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Motivation

Branching Time Logic (e.g. CTL,CTL*) - used for Agent and
Multiagent systems.

CTL enforces universal ∀ or existencial ∃ quantificator.

ATL offers quantification over selective paths - a generalization of
CTL.

Examples on board.

∀© p
〈〈A〉〉 © p
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Alternating Time Logic

Concurent Game Structure

Fairness Constraints

ATL Syntax

ATL Semantics
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Concurent Game Structures

A concurent game structure is a tuple

S = 〈k ,Q,Π, π, d , δ〉

where

k > 1 is a natural number of players. Each player is identified by
number 1, . . . , k .

Q is a finite set of states.

Π is a finite set of propositions.

For each state q ∈ Q, a set π(q) ⊆ Π of propositions true at q.
Function π is called labeling function.
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Concurent Game Structures - # 2

For each player a ∈ 1, . . . , k and each state q ∈ Q, a natural number
da(q) ≥ 1 of moves avilable at state q to a player a (each move is
identified by a number). For each state q ∈ Q, a move vector at q is
a tuple 〈j1, . . . , jk〉 for each player a. Given state q ∈ Q, we write
D(q) for the set 1, . . . , d1(q)× 1, . . . , dk(q) of moves of move
vectors. The function D is called move function.

For each state q ∈ Q and each move vector 〈j1, . . . , jk〉 ∈ D(q), a
state δ(q, j1, . . . , jk) ∈ Q, that results from state q if every player
a ∈ 1, . . . , k choose move ja. The function δ is called transition
function.
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Concurent Game Structures - # 3

A state q′ is a Successor of q if there is a move vector such that
q′ = δ(q, j1, . . . , jk).

An infinite sequence λ = q0, q1, . . . is a Computation of S of states
such that for all positions i ≥ 0 qi+1 is sucesor of qi . A
q-computation is a computation starting from state q. Notation λ[i ]
denotes the i-th position of computation λ
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Concurent Game Structures - example

System with processes a and b. The process a assigns values to the
boolean variable x . When x = false, then a can leave the value of x
unchanged or change it to true. When x = true, then a leaves the
value of x unchanged. In a similar way, the process b assigns values to
y .

Model of this system is:

Π = x , y
Σ = a, b
Q = q, qy , qx , qxy . The state q corresponds to x = y = false, the state
qx corresponds to x = true and y = false, and similarly for qy and qxy .
Labeling function coresponds to names of states qxy means
π(qxy ) = x , y
d1(q) = d1(qy ) = 2 and d1(qx) = d1qxy = 1
d2(q) = d2(qx) = 2 and d2(qy ) = d2qxy = 1
δ(q, 1, 1) = q, d(q, 1, 2) = qy . . .
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Fairness Constraints

A fairness constraint in a game structure S = 〈k ,Q,Π, π, d , δ〉 is a
tuple 〈a, γ〉, where a ∈ 1, . . . , k is a player and a function γ maps
every state q ∈ Q to a subset of moves available at state q to player
a.

Consider a computation λ = q1, q2, . . . of game structure S and
fairness constraint 〈a, γ〉. We say that 〈a, γ〉 is enabled at position
i ≥ 0 of λ if γ(qi ) = ∅
We say that 〈a, γ〉 is taken at position i ≥ 0 of λ if there is a move
vector 〈j1, . . . , jk〉 such that ja ∈ γ(qi ) and δ(qi , j1, . . . , jk) = qi+1.
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ATL - Syntax

Definition with respect to: Π a finite set of propositions, Σ a finite set of
players. An ATL formula is:

p, for propositions p ∈ Π

¬φ or φ1 ∨ φ2, where φ, φ1, φ2 are ATL formulas.

〈〈A〉〉 © φ, 〈〈A〉〉�φ or 〈〈A〉〉φ1Uφ2, where A ⊆ Σ is a set of players,
φ, φ1, φ2 are ATL formulas.

The operator 〈〈〉〉 is a path quantifier, © (next), � (always) and U (until)
are temporal operators.
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ATL - Strategy

Definitions with respect to: S = 〈k,Q,Π, π, d , δ〉.
A strategy for a player a ∈ Σ is a function fa that maps every
nonempty finite state sequence σ ∈ Q+ to a natural number such
that: fa(λ) ≤ da(q).

Given q ∈ Q, A ⊆ 1, . . . , k and a set FA = fa|a ∈ A of strategies, one
for each player in A, we define outcomes of FA from q to be the set
out(q,FA) of q-computations tht players in A enforce when follow
strategies in FA.
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ATL - Semantics

We write S , q |= φ to indicate that q satisfies the formula φ in structure S .
The definition of |= is:

q |= p for propositions, iff p ∈ π(q).

q |= ¬φ iff q 6|= φ.

q |= φ1 ∨ φ2 iff q |= φ1 or |= φ2.

q |= 〈〈A〉〉 © φ iff there exist set FA of strategies, such that for all
λ ∈ out(q,FA) we have λ[1] = φ.

q |= 〈〈A〉〉�φ iff there exist set FA of strategies, such that for all
λ ∈ out(q,FA) and all positions i ≥ 0 we have λ[i ] = φ.

q |= 〈〈A〉〉φ1Uφ2 iff there exist set FA of strategies, such that for all
λ ∈ out(q,FA) there exists a position i ≥ 0 such that λ[i ] = φ2 and
for all positions 0 ≤ j ≤ i we have λ[j ] = φ1.
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Model Checking and Complexity

Model checking of ATL is identical to algorithm of CTL

Exception: function Pre that from a set of players A and set of states
ρ returns the set of states q such that from q players in A enforces
the next state to lie in ρ

Function Pre - highest complexity

Comparision of closed and opened systems
Closed Opened

ATL joint complexity PTIME PTIME

ATL structure compexity NLOGSPACE PTIME

ATL* joint complexity PSPACE 2EXPTIME
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Application in Wireless Nets

Necessity of open system representation

Usability in wireless sensor nets

Battery limits
Complexity of computations

Usability in wired nets

Usually more flexible resources
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Conclusion

ATL offers a represenation of an opened system

ATL is more expressive than CTL (and ATL* more than CTL*)

Path quantifications
More flexible constraints

Higher requirements for target platform
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The End

Thank you for your attention.
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