Sigma, R, S2, F)$, such that L(M, n-r) = L(G).

Theorem

For every *n*-PGJFA using only right *n*-jumps $M = (Q, \Sigma, R, S2, F)$, there is an *n*-PRLG $G = (N_1, \ldots, N_n, T, S1, P)$, such that L(G) = L(M, n-r).

n-Parallel JFAs – Characterization

Theorem

 $_r$ **]-PGJFA** = $_r$ **GJFA** = **REG**.

Theorem

 $_{r}$ 2-PGJFA \subset CF.

Theorem

 $_r$ *n***-PGJFA** ⊂ **CS** and there exist non-context-free languages in $_r$ *n***-PGJFA** for all *n* > 2.

Theorem

For all $n \in \mathbb{N}$, $_r n$ -PGJFA $\subset _r (n+1)$ -PGJFA.

Double-Jumping Finite Automata

Based on

Radim Kocman, Zbyněk Křivka and Alexander Meduna On Double-Jumping Finite Automata Proceedings of NCMA 2016

Double-JFAs

Definition

A general jumping finite automaton (GJFA) is a quintuple

$$M = \left(Q, \Sigma, R, \underline{s}, F\right)$$

where

- Q is a finite set of states;
- Σ is the input alphabet;
- *R* is a finite set of rules of the form

 $py \rightarrow q$ $(p, q \in Q, y \in \Sigma^*)$

- s is the start state;
- F is a set of final states.

Used Symbols ▶ - Right Jump ◄ - Left Jump ♦ - Both Directions

Studied Modes

- $\bullet \bullet \frown$ Unrestricted 2-Jumps
- ▶ ⊲ へ Right-Left 2-Jumps
- ▶ > > − Right-Right 2-Jumps

- $_{\clubsuit}$ \sim Left-Right 2-Jumps

Studied Modes

- $\bullet \bullet \frown$ Unrestricted 2-Jumps
- Right-Left 2-Jumps
- ▶ ← − Right-Right 2-Jumps

 $_{\clubsuit}$ \sim – Left-Right 2-Jumps

Example

$$L(M_{\triangleleft \blacktriangleright \frown}) = \{ uvw \mid u, v, w \in \Sigma^*, usvsw \triangleleft_{\blacktriangleright} \frown^* ff, f \in F \}.$$

Conditions for 2-Jumps

- both jumps follow the same rule
- the jumps cannot ever cross each other

Conditions for 2-Jumps

- both jumps follow the same rule
- the jumps cannot ever cross each other

Example with ${}_{\clubsuit} \frown$

- configuration: uu'apvpaw'w, where $a, u, u', v, w, w' \in \Sigma^*, p \in Q$
- rule: (p, a, q)
- 2-jump: uu'apvpaw'w → ∩ uqu'vw'qw

Double-JFAs – Right-Left 2-Jumps (🛌 🔿)

T FIT

Properties

- required initial configuration: *sxs*, where $x \in \Sigma^*$
- cannot jump over any symbols
- every $x \in L(M_{\blacktriangleright \blacktriangleleft} \cap)$ can be written as $x = u_1 u_2 \dots u_n u_n \dots u_2 u_1$, where $n \in \mathbb{N}$, and $u_i \in \Sigma^*$, $1 \le i \le n$
- accept string palindromes of even length

Double-JFAs – Right-Left 2-Jumps (🛌 🔿)

T FIT

Properties

- required initial configuration: sxs, where $x \in \Sigma^*$
- cannot jump over any symbols
- every $x \in L(M_{\blacktriangleright \blacktriangleleft})$ can be written as $x = u_1 u_2 \dots u_n u_n \dots u_2 u_1$, where $n \in \mathbb{N}$, and $u_i \in \Sigma^*$, $1 \le i \le n$
- accept string palindromes of even length

Language Family ($\mathscr{L}_{\blacktriangleright \triangleleft \frown}$)

- a subfamily of the family of linear languages
- the same as $\mathscr{L}_{{\scriptscriptstyle lackbdar}}{\scriptscriptstyle \frown}$

Double-JFAs – Comparison

Double-JFAs – Right-Right 2-Jumps ($_{P} \land$)

T FIT

Properties

- the first jump should not skip symbols
- the second jump can skip symbols

Double-JFAs – Right-Right 2-Jumps (

T FIT

Properties

- the first jump should not skip symbols
- the second jump can skip symbols

Example Behavior

- $u_1 u'_1 u_2 u'_2 \dots u_n u'_n$, where $n \in \mathbb{N}$, $u_i, u'_i \in \Sigma$, $u_i = u'_i$, $1 \le i \le n$
- red symbols can be also shifted to the right over blue symbols

Double-JFAs – Right-Right 2-Jumps (

T FIT

Properties

- the first jump should not skip symbols
- the second jump can skip symbols

Example Behavior

- $u_1 u'_1 u_2 u'_2 \dots u_n u'_n$, where $n \in \mathbb{N}$, $u_i, u'_i \in \Sigma$, $u_i = u'_i$, $1 \le i \le n$
- red symbols can be also shifted to the right over blue symbols

Language Family (\mathscr{L}_{r})

