

TID

Processing and analysis of robotic arm
control language

Author: Radim Luža

Structure of presentation

 Part 1: Design of the interpreter
 The Robotic arm control language (LUA,MELFA

BASIC).
 Interpreter components and formalisms.

 Part 2: The language analysis
 Goals of the analysis.
 Analysis technique I used.
 A prototype of the analyser
 Difficulties of a LUA programming language

analysis.
2/19

Part 1

3/19

Design of the interpreter

The Robotic Arm Control
Language (RACL)

4/19

 An interpreted language to control the a robotic
arm, a robotic manipulator and cameras.

 Compound of two languages – a LUA and
a MELFA-BASIC.

 LUA – an open-source weakly typed scripting
language – common control-flow constructions,
mathematical expressions, IO, supports objects [1].

 MELFA-BASIC – MELFA proprietary language with
a BASIC-like syntax – used as a low level language
to control the arm [2].

Interpreter components

 The preprocessor.
 The LUA interpreter.

 Available as OSS.

 The MELFA-BASIC interpreter.
 Built in an arm controller or in an arm simulator.
 Significantly simplified.

 Limited to communication with the arm (MOVS).
 No flow control or mathematical expressions (IF

THE, operator +) of the MELFA BASIC are
being used.

 Sequence of single-line commands. 5/19

Interpreter components 2

 The LUA interpreter.
 Third-party library to interpret LUA - used ”as it is” -

just wrapped into RACL interpreter code.

 The MELFA-BASIC interpreter.
 Only splits the code into single commands that are

then passed to simulator or to arm.
 Simplified MELFA-BASIC accepted by FSM:

 (COMMAND'\n'+)*COMMAND'\n'* [+]

 COMMAND is a set of commands with shape of
a symbolic instruction: MOVJ 10 X1 120

6/19

Interpreter components 3

 The preprocessor
 Main purpose -

combination of MB
and LUA.

7/19

Source:

 VAR = 60

 #MELFA_BASIC_BEGIN

 MOVJ 10 @VAR1 20

 @VAR2 :- PRINT M_SRV

 MOVJ 30 @VAR1 50

 #MELFA_BASIC_END

Source:

 VAR = 60

 #MELFA_BASIC_BEGIN

 MOVJ 10 @VAR1 20

 @VAR2 :- PRINT M_SRV

 MOVJ 30 @VAR1 50

 #MELFA_BASIC_END

Preprocessed – pure LUA:

VAR = 60

INP_VALS[”VAR1”]=VAR1 --input as a value

OOUT_VARS[”VAR2”]=”VAR2” --output as a variable reference

OTHER_MBCall("MOVJ 10 @I[”VAR1”] 20\n@O[”VAR2”] :- PRINT
M_SRV\nMOVJ 30 @I[”VAR1”] 50", INP_VALS,OUT_VARS)

Preprocessor complexity

 More complex than a Finite State Transducer.
 Intuitive proof: FSM can't keep infinite strings.

 More complex than a Pushdown Transducer.
 Intuitive proof: A stack can store infinite number of

infinite strings but it doesn't allow to access them
randomly to check appearance of variable name in
a set of ”remembered” variables.

 Translation can be computed by LBA (LOA).
 Length of a list of ”remembered” names and length

of a generated output code is linear dependent on
length of input. 8/19

Part 2

9/19

The language analysis

Goals of analysis

 Main goal: Detection of never-ending programs.
 Undecidable –> only subgoals are being analysed.
 (Proof: diagonalization of matrix of binary coded

Turing machines and binary coded input strings.)

 Analysable subgoals of main goal.
 Detection of potentially infinite loops.
 Detection of potentially infinite recursion.

 Other notes about analysis.
 Only single-thread code.
 Only LUA needs to be analysed. 10/19

Potentially infinite looping

 If it starts to loop it will never end.
 We can't decide easily if looping will start.

 Loop (or recursion) might be in a conditional branch
depending on unknown program inputs.

 Condition of looping might be not satisfied.
 Probably the easiest way of deciding if looping will

start is to execute the program.

11/19

Analysis technique I used

 Syntax analysis.
 Rejects the code with syntactic errors and

constructs AST.
 Used third-party analyser LuaFish.

 Control-flow analysis [3].
 Construction of control-flow graph from AST.
 Finding loops in control-flow graph.

 Data-flow analysis [4].
 Analysis of assignments to variables and their

appearance in cond-branch expressions only.
12/19

Current analyzer prototype

 Converts AST generated by LuaFish to CF.
 Gathers informations about variable

assignments and about appearance of
variables in conditional branch control
expressions.

 Only loop analysis.
 Recursion analysis is not supported yet.
 Objective code is not supported yet.

13/19

Example of analysis

 Source code

a=0

for i= 3,30,3 do

 while a < 10 do --a is not modified in the loop body

 b = b + 1

 end

 b = 0

end

14/19

Example of analysis

15/19

 CF graph with highlighted analysis result

Difficulties of LUA analysis

 Variables without prior definition.
 They have a default value – nil.
 nil is not line a NULL pointer – it can be casted to

number, boolean or string.
 Variables with all possible names ”exist”.

 Variables are global by default.
if x > 10 then

 a = 5

end

--a has value 5 here

16/19

Difficulties of LUA analysis

 Objective code.
 Assigning correct data to object methods.

 Multiassignments.
a,b,c = x,u --c is set to nil

 We have to check that all variables have right-side
value. Otherwise they will be set to nil.

17/19

References

 [1] Ierusalimschy R. , Figueiredo L. H., Celes W.: Lua 5.1 Reference Manual, online
<http://www.lua.org/manual/5.1/>, August 2006, cit. Dec. 2011.

 [2] Guerrero J.: COSIMIR MELFA BASIC IV, online
<http://dmi.uib.es/~jguerrero/instMelfa.pdf>, September 2004, cit. Dec. 2011.

 [3] Kolektiv: Control flow analysis, online
<http://en.wikipedia.org/wiki/Control_flow_analysis>, May 2011, cit. Dec.2011.

 [4] Nielson F, Nielson H., Hankin Ch.: Principles of Program Analysis: Data Flow
Analysis, online <http://www2.imm.dtu.dk/~riis/PPA/slides2.pdf>, 2005, cit. Dec.2011.

 And others...

18/19

The End

19/19

Thank you for your attention.

