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„It has been observed that verification becomes a major bottleneck in 
  hardware design development, up to 80% of the overall development 
  cost and time.“  
                                     -- R. Drechsler et al:  Advanced Formal Verification   

 

 
„The design and testing of an advanced microprocessor chip is among  
  the most complex of all human endeavors.“  
            

              -- John Barton (Intel vice-president)  
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 Verification of computer systems: 

• finding as many errors as possible in earlier phases of design, 

• prevent failures of systems in a real application. 

 

 Consequences of errors: 

 loss of money (1994 Intel: floating-point error in Pentium processor 

and loss of 480 mil. $), 

 loss of human lives (failure in military, aerospace, automobile, security 

systems). 
 

 

Verification - process that checks whether a system satisfies a given 

correctness specification. 
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 Verification requires more effort than the actual design itself. 

 

 Duration of the verification process when verifying really complex 

systems is a problem ! 

 

Use advance verification techniques to localize problems faster, 

e.g. Assertion-Based Verification. 
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Assertion-Based Verification (ABV) – a methodology used to 

formally express intended system behaviour, internal synchronization, 

expected operations using assertions. 

Assertions – temporal logic formulas that must hold at all times 

during verification.  

 Fast detection and localization of problems. 

 

 Assertions can be expressed at different levels of a verified system: 

• internal and external interfaces, 

• cross-domain crossings, 

• directly inside a system.  



14.12.2011 6/19 

 Language-based assertions: 

 

• SystemVerilog Assertions (SVA), 

• Property Specification Language (PSL). 

 

  Library-based Assertions (commonly used assertions): 

 

• Open Verification Library (OVL), 

• SystemVerilog Assertion Library, 

• CheckerWare Library. 
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 Assertions can be added at any stage of the design process and in 

any quantity. 

 

 Assertions can be reused across different stages as well as in 

different designs.  
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  Applies a set of pre-defined assertion rules to the RTL code of the 

design → fully automated process. 

 

 Synthesizes and formally analyzes the internal structures of the 

design. 

 

 Detected errors: overflow, case error, deadlock, unreachable states, 

blocks, incorrect cross-domain crossing, dead code, … 
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 Block level verification using user-specified assertions. 

 

 Analysis by systematic state space exploration (from starting state) 

using model checkers and theorem provers.  

 

 Assertions can be determined as true, false or indeterminate. 

 

 The scenarios in which the violation of these assertions happen are 

shown (counter-example). 

 

 Detected errors: arbitration, 

resource sharing, allocation, 

access to buffers and  

memories, control logic, … 
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 Assertions are simulated with the design and the test environment 

in some simulator. 

 

 Assertions passively monitor activities inside the design and on 

interfaces. 

 

 Detected errors: inter-module  

communication, interface  

protocol violations. 
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  Runs concurrently with simulation and leverages all simulation 

vectors. 

 

 Identifies states close to the assertions and performs local formal 

analysis about them. 

 

 Explores hard to reach corner cases and logic. 

 

 Detected errors: designs  

with long latency and 

serial interfaces, … 
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  Simulation of inherently parallel hardware system is extremely 

slow when compared to the speed of real hardware. 

 

  Acceleration of verification using hardware accelerators or emulators. 

 

 Verified system together with some components of the verification 

environment are moved and executed in reprogrammable hardware, 

e.g. FPGA. 

 

 Assertion-based verification is not implicitly supported in hardware 

accelerators !  

 

  Synthesis of assertions into special circuit-level checkers, which ensure 

 ABV also during hardware accelerated verification runs. 
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  Assumptions about Assertion Checkers: 

1. They should require few hardware resources and should be fast to 

allow high clock speeds. 

2. They should continually report errors in real time as the design is 

executed. 

 

 Assertions are written in high-level languages and are not suitable 

for direct implementation in circuit form. 

 

 Transformation into the form of hardware assertion checkers 

expressed in a Hardware Description Language (HDL): 

 

Assertion ⇒ Büchi automaton ⇒ Finite-state machine 
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 Büchi automata represent languages of infinite words → they 

accept them by looping through accepting states. 

 

 Provided (q1, a, q2) ∈ δ, we often write                    . 

 

 The language of β is defined as  

L(β) = {w ∈ Σω | there is an accepting run of β over w} 

21 qq a

A (non-deterministic) Büchi automaton β is a tuple β = (Q, Σ, δ, Q0, F) 

where: 
  

Q is a finite set of states, 

Σ is a finite alphabet, 

δ ⊆ Q x Σ x Q is the transition relation, 

Q0 ⊆ Q is the set of initial states, 

F ⊆ Q is the set of accepting states.   
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  Assertion: 

 
  // -- Matching EOP after SOP -- 

 // Each SOP must be, after some time, followed by EOP.  

 

  sequence eop_seq; 

    ##[0:$] EOP && READY; 

  endsequence 

 

  property EOPMatchSOP; 

    @(posedge CLK) disable iff (RESET)  

      SOP && (!EOP) && READY |=> 

        (!(SOP && READY)) throughout eop_seq; 

  endproperty 

 

  assert property (EOPMatchSOP) 

    else $error("SOP was not followed by  

                 matching EOP."); 

 LTL formula:  

 
 

))(U)((X)( READYEOPREADYSOPREADYEOPSOP
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  LTL formula:  

 
 

))(U)((X)( READYEOPREADYSOPREADYEOPSOP

)U(X CBA

A B C

 Büchi automaton:    

 
 

 Logic circuit:    
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  Automatic generation of checkers is much more advantageous than 

designing checkers  by hand! 
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  It has been published that it is possible to achieve 50% reduction in 

debugging time when applying ABV. 

 

 ABV can be applied at different levels of design process: 

• specification,   

• static verification, 

• simulation, 

• dynamic verification, 

• hardware acceleration,  

• post-fabrication silicon debugging,       Assertion Checkers  

• online-monitoring. 
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