- a subfamily of the family of context-sensitive languages
- not the same as $\mathscr{L}_{{\scriptscriptstyle \hspace*{-.5mm}\triangleleft}\,{\scriptscriptstyle \sim}\,{\scriptscriptstyle \sim}\,{\scriptscriptstyle \sim}}$

Double-JFAs – Comparison

Double-JFAs – Closure Properties*

	$\mathscr{L}_{FA^{n}}, \mathscr{L}_{AF^{n}}$	$\mathscr{L}_{\textup{PP}} \sim$	$\mathscr{L}_{{\scriptscriptstyle \P}{\scriptscriptstyle \P}{\scriptscriptstyle \land}}$
endmarking (both sides)	- (+)	- (-)	- (-)
concatenation	_	_	_
square (L ²)	_	_	—
shuffle	_	—	—
union	+	+	+
complement	_	_	_
intersection	+	_	_
int. with regular languages	+	_	_
mirror image	+	_	_
finite substitution	_	_	_
homomorphism	+	_	_
ε -free homomorphism	+	_	_
inverse homomorphism	—		_

One-Way Jumping Finite Automata

Based on

Hiroyuki Chigahara, Szilárd Zsolt Fazekas and Akihiro Yamamura One-way Jumping Finite Automata Int. J. Found. Comput. Sci. 27, 391 (2016)

Szilárd Zsolt Fazekas and Akihiro Yamamura On Regular Languages accepted by One-Way Jumping Finite Automata Short Papers of NCMA 2016

A right one-way jumping finite automaton (ROWJFA) is a quintuple $M = (Q, \Sigma, R, s, F)$, where Q, Σ, R, s and F are defined as in a DFA.

A right one-way jumping finite automaton (ROWJFA) is a quintuple $M = (Q, \Sigma, R, s, F)$, where Q, Σ, R, s and F are defined as in a DFA.

Definition

The right one-way jumping relation, symbolically denoted by \circlearrowright , over $Q\Sigma^*$, is defined as follows. Suppose that x and y belong to Σ^* , a belongs to Σ , p and q are states in Q and $pa \rightarrow q \in R$. Then the ROWJFA M makes a jump from the configuration pxay to the configuration qyx, written as

рхау 🕐 qух

if x belongs to $\{\Sigma \setminus \Sigma_{\rho}\}^*$ where $\Sigma_{\rho} = \{b \in \Sigma \mid (\rho, b, q) \in R \text{ for some } q \in Q\}.$

The language accepted by M, denoted by L(M), is defined as

 $L(M) = \{ w \in \Sigma^* \mid sw \circlearrowright^* f, f \in F \}$

The language accepted by M, denoted by L(M), is defined as

$$L(M) = \{ w \in \Sigma^* \mid sw \circlearrowright^* f, f \in F \}$$

- fully deterministic behavior
- There is also a similar definition for the left one-way jumping finite automaton.

One-Way JFAs – Examples

Example 1

Let M_1 be a ROWJFA given by

 $M_1 = (\{q_0, q_1, q_2\}, \Sigma, R, q_0, \{q_0\}),$

where $\Sigma = \{a, b, c\}$ and *R* consists of the rules

 $q_0 a \rightarrow q_1, \quad q_1 b \rightarrow q_2, \quad q_2 c \rightarrow q_0.$

 $L(M_1) = \{ w \in \Sigma \mid |w|_a = |w|_b = |w|_c \}$

FIT

One-Way JFAs – Examples

Example 1

Let M_1 be a ROWJFA given by

$$M_1 = (\{q_0, q_1, q_2\}, \Sigma, R, q_0, \{q_0\}),$$

where $\Sigma = \{a, b, c\}$ and *R* consists of the rules

 $q_0 a \rightarrow q_1, \quad q_1 b \rightarrow q_2, \quad q_2 c \rightarrow q_0.$

 $L(M_1) = \{ w \in \Sigma \mid |w|_a = |w|_b = |w|_c \}$

Example 2

Let M_2 be a ROWJFA given by

 $M_2 = (\{q_0, q_1\}, \Sigma, R, q_0, \{q_0, q_1\}),$

where $\Sigma = \{a, b\}$ and *R* consists of the rules

$$q_0 a \rightarrow q_0, \quad q_0 b \rightarrow q_1, \quad q_1 b \rightarrow q_1.$$

 $L(M_2) = a^*b^*$

Theorem

ROWJ properly includes REG.

Theorem

ROWJ and LOWJ are incomparable.

Theorem

ROWJ $\not\subset$ **JFA**.

Theorem

CF and ROWJ are incomparable.

One-Way JFAs – Characterization

Theorem

The class **ROWJ** is not closed under

- intersection,
- concatenation,
- reversal,
- intersection with regular languages,
- concatenation with regular languages,
- substitution,
- Kleene star,
- Kleene plus.

Theorem

Let *M* be a ROWJFA. If there exists a constant *k*, such that for any word $w \in L(M)$ the number of sweeps needed by *M* to process *w* is at most *k*, then the language L(M) is regular.

Overall Conclusion

n-Parallel Jumping Finite Automata – combination of the parallel and jumping behavior

Double-Jumping Finite Automata – parallel combination of different jumping modes

One-Way Jumping Finite Automata – fully deterministic behavior

Thank you for your attention!