
Using Alternating-Time Logic for Modeling of Artificial
Agents in Wireless Nets

TID Presentation

Ing. Jǐŕı Král

Faculty of Information Technology

Ing. Jǐŕı Král (FIT BUT) 1 / 16

Contents

Motivation

Alternating Time Logic (ATL)

Concurrent Game Structures
Fairness
ATL Syntax and Semantics

ATL Model Checking and Complexity

Application in Wireless Nets

Conclusion

Ing. Jǐŕı Král (FIT BUT) 2 / 16

Motivation

Branching Time Logic (e.g. CTL,CTL*) - used for Agent and
Multiagent systems.

CTL enforces universal ∀ or existencial ∃ quantificator.

ATL offers quantification over selective paths - a generalization of
CTL.

Examples on board.

∀© p
〈〈A〉〉 © p

Ing. Jǐŕı Král (FIT BUT) 3 / 16

Alternating Time Logic

Concurent Game Structure

Fairness Constraints

ATL Syntax

ATL Semantics

Ing. Jǐŕı Král (FIT BUT) 4 / 16

Concurent Game Structures

A concurent game structure is a tuple

S = 〈k ,Q,Π, π, d , δ〉

where

k > 1 is a natural number of players. Each player is identified by
number 1, . . . , k .

Q is a finite set of states.

Π is a finite set of propositions.

For each state q ∈ Q, a set π(q) ⊆ Π of propositions true at q.
Function π is called labeling function.

Ing. Jǐŕı Král (FIT BUT) 5 / 16

Concurent Game Structures - # 2

For each player a ∈ 1, . . . , k and each state q ∈ Q, a natural number
da(q) ≥ 1 of moves avilable at state q to a player a (each move is
identified by a number). For each state q ∈ Q, a move vector at q is
a tuple 〈j1, . . . , jk〉 for each player a. Given state q ∈ Q, we write
D(q) for the set 1, . . . , d1(q)× 1, . . . , dk(q) of moves of move
vectors. The function D is called move function.

For each state q ∈ Q and each move vector 〈j1, . . . , jk〉 ∈ D(q), a
state δ(q, j1, . . . , jk) ∈ Q, that results from state q if every player
a ∈ 1, . . . , k choose move ja. The function δ is called transition
function.

Ing. Jǐŕı Král (FIT BUT) 6 / 16

Concurent Game Structures - # 3

A state q′ is a Successor of q if there is a move vector such that
q′ = δ(q, j1, . . . , jk).

An infinite sequence λ = q0, q1, . . . is a Computation of S of states
such that for all positions i ≥ 0 qi+1 is sucesor of qi . A
q-computation is a computation starting from state q. Notation λ[i]
denotes the i-th position of computation λ

Ing. Jǐŕı Král (FIT BUT) 7 / 16

Concurent Game Structures - example

System with processes a and b. The process a assigns values to the
boolean variable x . When x = false, then a can leave the value of x
unchanged or change it to true. When x = true, then a leaves the
value of x unchanged. In a similar way, the process b assigns values to
y .

Model of this system is:

Π = x , y
Σ = a, b
Q = q, qy , qx , qxy . The state q corresponds to x = y = false, the state
qx corresponds to x = true and y = false, and similarly for qy and qxy .
Labeling function coresponds to names of states qxy means
π(qxy) = x , y
d1(q) = d1(qy) = 2 and d1(qx) = d1qxy = 1
d2(q) = d2(qx) = 2 and d2(qy) = d2qxy = 1
δ(q, 1, 1) = q, d(q, 1, 2) = qy . . .

Ing. Jǐŕı Král (FIT BUT) 8 / 16

Fairness Constraints

A fairness constraint in a game structure S = 〈k ,Q,Π, π, d , δ〉 is a
tuple 〈a, γ〉, where a ∈ 1, . . . , k is a player and a function γ maps
every state q ∈ Q to a subset of moves available at state q to player
a.

