
Marcela Šimková

Faculty of Information Technology

Brno University of Technology

LANGUAGE THEORY with APPLICATIONS 2011

December 14, 2011

14.12.2011 1/19

14.12.2011 2/19

„It has been observed that verification becomes a major bottleneck in
 hardware design development, up to 80% of the overall development
 cost and time.“
 -- R. Drechsler et al: Advanced Formal Verification

„The design and testing of an advanced microprocessor chip is among
 the most complex of all human endeavors.“

 -- John Barton (Intel vice-president)

14.12.2011 3/19

 Verification of computer systems:

• finding as many errors as possible in earlier phases of design,

• prevent failures of systems in a real application.

 Consequences of errors:

 loss of money (1994 Intel: floating-point error in Pentium processor

and loss of 480 mil. $),

 loss of human lives (failure in military, aerospace, automobile, security

systems).

Verification - process that checks whether a system satisfies a given

correctness specification.

14.12.2011 4/19

 Verification requires more effort than the actual design itself.

 Duration of the verification process when verifying really complex

systems is a problem !

Use advance verification techniques to localize problems faster,

e.g. Assertion-Based Verification.

14.12.2011 5/19

Assertion-Based Verification (ABV) – a methodology used to

formally express intended system behaviour, internal synchronization,

expected operations using assertions.

Assertions – temporal logic formulas that must hold at all times

during verification.

 Fast detection and localization of problems.

 Assertions can be expressed at different levels of a verified system:

• internal and external interfaces,

• cross-domain crossings,

• directly inside a system.

14.12.2011 6/19

 Language-based assertions:

• SystemVerilog Assertions (SVA),

• Property Specification Language (PSL).

 Library-based Assertions (commonly used assertions):

• Open Verification Library (OVL),

• SystemVerilog Assertion Library,

• CheckerWare Library.

14.12.2011 7/19

 Assertions can be added at any stage of the design process and in

any quantity.

 Assertions can be reused across different stages as well as in

different designs.

Silicon Debug Online Monitoring

Specification Prototype Silicon Production

Automated

Assertion Check

Static Formal

Verification

Simulation with

Assertions

Dynamic Formal

Verification

Design
Fabrication

Hardware Acceleration

14.12.2011 8/19

  Applies a set of pre-defined assertion rules to the RTL code of the

design → fully automated process.

 Synthesizes and formally analyzes the internal structures of the

design.

 Detected errors: overflow, case error, deadlock, unreachable states,

blocks, incorrect cross-domain crossing, dead code, …

14.12.2011 9/19

 Block level verification using user-specified assertions.

 Analysis by systematic state space exploration (from starting state)

using model checkers and theorem provers.

 Assertions can be determined as true, false or indeterminate.

 The scenarios in which the violation of these assertions happen are

shown (counter-example).

 Detected errors: arbitration,

resource sharing, allocation,

access to buffers and

memories, control logic, …

14.12.2011 10/19

 Assertions are simulated with the design and the test environment

in some simulator.

 Assertions passively monitor activities inside the design and on

interfaces.

 Detected errors: inter-module

communication, interface

protocol violations.

14.12.2011 11/19

  Runs concurrently with simulation and leverages all simulation

vectors.

 Identifies states close to the assertions and performs local formal

analysis about them.

 Explores hard to reach corner cases and logic.

 Detected errors: designs

with long latency and

serial interfaces, …

14.12.2011 12/19

  Simulation of inherently parallel hardware system is extremely

slow when compared to the speed of real hardware.

 Acceleration of verification using hardware accelerators or emulators.

 Verified system together with some components of the verification

environment are moved and executed in reprogrammable hardware,

e.g. FPGA.

 Assertion-based verification is not implicitly supported in hardware

accelerators !

 Synthesis of assertions into special circuit-level checkers, which ensure

 ABV also during hardware accelerated verification runs.

14.12.2011 13/19

  Assumptions about Assertion Checkers:

1. They should require few hardware resources and should be fast to

allow high clock speeds.

2. They should continually report errors in real time as the design is

executed.

 Assertions are written in high-level languages and are not suitable

for direct implementation in circuit form.

 Transformation into the form of hardware assertion checkers

expressed in a Hardware Description Language (HDL):

Assertion ⇒ Büchi automaton ⇒ Finite-state machine

14.12.2011 14/19

 Büchi automata represent languages of infinite words → they

accept them by looping through accepting states.

 Provided (q1, a, q2) ∈ δ, we often write .

 The language of β is defined as

L(β) = {w ∈ Σω | there is an accepting run of β over w}

21 qq a

A (non-deterministic) Büchi automaton β is a tuple β = (Q, Σ, δ, Q0, F)

where:

Q is a finite set of states,

Σ is a finite alphabet,

δ ⊆ Q x Σ x Q is the transition relation,

Q0 ⊆ Q is the set of initial states,

F ⊆ Q is the set of accepting states.

14.12.2011 15/19

  Assertion:

 // -- Matching EOP after SOP --

 // Each SOP must be, after some time, followed by EOP.

 sequence eop_seq;

 ##[0:$] EOP && READY;

 endsequence

 property EOPMatchSOP;

 @(posedge CLK) disable iff (RESET)

 SOP && (!EOP) && READY |=>

 (!(SOP && READY)) throughout eop_seq;

 endproperty

 assert property (EOPMatchSOP)

 else $error("SOP was not followed by

 matching EOP.");

 LTL formula:

))(U)((X)(READYEOPREADYSOPREADYEOPSOP

14.12.2011 16/19

  LTL formula:

))(U)((X)(READYEOPREADYSOPREADYEOPSOP

)U(X CBA

A B C

 Büchi automaton:

 Logic circuit:

14.12.2011 17/19

  Automatic generation of checkers is much more advantageous than

designing checkers by hand!

14.12.2011 18/19

  It has been published that it is possible to achieve 50% reduction in

debugging time when applying ABV.

 ABV can be applied at different levels of design process:

• specification,

• static verification,

• simulation,

• dynamic verification,

• hardware acceleration,

• post-fabrication silicon debugging, Assertion Checkers

• online-monitoring.

14.12.2011 19/19

