Jumping Grammars

Zbyněk Křivka
krivka@fit.vutbr.cz
Brno University of Technology
Faculty of Information Technology
Czech Republic

Seminar of FM Research Group at FIT BUT, March 31, 2015

Outline

Introduction

Definitions and Examples

Results
Generative Power of Jumping Grammars
Properties of Jumping Derivations

Conclusion

Introduction

Motivation

- Typical grammars and automata work strictly continuously

Motivation

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously

Motivation

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted

Motivation

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted
- Jumping Finite Automata - ideas applied to Grammars

Motivation

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted
- Jumping Finite Automata - ideas applied to Grammars

Motivation

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted
- Jumping Finite Automata - ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!

- applied mathematics
- computational linguistics
- bioinformatics (DNA computing)
- strongly-scattered information processing

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

Let $z=u x v$. By using $x \rightarrow y, G$ rewrites $u x v$ to uyv.

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { rewrites } u x v \text { to } u y v \text {. }
$$

- Jumping grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { performs: }
$$

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { rewrites } u x v \text { to } u y v \text {. }
$$

- Jumping grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { performs: }
$$

1. selects an occurrence of x in z;

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { rewrites } u x v \text { to } u y v \text {. }
$$

- Jumping grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { performs: }
$$

1. selects an occurrence of x in z;
2. erase x from z;

Basic Idea of Jumping Grammars

- We take a grammar of some type (Chomsky classification, etc.) with productions of form

$$
x \rightarrow y
$$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { rewrites } u x v \text { to } u y v \text {. }
$$

- Jumping grammars:

$$
\text { Let } z=u x v \text {. By using } x \rightarrow y, G \text { performs: }
$$

1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in $u v$ and inserts y there.

Trivial Example - DNA Computing

- DNA is a string over $\{G, A, T, C\}$. For instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

Trivial Example - DNA Computing

- DNA is a string over $\{G, A, T, C\}$. For instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

- We want to study all strings with the same number of $C s$ and G s and the same number of $A \mathrm{~s}$ and $T \mathrm{~s}$. For instance,

CGGCATCCGGTA, but CGCACCGGTA

Trivial Example - DNA Computing

- DNA is a string over $\{G, A, T, C\}$. For instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

- We want to study all strings with the same number of $C s$ and G s and the same number of $A \mathrm{~s}$ and $T \mathrm{~s}$. For instance,

CGGCATCCGGTA, but CGCACCGGTA

- Consider the jumping right-linear grammar with productions

$$
1 \rightarrow C 2,2 \rightarrow G 1,1 \rightarrow 3,3 \rightarrow A 4,4 \rightarrow T 3,3 \rightarrow \varepsilon
$$

Similar devices

- Algebraic approach
- Commutative language closure
- Formal Macroset Theory - a sentence as a multiset of symbols, order of symbols is totally irrelevant (Kudlek \& Martín-Vide \& Păun, 2000)
- Accepting devices = Automata
- Jumping Finite Automata (Meduna \& Zemek, 2012)
- Generating devices = Grammars
- Commutative Grammars (Crespi-Reghizzi \& Mandrioli, 1976)
- Insertion-Deletion Systems (Kari, 1991+, Verlan, 2000+)
- Petri Nets

Definitions and Examples

Formal Language Theory - Basic Notions

- For an alphabet, V, V^{*} represents the free monoid generated by V under concatenation.
- Unit of V^{*} is denoted by ε.
- The set of all permutations of $w, \operatorname{perm}(w)$, is defined as $\operatorname{perm}(w)=\left\{b_{1} b_{2} \cdots b_{n} \mid b_{i} \in \operatorname{alph}(w)\right.$ for all $i=1,2, \ldots, n$, and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a permutation of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $\left.w=a_{1} a_{2} \cdots a_{n}\right\}$.

Definition 1 (General Grammars).

A general grammar (GG for short) is a quadruple, $G=(V, T, P, S)$, where

- V is an alphabet,
- $T \subseteq V$ is an alphabet of terminals, $N=V-T$ is an alphabet of nonterminals,
- P is a finite relation from $V^{*}-T^{*}$ to V^{*} (a member is called rule or production), we write $p: x \rightarrow y$, and
- $S \in V-T$ is the start nonterminal.

Definition 2 (Four modes of derivation steps).

Let $u, v \in V^{*}$. We define the four derivation relations over V^{*} as follows
(i) $u_{s} \Rightarrow v$ in G iff there exist $x \rightarrow y \in P$ and $w, z \in V^{*}$ such that $u=w x z$ and $v=w y z$;
(ii) $u_{l j} \Rightarrow v$ in G iff there exist $x \rightarrow y \in P$ and $w, t, z \in V^{*}$ such that $u=w t x z$ and $v=$ wytz;
(iii) $u_{r j} \Rightarrow v$ in G iff there exist $x \rightarrow y \in P$ and $w, t, z \in V^{*}$ such that $u=w x t z$ and $v=w t y z ;$
(iv) $u_{j} \Rightarrow v$ in G iff $u_{l j} \Rightarrow v$ or $u_{r j} \Rightarrow v$ in G.

