Tree Edit Distance in a Document Comparison

Martin Milička

Brno University of Technology
LANGUAGE THEORY with APPLICATIONS 2011

Content

(1) Motivation

(2) Tree Edit Distance (TED)

(3) Document Model

- Translation
- Document Compression
(4) Tree Edit Distance in a Document Comparison

Motivation

In some cases, the textual based comparison is not good enough for a document comparison because there is missing a visual influence. It brings a human perception. In HTML, we are talking about structure based similarity.

- Document comparison
- textual approach (text)
- visual approach (structure, colour, sizes, etc.)
- Tree
- is a well studied combinatorial structure in computer science
- is a finite connected acyclic graph with distinguish root node
- Tree comparison
- occurs in several areas (biology, structured text databases, image analysis, compiler optimalization)

Tree Edit Distance (TED)

Definition

The algorithm searches the sequence of edit operations turning tree T_{1} into tree T_{2}. Tree edit distance is a sequence with the minimum cost. Evaluates the structural differences between DOM trees.

Cost function: defines the cost of every edit operation
Edit operations: insertion, deletion and relabeling

Specific tree notation:

- Order x Unorder tree (connection to a time complexity)
- Labeled x Unlabeled tree

Basic Operations

The operations are defined on pairs of nodes.

Relabeling

- changes the label of the node label I_{1} to I_{2}

Deleting

- non-root node l_{2} with parent l_{1}.
- making the children of I_{2} to become the children of l_{1}

Inserting

- the complement of delete

Document Model

- Elements of web document are defined in DOM
- DOM has a tree structure
- DOM is an ordered tree
- DOM is a labeled tree - each node has a name

Problem: DOM trees are too complex for a tree structure comparison

Solution: abstraction + compression

Translation

Visual (class) tag	HTML tags
grp	table, ul, html, body, tbody, div, p
row	tr, li, h1, h2, hr
col	td
text	otherwise
$\Sigma_{\mathbb{V}}=\{$ grp, row, col, text $\}$	

$$
\begin{gathered}
\operatorname{trn}:: \tau(\mathcal{T} \text { ext } \cup \mathcal{T} \text { ag }) \rightarrow \tau\left(\Sigma_{\mathbb{V}}\right) \\
\operatorname{trn}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)= \begin{cases}\alpha(f) & n=0 \\
\alpha(f)\left(\operatorname{trn}\left(t_{1}\right), \ldots, \operatorname{trn}\left(t_{n}\right)\right) & \text { otherwise }\end{cases} \\
\text { where } \alpha::(\mathcal{T} \text { ext } \cup \mathcal{T} \text { ag }) \rightarrow \Sigma_{\mathbb{V}} \\
\tau\left(\Sigma_{\mathbb{V}}\right) \text { term of algebra } \Sigma_{\mathbb{V}} \\
\text { page } \in \tau(\mathcal{T} \text { ext } \cup \mathcal{T} \text { ag })
\end{gathered}
$$

Document Compression

$\tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right)$ is a marked term where \mathbb{N} is a number of occurrence

For example: [2]row([1]text)

Compression types:

- horizontal
- vertical

Horizontal Compression
Let $t=\left[r_{1}\right] f\left(t_{1}, \ldots, t_{n}\right), s=\left[r_{2}\right] f\left(v_{1}, \ldots, v_{n}\right) \in \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right)$ where $t \equiv_{\Sigma_{\mathbb{V}}} s$

$$
\begin{gathered}
\text { join :: } \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \times \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \rightarrow \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \\
j \operatorname{join}(t, s)=\widehat{\operatorname{join}}(t, s, 1,1,1)
\end{gathered}
$$

The auxiliary function $\widehat{\text { join }}$ is defined as:

$$
\begin{array}{r}
\widehat{\text { join }:: ~} \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \times \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \\
\widehat{\text { join }}\left(t, s, k_{1}, k_{2}, p\right)= \begin{cases}{[m] f} & n=0 \\
{[m] f\left(\widehat{\text { join }}\left(\frac{t_{1}, v_{1}}{}, r_{1}, r_{2}, m\right), \ldots,\right.} & \\
\left.\frac{\text { join }}{}\left(t_{n}, v_{n}, r_{1}, r_{2}, m\right)\right) & n>0\end{cases}
\end{array}
$$

$$
\text { where } m=\left\lceil\left(r_{1} * k_{1}+r_{2} * k_{2}\right) / p\right\rceil
$$

Horizontal Compression

Example:

a)

b)

c)

The number of rows is computed as $m=\lceil(1 * 2+5 * 6) / 6\rceil$.

