A New Interpretation of the Decipherability

János Falucskai

2011.07.21

Abstract

We define the "quasi code" H as follows: Let Σ and Δ be two finite alphabets. Denote H a finite subset of $2^{\Delta^*} \setminus \emptyset$. We define the function $\bar{f} : \Sigma \to H$, where \bar{f} is called "quasi coding" of Σ. A quasi code H is called decipherable if, whenever $f(x_1), \ldots, f(x_n), f(y_1), \ldots, f(y_m)$ are in H and satisfy $f(x_1) \cdots f(x_n) = f(y_1) \cdots f(y_m)$, then $n = m$ and $f(x_i) = f(y_i)$ for all i, $1 \leq i \leq n$.