
Language theory with application: Cartesian genetic programming

author: Michaela Šikulová

Genetic programming is the evolution-based machine learning method, which
automaticaly generates whole programs in the given programming language. In its
original form Genetic Programming (GP) has evolved programs in the form of LISP
parse trees. Usually, large populations are used and crossover is used as the pri-
mary method of developing new candidate solutions from older programs. Genetic
programming is used to evolve the genotype1, for example in a symbolic regression
problem (SR). SR is the problem of identifying the mathematic description of a
hidden system from experimental data and is closely related to general machine
learning.

Cartesian Genetic Programming (CGP) is an increasingly popular and efficient
form of Genetic Programming that was developed by Julian Miller in 1999 and
2000. In its classic form, it uses a very simple integer based genetic representation
of a program in the form of a directed graph. Graphs are very useful program
representations and can be applied to many domains (electronic circuits, neural
networks). In a number of studies, CGP has been shown to be comparatively
efficient to other GP techniques. It is also very simple to implement.

CGP originaly represents programs or circuits as a two dimensional grid of
program primitives. This is loosely inspired by the architecture of digital circuits
called FPGAs (field programmable gate arrays). The genotype is a list of integers
(and possibly parameters) that represent the program primitives and how they are
connected together. CGP represents programs as graphs in which there are
noncoding genes (nodes or edges). The genes are addresses in data (connection
genes), addresses in a look up table of functions or additional parameters. This
representation is very simple, flexible and convenient for many problems. The
phenotype is candidate solution with only coding genes. When we decode a CGP
genotype, many nodes and their genes can be ignored because they are not
referenced in the path from inputs to outputs. These genes can be altered and
make no difference to the phenotype, they are non-coding. Clearly there is a
many-to-one genotype to phenotype map.

In my Ph.D. thesis, I deal with symbolic regression using catresian genetic pro-
gramming and advanced evolution-based techniques like coevolution. This work
will deal with formal definition of cartesian program as 9-tuple, CGP, and with
properties of genotype and phenotype (and genotype-phenotype mapping) in
connection with the symbolic regression problem. This work will also describe
three or four ways to parse cartesian program to get solution.

1 genotype – coded version of candidate solution