Horizontal compression

$$
n=0
$$

$$
((1 \leq i \leq j \leq n) \text { and }
$$

$$
\left.\left(t_{i} \equiv_{\Sigma_{\mathrm{v}}} t_{i+1} \ldots t_{j-1} \equiv \Sigma_{\mathrm{v}} t_{j}\right)\right)
$$

otherwise

Vertical Compression

The safe vertical conditions (SVC):

$$
\begin{array}{ll}
r=1 & \text { (number of repetition) } \\
n=1 & \text { (number of children) } \\
\neg\left(f \equiv \operatorname{group} \wedge \operatorname{root}\left(t_{1}\right) \not \equiv \text { group }\right) & \text { (preserve the page structure) } \\
\operatorname{root}\left(t_{1}\right) \not \equiv \text { text } & \text { (preserve the information in page) }
\end{array}
$$

Let $t=[r] f\left([m] g\left(t_{1}, \ldots, t_{n}\right)\right) \in \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right)$ and if the rules of Save vertical compression are fulfilled then the shrinking of t is defined as:
shr $:: \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \rightarrow \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right)$
$\operatorname{shr}\left([r] f\left([m] g\left(t_{1}, \ldots, t_{n}\right)\right)\right)= \begin{cases}{[r] f\left(t_{1}, \ldots, t_{n}\right)} & m=1 \wedge g \not \equiv \text { group } \\ {[m] g\left(t_{1}, \ldots, t_{n}\right)} & \text { otherwise }\end{cases}$

Vertical Compression

Vertical compression

$$
\begin{array}{r}
v r t:: \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \rightarrow \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \\
\operatorname{vrt}(t)= \begin{cases}t & n=0 \\
v r t(\operatorname{shr}(t)) & t \text { obeys SVC } \\
{[r] f\left(v r t\left(t_{1}\right), \ldots, v r t\left(t_{n}\right)\right)} & \text { otherwise }\end{cases}
\end{array}
$$

Tree Edit Distance in a Document Comparison

Let $n d_{1}, n d_{2} \in[\mathbb{N}] \Sigma_{\mathbb{V}}$ be two marked trees. Then λ denotes a fresh symbol that represents the empty marked term, i.e., [0]t for any t. Each edit operation is presented as:

$$
\left(n d_{1} \rightarrow n d_{2}\right) \in\left([\mathbb{N}] \Sigma_{\mathbb{V}} \times[\mathbb{N}] \Sigma_{\mathbb{V}}\right) \backslash(\lambda, \lambda)
$$

where $\left(n d_{1} \rightarrow n d_{2}\right)$ is relabeling if $n d_{1} \not \equiv \lambda$ and $n d_{2} \not \equiv \lambda$ is a deletion if $n d_{2} \equiv \lambda$ is an insertion if $n d_{1} \equiv \lambda$
Metric cost function:

$$
\begin{aligned}
\gamma & ::\left([\mathbb{N}] \Sigma_{\mathbb{V}} \times[\mathbb{N}] \Sigma_{\mathbb{V}}\right) \backslash(\lambda, \lambda) \rightarrow \mathbb{R} \\
\gamma\left(n d_{1} \rightarrow n d_{2}\right)= & \left\{\begin{array}{lll}
0 & n d_{1} \equiv \Sigma_{\mathbb{V}} n d_{2} & \\
r_{2} & n d_{1} \equiv_{\mathbb{V}} \lambda & \text { (insertion) } \\
r_{1} & n d_{2} \equiv \Sigma_{\mathbb{V}} \lambda & \text { (deletion) } \\
\max \left(r_{1}, r_{2}\right) & \text { otherwise } & \text { (relabeling) }
\end{array}\right.
\end{aligned}
$$

Tree Edit Distance in a Document Comparison

The cost of a sequence $S=s_{1}, \ldots, s_{n}$ of edit operations is given by

$$
\gamma(S)=\sum_{i=1}^{n} \gamma\left(s_{i}\right)
$$

The edit distance $\delta\left(t_{1}, t_{2}\right)$ between two trees t_{1} and t_{2} is defined:

$$
\delta\left(t_{1}, t_{2}\right)=\min \{\gamma(S)\}
$$

Web pages comparison

$$
\begin{gathered}
c m p:: \tau\left([\mathbb{N}] \Sigma_{\mathbb{V}}\right) \times \tau\left(\left[\mathbb{N} \Sigma_{\mathbb{V}}\right) \rightarrow[0 . .1]\right. \\
c m p(t, s)=1-\frac{\delta\left(t_{z i p}, s_{z i p}\right)}{\left|t_{z i p}\right|+\left|s_{z i p}\right|}
\end{gathered}
$$

where $t, s \in \tau\left([\mathbb{N}] \Sigma_{\mathrm{V}}\right)$ are two pages,
$t_{z i p}, s_{z i p}$ are irreducible visual represenatives of t and s

References

M. Alpuente, D. Romero.

A Visual Technique for Web Pages Comparison.
Theoretical Computer Science, 235:3-18, 2009.
围 P. Bille.
A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1-3):217-239, 2005.

雷 G. Valiente.
An Efficient Bottom-Up Distance between Trees. 8th International Symposium of String Processing and Information Retrieval, 212-219, 2001

Thank you for your attention.

Questions?