- Transitive-reflexive and transitive closures of ${ }_{h} \Rightarrow$ are denoted by ${ }_{h} \Rightarrow$ * and ${ }_{h} \Rightarrow^{+}$, for $h \in\{s, l j, r j, j\}$.
- Let $k \geq 0$ and ${ }_{h} \Rightarrow_{k}=\left\{(x, y) \mid(x, y) \in_{h} \Rightarrow, \operatorname{occur}(N, x) \leq k\right.$, $\operatorname{occur}(N, y) \leq k\}$.

Definition 3 (Generated Language).

Let $G=(V, T, P, S)$ be a GG. Set

$$
L\left(G,{ }_{h} \Rightarrow\right)=\left\{x \in T^{*} \mid S_{h} \Rightarrow^{*} x\right\} .
$$

$L\left(G,{ }_{h} \Rightarrow\right)$ is said to be the language that G generates by using ${ }_{h} \Rightarrow$.
For any $X \subseteq \Gamma_{G G}$, set

$$
\mathscr{L}\left(X,{ }_{h} \Rightarrow\right)=\left\{L\left(G,{ }_{h} \Rightarrow\right) \mid G \in X\right\} .
$$

Grammars Subclasses

Let G be a GG.

- G is a monotonous grammar (MONG) if every $x \rightarrow y \in P$ satisfies $|x| \leq|y|$.
- G is a context-sensitive grammar (CSG) if every $x \rightarrow y \in P$ satisfies $x=\alpha A \beta$ and $y=\alpha \gamma \beta$ such that $A \in N, \alpha, \beta \in V^{*}$, and $\gamma \in V^{+}$.
- G is a context-free grammar (CFG) if every $x \rightarrow y \in P$ satisfies $x \in N$.
- G is an ε-free context-free grammar ($\mathrm{CFG}^{-\varepsilon}$) if G is a CFG and every $x \rightarrow y \in P$ satisfies $y \neq \varepsilon$.
- G is a linear grammar (LG) if G is a CFG and every $x \rightarrow y \in P$ satisfies $y \in T^{*} N T^{*} \cup T^{*}$.
- G is a right-linear grammar (RLG) if G is a CFG and every $x \rightarrow y \in P$ satisfies $y \in T^{*} N \cup T^{*}$.
- G is a regular grammar (RG) if G is a CFG and every $x \rightarrow y \in P$ satisfies $y \in T N \cup T$.

Language Families

Grammar Classes

Let Γ_{X} denote the set of all X grammars, for all $X \in\{\mathrm{GG}, \mathrm{MONG}, \mathrm{CSG}$, CFG, CFG ${ }^{-\varepsilon}$, LG, RLG, RG\}.

Definition 4 (Well-known Language Families).

Set

- $\mathbf{R E G}=\mathscr{L}\left(\Gamma_{R L G}, s\right)$,
- $\mathbf{L I N}=\mathscr{L}\left(\Gamma_{L G},{ }_{s} \Rightarrow\right)$,
- $\mathbf{C F}=\mathscr{L}\left(\Gamma_{C F G}, s\right)$,
- $\mathbf{C S}=\mathscr{L}\left(\Gamma_{\text {MONG }}, s \Rightarrow\right)$, and
- $\mathbf{R E}=\mathscr{L}\left(\Gamma_{G G},{ }_{s} \Rightarrow\right)$.
- Let k be a positive integer. Set $\mathbf{C F}_{k}=\bigcup_{i \geq 1}^{k} \mathscr{L}\left(\Gamma_{C F G},{ }_{s} \Rightarrow_{i}\right)$ and $\mathbf{C F}_{f i n}=\left\{L \mid L \in \mathbf{C F}_{i}\right.$, for some $\left.i \geq 1\right\}$ (grammars of finite index).

Recall $\mathbf{F I N} \subset \mathbf{R E G} \subset \mathbf{L I N} \subset \mathbf{C F}_{f i n} \subset \mathbf{C F} \subset \mathbf{C S} \subset \mathbf{R E}$

Jumping Grammars - Examples

Example 5 (Example of Jumping Regular Grammar).

Consider RG

$$
G=(\{A, B, C, a, b, c\}, \Sigma=\{a, b, c\}, P, A)
$$

where $P=\{A \rightarrow a B, B \rightarrow b C, C \rightarrow c A, C \rightarrow c\}$.

$$
L\left(G,{ }_{s} \Rightarrow\right)=\{a b c\}\{a b c\}^{*} \in \mathbf{R E G}, \text { but }
$$

$L\left(G,{ }_{j} \Rightarrow\right)=\left\{w \in \Sigma^{*} \mid \operatorname{occur}(\{a\}, w)=\operatorname{occur}(\{b\}, w)=\operatorname{occur}(\{c\}, w)\right\} \in \mathbf{C S}$.

