Using Alternating-Time Logic for Modeling of Artificial Agents in Wireless Nets

Ing. Jiří Král

Faculty of Information Technology

Ing. Jiří Král (FIT BUT)

1 / 16

- Motivation
- Alternating Time Logic (ATL)
 - Concurrent Game Structures
 - Fairness
 - ATL Syntax and Semantics
- ATL Model Checking and Complexity
- Application in Wireless Nets
- Conclusion

B ▶ < B ▶

- Branching Time Logic (e.g. CTL,CTL*) used for Agent and Multiagent systems.
- CTL enforces universal \forall or existencial \exists quantificator.
- ATL offers quantification over selective paths a generalization of CTL.
- Examples on board.
 - $\forall \bigcirc p$
 - ⟨⟨A⟩⟩ ⊖ p

伺下 イヨト イヨト

- Concurent Game Structure
- Fairness Constraints
- ATL Syntax
- ATL Semantics

A concurent game structure is a tuple

$$S = \langle k, Q, \Pi, \pi, d, \delta \rangle$$

where

- k > 1 is a natural number of players. Each player is identified by number $1, \ldots, k$.
- Q is a finite set of *states*.
- Π is a finite set of *propositions*.
- For each state $q \in Q$, a set $\pi(q) \subseteq \Pi$ of propositions true at q. Function π is called *labeling function*.

- For each player a ∈ 1,..., k and each state q ∈ Q, a natural number d_a(q) ≥ 1 of moves aviilable at state q to a player a (each move is identified by a number). For each state q ∈ Q, a move vector at q is a tuple (j₁,...,j_k) for each player a. Given state q ∈ Q, we write D(q) for the set 1,..., d₁(q) × 1,..., d_k(q) of moves of move vectors. The function D is called move function.
- For each state $q \in Q$ and each move vector $\langle j_1, \ldots, j_k \rangle \in D(q)$, a state $\delta(q, j_1, \ldots, j_k) \in Q$, that results from state q if every player $a \in 1, \ldots, k$ choose move j_a . The function δ is called *transition function*.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A state q' is a *Successor* of q if there is a move vector such that $q' = \delta(q, j_1, \dots, j_k)$.
- An infinite sequence λ = q₀, q₁,... is a Computation of S of states such that for all positions i ≥ 0 q_{i+1} is successor of q_i. A q-computation is a computation starting from state q. Notation λ[i] denotes the i-th position of computation λ

Concurent Game Structures - example

- System with processes *a* and *b*. The process *a* assigns values to the boolean variable *x*. When *x* = *false*, then *a* can leave the value of *x* unchanged or change it to *true*. When *x* = *true*, then *a* leaves the value of *x* unchanged. In a similar way, the process *b* assigns values to *y*.
- Model of this system is:
 - $\Pi = x, y$
 - Σ = *a*, *b*
 - $Q = q, q_y, q_x, q_{xy}$. The state q corresponds to x = y = false, the state q_x corresponds to x = true and y = false, and similarly for q_y and q_{xy} .
 - Labeling function coresponds to names of states q_{xy} means $\pi(q_{xy}) = x, y$
 - $d_1(q) = d_1(q_y) = 2$ and $d_1(q_x) = d_1q_{xy} = 1$
 - $d_2(q) = d_2(q_x) = 2$ and $d_2(q_y) = d_2q_{xy} = 1$
 - $\delta(q, 1, 1) = q, \ d(q, 1, 2) = q_y \ldots$

イロト 不得下 イヨト イヨト 二日

- A fairness constraint in a game structure S = ⟨k, Q, Π, π, d, δ⟩ is a tuple ⟨a, γ⟩, where a ∈ 1,..., k is a player and a function γ maps every state q ∈ Q to a subset of moves available at state q to player a.
- Consider a computation $\lambda = q_1, q_2, \ldots$ of game structure S and fairness constraint $\langle a, \gamma \rangle$. We say that $\langle a, \gamma \rangle$ is *enabled* at position $i \ge 0$ of λ if $\gamma(q_i) = \emptyset$
- We say that $\langle a, \gamma \rangle$ is *taken* at position $i \ge 0$ of λ if there is a move vector $\langle j_1, \ldots, j_k \rangle$ such that $j_a \in \gamma(q_i)$ and $\delta(q_i, j_1, \ldots, j_k) = q_{i+1}$.