Consider a computation λ = q1, q2, . . . of game structure S and
fairness constraint 〈a, γ〉. We say that 〈a, γ〉 is enabled at position
i ≥ 0 of λ if γ(qi) = ∅
We say that 〈a, γ〉 is taken at position i ≥ 0 of λ if there is a move
vector 〈j1, . . . , jk〉 such that ja ∈ γ(qi) and δ(qi , j1, . . . , jk) = qi+1.

Ing. Jǐŕı Král (FIT BUT) 9 / 16

ATL - Syntax

Definition with respect to: Π a finite set of propositions, Σ a finite set of
players. An ATL formula is:

p, for propositions p ∈ Π

¬φ or φ1 ∨ φ2, where φ, φ1, φ2 are ATL formulas.

〈〈A〉〉 © φ, 〈〈A〉〉�φ or 〈〈A〉〉φ1Uφ2, where A ⊆ Σ is a set of players,
φ, φ1, φ2 are ATL formulas.

The operator 〈〈〉〉 is a path quantifier, © (next), � (always) and U (until)
are temporal operators.

Ing. Jǐŕı Král (FIT BUT) 10 / 16

ATL - Strategy

Definitions with respect to: S = 〈k,Q,Π, π, d , δ〉.
A strategy for a player a ∈ Σ is a function fa that maps every
nonempty finite state sequence σ ∈ Q+ to a natural number such
that: fa(λ) ≤ da(q).

Given q ∈ Q, A ⊆ 1, . . . , k and a set FA = fa|a ∈ A of strategies, one
for each player in A, we define outcomes of FA from q to be the set
out(q,FA) of q-computations tht players in A enforce when follow
strategies in FA.

Ing. Jǐŕı Král (FIT BUT) 11 / 16

ATL - Semantics

We write S , q |= φ to indicate that q satisfies the formula φ in structure S .
The definition of |= is:

q |= p for propositions, iff p ∈ π(q).

q |= ¬φ iff q 6|= φ.

q |= φ1 ∨ φ2 iff q |= φ1 or |= φ2.

q |= 〈〈A〉〉 © φ iff there exist set FA of strategies, such that for all
λ ∈ out(q,FA) we have λ[1] = φ.

q |= 〈〈A〉〉�φ iff there exist set FA of strategies, such that for all
λ ∈ out(q,FA) and all positions i ≥ 0 we have λ[i] = φ.

q |= 〈〈A〉〉φ1Uφ2 iff there exist set FA of strategies, such that for all
λ ∈ out(q,FA) there exists a position i ≥ 0 such that λ[i] = φ2 and
for all positions 0 ≤ j ≤ i we have λ[j] = φ1.

Ing. Jǐŕı Král (FIT BUT) 12 / 16

Model Checking and Complexity

Model checking of ATL is identical to algorithm of CTL

Exception: function Pre that from a set of players A and set of states
ρ returns the set of states q such that from q players in A enforces
the next state to lie in ρ

Function Pre - highest complexity

Comparision of closed and opened systems
Closed Opened

ATL joint complexity PTIME PTIME

ATL structure compexity NLOGSPACE PTIME

ATL* joint complexity PSPACE 2EXPTIME

Ing. Jǐŕı Král (FIT BUT) 13 / 16

Application in Wireless Nets

Necessity of open system representation

Usability in wireless sensor nets

Battery limits
Complexity of computations

Usability in wired nets

Usually more flexible resources

Ing. Jǐŕı Král (FIT BUT) 14 / 16

Conclusion

ATL offers a represenation of an opened system

ATL is more expressive than CTL (and ATL* more than CTL*)

Path quantifications
More flexible constraints

Higher requirements for target platform

Ing. Jǐŕı Král (FIT BUT) 15 / 16

The End

Thank you for your attention.

Ing. Jǐŕı Král (FIT BUT) 16 / 16

