

TID

Processing and analysis of robotic arm
control language

Author: Radim Luža

Structure of presentation

 Part 1: Design of the interpreter
 The Robotic arm control language (LUA,MELFA

BASIC).
 Interpreter components and formalisms.

 Part 2: The language analysis
 Goals of the analysis.
 Analysis technique I used.
 A prototype of the analyser
 Difficulties of a LUA programming language

analysis.
2/19

Part 1

3/19

Design of the interpreter

The Robotic Arm Control
Language (RACL)

4/19

 An interpreted language to control the a robotic
arm, a robotic manipulator and cameras.

 Compound of two languages – a LUA and
a MELFA-BASIC.

 LUA – an open-source weakly typed scripting
language – common control-flow constructions,
mathematical expressions, IO, supports objects [1].

 MELFA-BASIC – MELFA proprietary language with
a BASIC-like syntax – used as a low level language
to control the arm [2].

Interpreter components

 The preprocessor.
 The LUA interpreter.

 Available as OSS.

 The MELFA-BASIC interpreter.
 Built in an arm controller or in an arm simulator.
 Significantly simplified.

 Limited to communication with the arm (MOVS).
 No flow control or mathematical expressions (IF

THE, operator +) of the MELFA BASIC are
being used.

 Sequence of single-line commands. 5/19

Interpreter components 2

 The LUA interpreter.
 Third-party library to interpret LUA - used ”as it is” -

just wrapped into RACL interpreter code.

 The MELFA-BASIC interpreter.
 Only splits the code into single commands that are

then passed to simulator or to arm.
 Simplified MELFA-BASIC accepted by FSM:

 (COMMAND'\n'+)*COMMAND'\n'* [+ ]

 COMMAND is a set of commands with shape of
a symbolic instruction: MOVJ 10 X1 120

6/19

Interpreter components 3

 The preprocessor
 Main purpose -

combination of MB
and LUA.

7/19

Source:

 VAR = 60

 #MELFA_BASIC_BEGIN

 MOVJ 10 @VAR1 20

 @VAR2 :- PRINT M_SRV

 MOVJ 30 @VAR1 50

 #MELFA_BASIC_END

Source:

 VAR = 60

 #MELFA_BASIC_BEGIN

 MOVJ 10 @VAR1 20

 @VAR2 :- PRINT M_SRV

 MOVJ 30 @VAR1 50

 #MELFA_BASIC_END

Preprocessed – pure LUA:

VAR = 60

INP_VALS[”VAR1”]=VAR1 --input as a value

OOUT_VARS[”VAR2”]=”VAR2” --output as a variable reference

OTHER_MBCall("MOVJ 10 @I[”VAR1”] 20\n@O[”VAR2”] :- PRINT
M_SRV\nMOVJ 30 @I[”VAR1”] 50", INP_VALS,OUT_VARS)

Preprocessor complexity

 More complex than a Finite State Transducer.
 Intuitive proof: FSM can't keep infinite strings.

 More complex than a Pushdown Transducer.
 Intuitive proof: A stack can store infinite number of

infinite strings but it doesn't allow to access them
randomly to check appearance of variable name in
a set of ”remembered” variables.

 Translation can be computed by LBA (LOA).
 Length of a list of ”remembered” names and length

of a generated output code is linear dependent on
length of input. 8/19

Part 2

9/19

The language analysis

Goals of analysis

 Main goal: Detection of never-ending programs.
 Undecidable –> only subgoals are being analysed.
 (Proof: diagonalization of matrix of binary coded

Turing machines and binary coded input strings.)

 Analysable subgoals of main goal.
 Detection of potentially infinite loops.
 Detection of potentially infinite recursion.

 Other notes about analysis.
 Only single-thread code.
 Only LUA needs to be analysed. 10/19

Potentially infinite looping

 If it starts to loop it will never end.
 We can't decide easily if looping will start.

 Loop (or recursion) might be in a conditional branch
depending on unknown program inputs.

 Condition of looping might be not satisfied.
 Probably the easiest way of deciding if looping will

start is to execute the program.

11/19

Analysis technique I used

 Syntax analysis.
 Rejects the code with syntactic errors and

constructs AST.
 Used third-party analyser LuaFish.

 Control-flow analysis [3].
 Construction of control-flow graph from AST.
 Finding loops in control-flow graph.

 Data-flow analysis [4].
 Analysis of assignments to variables and their

appearance in cond-branch expressions only.
12/19

Current analyzer prototype

 Converts AST generated by LuaFish to CF.
 Gathers informations about variable

assignments and about appearance of
variables in conditional branch control
expressions.

 Only loop analysis.
 Recursion analysis is not supported yet.
 Objective code is not supported yet.

13/19

Example of analysis

 Source code

a=0

for i= 3,30,3 do

 while a < 10 do --a is not modified in the loop body

 b = b + 1

 end

 b = 0

end

14/19

Example of analysis

15/19

 CF graph with highlighted analysis result

Difficulties of LUA analysis

 Variables without prior definition.
 They have a default value – nil.
 nil is not line a NULL pointer – it can be casted to

number, boolean or string.
 Variables with all possible names ”exist”.

 Variables are global by default.
if x > 10 then

 a = 5

end

--a has value 5 here

16/19

Difficulties of LUA analysis

 Objective code.
 Assigning correct data to object methods.

 Multiassignments.
a,b,c = x,u --c is set to nil

 We have to check that all variables have right-side
value. Otherwise they will be set to nil.

17/19

References

 [1] Ierusalimschy R. , Figueiredo L. H., Celes W.: Lua 5.1 Reference Manual, online
<http://www.lua.org/manual/5.1/>, August 2006, cit. Dec. 2011.

 [2] Guerrero J.: COSIMIR MELFA BASIC IV, online
<http://dmi.uib.es/~jguerrero/instMelfa.pdf>, September 2004, cit. Dec. 2011.

 [3] Kolektiv: Control flow analysis, online
<http://en.wikipedia.org/wiki/Control_flow_analysis>, May 2011, cit. Dec.2011.

 [4] Nielson F, Nielson H., Hankin Ch.: Principles of Program Analysis: Data Flow
Analysis, online <http://www2.imm.dtu.dk/~riis/PPA/slides2.pdf>, 2005, cit. Dec.2011.

 And others...

18/19

The End

19/19

Thank you for your attention.