イロト イ団ト イヨト イヨト 三日

Definition with respect to: Π a finite set of propositions, Σ a finite set of players. An ATL formula is:

- p, for propositions $p \in \Pi$
- $\neg \phi$ or $\phi_1 \lor \phi_2$, where ϕ, ϕ_1, ϕ_2 are ATL formulas.
- $\langle\langle A \rangle\rangle \bigcirc \phi$, $\langle\langle A \rangle\rangle \Box \phi$ or $\langle\langle A \rangle\phi_1 \mathcal{U}\phi_2$, where $A \subseteq \Sigma$ is a set of players, ϕ, ϕ_1, ϕ_2 are ATL formulas.

The operator $\langle \langle \rangle \rangle$ is a path quantifier, \bigcirc (next), \Box (always) and \mathcal{U} (until) are temporal operators.

Definitions with respect to: $S = \langle k, Q, \Pi, \pi, d, \delta \rangle$.

- A strategy for a player a ∈ Σ is a function f_a that maps every nonempty finite state sequence σ ∈ Q⁺ to a natural number such that: f_a(λ) ≤ d_a(q).
- Given q ∈ Q, A ⊆ 1,..., k and a set F_A = f_a|a ∈ A of strategies, one for each player in A, we define *outcomes* of F_A from q to be the set *out*(q, F_A) of q-computations tht players in A enforce when follow strategies in F_A.

・ロト ・得ト ・ヨト ・ヨト

We write $S, q \models \phi$ to indicate that q satisfies the formula ϕ in structure S. The definition of \models is:

- $q \models p$ for propositions, iff $p \in \pi(q)$.
- $q \models \neg \phi$ iff $q \not\models \phi$.
- $q \models \phi_1 \lor \phi_2$ iff $q \models \phi_1$ or $\models \phi_2$.
- q ⊨ ⟨⟨A⟩⟩ φ iff there exist set F_A of strategies, such that for all λ ∈ out(q, F_A) we have λ[1] = φ.
- $q \models \langle \langle A \rangle \rangle \Box \phi$ iff there exist set F_A of strategies, such that for all $\lambda \in out(q, F_A)$ and all positions $i \ge 0$ we have $\lambda[i] = \phi$.
- $q \models \langle \langle A \rangle \rangle \phi_1 \mathcal{U} \phi_2$ iff there exist set F_A of strategies, such that for all $\lambda \in out(q, F_A)$ there exists a position $i \ge 0$ such that $\lambda[i] = \phi_2$ and for all positions $0 \le j \le i$ we have $\lambda[j] = \phi_1$.

- Model checking of ATL is identical to algorithm of CTL
- Exception: function *Pre* that from a set of players *A* and set of states ρ returns the set of states *q* such that from *q* players in *A* enforces the next state to lie in ρ
- Function *Pre* highest complexity
- Comparision of closed and opened systems

	Closed	Opened
ATL joint complexity	PTIME	PTIME
ATL structure compexity	NLOGSPACE	PTIME
ATL* joint complexity	PSPACE	2EXPTIME

- Necessity of open system representation
- Usability in wireless sensor nets
 - Battery limits
 - Complexity of computations
- Usability in wired nets
 - Usually more flexible resources

- ATL offers a representation of an opened system
- ATL is more expressive than CTL (and ATL* more than CTL*)
 - Path quantifications
 - More flexible constraints
- Higher requirements for target platform

Thank you for your attention.

・ロト ・聞ト ・ ヨト ・ ヨト