Using Alternating-Time Logic for Modeling of Artificial Agents in Wireless Nets

Extended abtract

Jiří Král xkralj04@stud.fit.vutbr.cz

Introduction

My thesis concerns the modeling of artificial agents in wireless sensor nets. A Belief Desire Intention (BDI) model or other Branching-time logic based systems are used for modeling of mental state of an agent in multiagent systems. In the context of multiagent systems a Branching-time logic deals with sets of formulas as possible worlds. Branching-time logic is based on predicate logic, but it introduces modality operators (necessity operator \Box and possibility operator \Diamond) and additional quantificators. An agent solves its problem by traveling through possible worlds. Theese worlds are modeled by Kripke structure - a nondeterministic finite state machine defined as $KS = (S, S_0, R, L)$, where S is the set of states, $S_0 \subseteq S$ is the set of initial states, R is subset of cartesian product $S \times S$ and L is projection of states on subsets of set of atomic formulas. A graphical representation of Kripke structure is usually an *n*-ary tree and all quantificators in Branching-time logic are defined over an *n*-ary computational tree. For example formula Ap defines that formula p is true in all branches from current junction.

Benefits of Alternating-time logic

Branching-time logic (specificaly CTL* logic) allows explicit specification of an existential or an universal qualificator over over all paths in computation tree. Alternating-time logic (ATL) offers more general specification. It allows a selective quantification over chosen paths. While CTL* logic is natural specification language for modeling a closed systems, Alternating-time logic offeres the possibility of specification of an opened systems.

My work

Firstly, I will be dealing with the Implementation of ATL System. Secondly, I will investigate the affect of my system on the decission process of an agent. Then I will study the problems of receptivness, realizability and controlability of ATL formulas. All these problems can be formulated as model-checking problems. Finally, I will measure and discuss the time and space complexity of my system in game-like environment and compare the results of my system with CTL* based system.