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Hierarchy of Language Families – Description

Notation

ac appearance checking

ε with erasing productions

M matrix grammars

P programmed grammars

RC random context grammars

PER permitting grammars

FOR forbidding grammars

0, 1, 2 type-0, type-1, type-2 grammars, respectively

Example

L (RC , ε, ac) – the family of languages generated by random context
grammars with erasing productions in appearance checking mode
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Regulated Rewriting – The Hierarchy

L (2) L (2, ε)

L (RC ) L (PER)

L (M) L (P)

L (M, ac) L (P, ac)L (RC , ac)

L (1)

L (0) L (M, ε, ac) L (P, ε, ac)L (RC , ε, ac)

L (FOR)

L (FOR, ε)

L (M, ε) L (P, ε)

L (RC , ε)
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Proof of L (M) = L (P)

Theorem

L (M) = L (P).

Proof–Basic Idea

1 L (M) ⊆ L (P): Transform any matrix grammar to an equivalent
programmed grammar

2 L (P) ⊆ L (M): Transform any programmed grammar to an
equivalent matrix grammar

3 L (M) = L (P)
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Proof of L (M) ⊆ L (P) I

Let
H = (G , M)

be a matrix grammar, where

G = (N, T , P, S) is a context-free grammar

M is a finite language over P

Express M as
M = {m1, . . . ,mr}

for some r ≥ 1 and
mi = pi1 . . . piki

with ki = |mi |. Set
N ′ = {A′ : A ∈ N}

Define the homomorphism h from (T ∪ N)∗ to (T ∪ N ′)∗ as

h(a) = a for every a ∈ T

h(A) = A′ for every A ∈ N
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Proof of L (M) ⊆ L (P) II

1 For every pij : Aij → xij such that alph(xij ) ∩ N 6= ∅ (some
nonterminals occur in xij ) and j < |mi | (not the last production in
mi ), introduce this programmed production:

(〈i , j〉 : Aij → xij , {〈i , j + 1〉})

2 For every pij : Aij → xij such that alph(xij ) ∩ N = ∅ (no nonterminal
occurs in xij ) and j < |mi | (not the last production in mi ), introduce
a (〈i , j〉 : Aij → h(Aij ), {〈i , j , 1〉, . . . , 〈i , j , m〉})
b (〈i , j , q〉 : Aq → Aq, {〈i , j〉′}) for q = 1, . . . ,m (make sure there is a

nonterminal)
c (〈i , j〉′ : h(Aij ) → xij , {〈i , j + 1〉})
provided that N = {A1, . . . ,Am}

3 For every piki
: Aiki

→ xiki
(simulate the last production of mi and

start simulating a new matrix), introduce

(〈i , ki 〉 : Aiki
→ xiki

, {〈1, 1〉, . . . , 〈r , 1〉})
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Proof of L (M) ⊆ L (P) III

Let P ′ consist of all rules constructed above and

($ : S ′ → S , {〈1, 1〉, . . . , 〈r , 1〉})

Define the programmed grammar

G ′ = (N ∪ N ′ ∪ {S ′}, T , P ′, S ′)

Observe that
L(H) = L(G ′)
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Proof of L (P) ⊆ L (M) I

Let
H = (G , R)

be a programmed grammar. Consider the simplified description of H which
uses productions of the form

(p : A → x , R(p))

1 If (p : A → x , Q), (r : B → y , R) ∈ P and r ∈ Q, then introduce the
matrix

(〈A → x〉 → A, A → x , B → 〈B → y〉)

(simulation will continue)

2 If (p : A → x , Q) ∈ P, then introduce

(〈A → x〉 → A, A → x)

(simulation ends)
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Proof of L (P) ⊆ L (M) II

3 If (p : S → x , Q) ∈ P, introduce

(S ′ → 〈S → x〉)

(simulation starts)

Set
N ′ = N
∪ {〈A → x〉 : A → x ∈ P}
∪ {S ′}

Define the matrix grammar

G ′ = (N ′, T , P ′, S ′)

where P ′ consists of all the above matrices. Observe that

L(H) = L(G ′)
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