TID – lecture

Incremental construction of minimal finite automata and its utilization in natural language processing

Jan Kouřil 13.12.2011

Finite automata

- Criteria for usage
 - Low memory requirements
 - Speed
- Types used in NLP
 - Deterministic
 - Acyclic
 - Minimal

FA Attributes

Reachability and Usefulness

Minimality

Final transitions

Equivalence with classical FA

 $Minimal(FA) \ge Minimal(FA with final transitions)$

Transducers

- Translate one string into another
 - Used mostly in morphology
 - Recognition tasks

Incremental construction

- Creating dictionaries
 - From sorted data
 - From unsorted data
- Dictionary changed after every new word
- Isomorphic trees avoided

From sorted data

- States belong to same class if:
 - They are either both final, or both non-final
 - They have the same number of outgoing transitions
 - Corresponding transitions have the same labels
 - Corresponding transitions lead to the same states
 - States reachable via outgoing transitions are the sole representatives of their classes

Incremental algorithm

- Compute common prefix
- Append the rest of the word
- Merge common word endings

Example

t

n

From unsorted data

Why is this different?

Amended algorithm

- Compute common prefix
- Clone confluent states
- Add the rest of the word

Another example

Usage

- Morphology
 - Lookup & guessing
- Spelling correction
 - Restoration of diacritics
 - Edit distance
 - Searching for similar words

Error correction

- Errors can be created by
 - Misprints
 - Unsufficient morphology knowledge
 - Lack of knowledge of proper spelling
- Correction methodology
 - Short edit distance
 - Morphology analysis of word's stem
 - Analysis of words with similar pronunciation

Thank you for your attention