Assertion-Based Verification
Marcela Simkova

Faculty of Information Technology
Brno University of Technology

____.-—": \ -+ _.,“:

LANGUAGE THEORY with APPLICATIONS 2011
December 14, 2011

14.12.2011 1/19

Motivation

,It has been observed that verification becomes a major bottleneck in
hardware design development, up to 80% of the overall development
cost and time.”

-- R. Drechsler et al: Advanced Formal Verification

»The design and testing of an advanced microprocessor chip is among
the most complex of all human endeavors.”

-- John Barton (Intel vice-president)

14.12.2011 2/19

Verification

Verification - process that checks whether a system satisfies a given
correctness specification.

@ Verification of computer systems:
 finding as many errors as possible in earlier phases of design,
« prevent failures of systems in a real application.

® Consequences of errors:

* loss of money (1994 Intel: floating-point error in Pentium processor
and loss of 480 mil. $),

- loss of human lives (failure in military, aerospace, automobile, security
systems).

14.12.2011 3/19

Verification problems

@ Verification requires more effort than the actual design itself.

@ Duration of the verification process when verifying really complex
systems is a problem !

» Use advance verification techniques to localize problems faster,
e.g. Assertion-Based Verification.

14.12.2011 4/19

Assertion-Based Verification

Assertion-Based Verification (ABV) —a methodology used to
formally express intended system behaviour, internal synchronization,
expected operations using assertions.

Assertions — temporal logic formulas that must hold at all times
during verification.

@ Fast detection and localization of problems.

@ Assertions can be expressed at different levels of a verified system:
« internal and external interfaces,
« cross-domain crossings,
- directly inside a system.

14.12.2011 5/19

Assertion Languages and Libraries

@ Language-based assertions:

- SystemVerilog Assertions (SVA),
- Property Specification Language (PSL).

@ Library-based Assertions (commonly used assertions):
« Open Verification Library (OVL),

- SystemVerilog Assertion Library,
« CheckerWare Library.

14.12.2011 6/19

Assertions in Development Cycle

@ Assertions can be added at any stage of the design process and in
any quantity.

@ Assertions can be reused across different stages as well as in
different designs.

Hardware Acceleration Silicon Debug Online Monitoring
\ A A
\ y \ 4
Fabrication _
Specification Design » Prototype Silicon » Production
Automated Static Formal Simulation with Dynamic Formal
Assertion Check Verification Assertions Verification

14.12.2011 7119

Automatic Assertion Check

@ Applies a set of pre-defined assertion rules to the RTL code of the
design — fully automated process.

@ Synthesizes and formally analyzes the internal structures of the
design.

® Detected errors: overflow, case error, deadlock, unreachable states,
blocks, incorrect cross-domain crossing, dead code, ...

14.12.2011 8/19

Static Formal Verification

@ Block level verification using user-specified assertions.

@ Analysis by systematic state space exploration (from starting state)
using model checkers and theorem provers.

® Assertions can be determined as true, false or indeterminate.

@ The scenarios in which the violation of these assertions happen are
shown (counter-example).

@ Detected errors: arbitration,
resource sharing, allocation,
access to buffers and
memories, control logic, ...

14.12.2011 9/19

Simulation with Assertions

@ Assertions are simulated with the design and the test environment
In some simulator.

@ Assertions passively monitor activities inside the design and on
interfaces.

® Detected errors: inter-module
communication, interface
protocol violations.

14.12.2011 10/19

Dynamic Formal Verification

@ Runs concurrently with simulation and leverages all simulation
vectors.

@ ldentifies states close to the assertions and performs local formal
analysis about them.

@ Explores hard to reach corner cases and logic.
@ Detected errors: designs

with long latency and
serial interfaces, ...

14.12.2011 11/19

Hardware acceleration

@ Simulation of inherently parallel hardware system is extremely
slow when compared to the speed of real hardware.

» Acceleration of verification using hardware accelerators or emulators.
@ Verified system together with some components of the verification

environment are moved and executed in reprogrammable hardware,
e.g. FPGA.

@ Assertion-based verification is not implicitly supported in hardware
accelerators !

» Synthesis of assertions into special circuit-level checkers, which ensure
ABYV also during hardware accelerated verification runs.

14.12.2011 12/19

Assertion Checkers

@ Assumptions about Assertion Checkers:

1. They should require few hardware resources and should be fast to
allow high clock speeds.

2. They should continually report errors in real time as the design is
executed.

@ Assertions are written in high-level languages and are not suitable
for direct implementation in circuit form.

® Transformation into the form of hardware assertion checkers
expressed in a Hardware Description Language (HDL):

Assertion = Buchi automaton = Finite-state machine

14.12.2011 13/19

Buchi automata

A (non-deterministic) Buchi automaton S is a tuple 8 = (Q, 2, 8, Q,, F)
where:

Q is a finite set of states,

2 is a finite alphabet,

0 € Q x 2 x Q Is the transition relation,
Qo € Q is the set of initial states,

F € Q is the set of accepting states.

@ Buchi automata represent languages of infinite words — they
accept them by looping through accepting states.

@ Provided (q4, a, q,) € 6, we often write §, —0q, .

@ The language of B is defined as
L(B) = {w € 2 | there is an accepting run of 8 over w}

14.12.2011 14/19

Assertion Checker Example

® Assertion:

// —-- Matching EOP after SOP --
// Each SOP must be, after some time, followed by EOP.

sequence eop_seq;
##[0:5] EOP && READY;

endsequence
property EOPMatchSOP; (:l_k(
@ (posedge CLK) disable iff (RESET)
SOP && (!EOP) && READY |[=>
(! (SOP && READY)) throughout eop seq; E;()F)
endproperty
EOP

assert property (EOPMatchSOP)
else Serror ("SOP was not followed by

matching EOP."); READY —_

® LTL formula: ¢ =(SOP A—EOP A READY) — X (- (SOP AREADY) U(EOP AREADY))

14.12.2011 15/19

Assertion Checker Example

® LTL formula:;

@ =(SOP A—EOP A READY) — X (- (SOP AREADY) U(EOP AREADY))
\ ; \ o ;
Y Y Y

A B C

o =A—>X(BUC)

@ Buchi automaton: @ Logic circuit: INVALID
B
A 0
— REG o

RESET

14.12.2011 16/19

Generation of Assertion Checkers

@ Automatic generation of checkers is much more advantageous than
designing checkers by hand!

Design Under » Cﬁ@ —»
Assertion I,

Verification »

} _)*
HDL U Checkers Vs
HDL U I iy I
Assertions Checker T Assertion
SVA/PSL Generator Failure

14.12.2011 17/19

Conclusion

@ It has been published that it is possible to achieve 50% reduction in
debugging time when applying ABV.

@ ABV can be applied at different levels of design process:
- specification,
- static verification,
 simulation,
« dynamic verification,
- hardware acceleration,
- post-fabrication silicon debugging, Assertion Checkers
« online-monitoring.

14.12.2011 18/19

Questions?

14.12.2011 19/19