Jumping Grammars - Examples

Example 6 (Example of Jumping Context-Sensitive Grammar).

 Consider CSG $G=(\{S, A, B, a, b\},\{a, b\}, P, S)$ with productions:$$
\begin{aligned}
S & \rightarrow a A B b \\
S & \rightarrow a b \\
A B & \rightarrow A A B B \\
a A & \rightarrow a a \\
B b & \rightarrow b b
\end{aligned}
$$

$L\left(G,{ }_{s} \Rightarrow\right)=\left\{a^{n} b^{n} \mid n \geq 1\right\}$.
Using ${ }_{j} \Rightarrow$, we can make the following derivation sequence:
$S_{j} \Rightarrow a A B b_{j} \Rightarrow a A A B B b_{j} \Rightarrow a A A B b b_{j} \Rightarrow a a A B b b_{j} \Rightarrow a B b b a a_{j} \Rightarrow a b b b a a$ Notice: $L\left(G,{ }_{s} \Rightarrow\right) \in \mathbf{C F}$, but we cannot generate it by any jumping CFG, CSG or even MONG.

Results

Jumping grammars are weak with sequences

Lemma 7.
$\{a\}^{*}\{b\}^{*} \notin \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Proof Idea.

- Assume MONG $G=(V, T, P, S)$ such that $L\left(G,{ }_{j} \Rightarrow\right)=\{a\}^{*}\{b\}^{*}$.

Jumping grammars are weak with sequences

Lemma 7.
$\{a\}^{*}\{b\}^{*} \notin \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Proof Idea.

- Assume MONG $G=(V, T, P, S)$ such that $L\left(G,{ }_{j} \Rightarrow\right)=\{a\}^{*}\{b\}^{*}$.
- Let $p: x \rightarrow y \in P$ and $S_{j} \Rightarrow^{*} u x v{ }_{j} \Rightarrow w[p]$ where $w \in L\left(G,{ }_{j} \Rightarrow\right)$, $u, v \in T^{*}$ and $y \in\{a\}^{+} \cup\{b\}^{+} \cup\{a\}^{+}\{b\}^{+}$.

Jumping grammars are weak with sequences

Lemma 7.
$\{a\}^{*}\{b\}^{*} \notin \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Proof Idea.

- Assume MONG $G=(V, T, P, S)$ such that $L\left(G,{ }_{j} \Rightarrow\right)=\{a\}^{*}\{b\}^{*}$.
- Let $p: x \rightarrow y \in P$ and $S_{j} \Rightarrow^{*} u x v{ }_{j} \Rightarrow w[p]$ where $w \in L\left(G,{ }_{j} \Rightarrow\right)$, $u, v \in T^{*}$ and $y \in\{a\}^{+} \cup\{b\}^{+} \cup\{a\}^{+}\{b\}^{+}$.
- In addition, assume that the sentential form $u x v$ is longer than x such that $u v \in\{a\}^{+}\{b\}^{+}$.

Jumping grammars are weak with sequences

Lemma 7.

$\{a\}^{*}\{b\}^{*} \notin \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Proof Idea.

- Assume MONG $G=(V, T, P, S)$ such that $L\left(G,{ }_{j} \Rightarrow\right)=\{a\}^{*}\{b\}^{*}$.
- Let $p: x \rightarrow y \in P$ and $S_{j} \Rightarrow^{*} u x v{ }_{j} \Rightarrow w[p]$ where $w \in L\left(G,{ }_{j} \Rightarrow\right)$, $u, v \in T^{*}$ and $y \in\{a\}^{+} \cup\{b\}^{+} \cup\{a\}^{+}\{b\}^{+}$.
- In addition, assume that the sentential form $u x v$ is longer than x such that $u v \in\{a\}^{+}\{b\}^{+}$.
(a) If y contains at least one symbol b, the last jumping derivation step can place y at the beginning of the sentence and create a string from $\{a, b\}^{*}\{b\}\{a, b\}^{*}\{a\}\{a, b\}^{*}$ that does not belong to $\{a\}^{*}\{b\}^{*}$.

Jumping grammars are weak with sequences

Lemma 7.

$\{a\}^{*}\{b\}^{*} \notin \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Proof Idea.

- Assume MONG $G=(V, T, P, S)$ such that $L\left(G,{ }_{j} \Rightarrow\right)=\{a\}^{*}\{b\}^{*}$.
- Let $p: x \rightarrow y \in P$ and $S_{j} \Rightarrow^{*} u x v{ }_{j} \Rightarrow w[p]$ where $w \in L\left(G,{ }_{j} \Rightarrow\right)$, $u, v \in T^{*}$ and $y \in\{a\}^{+} \cup\{b\}^{+} \cup\{a\}^{+}\{b\}^{+}$.
- In addition, assume that the sentential form $u x v$ is longer than x such that $u v \in\{a\}^{+}\{b\}^{+}$.
(a) If y contains at least one symbol b, the last jumping derivation step can place y at the beginning of the sentence and create a string from $\{a, b\}^{*}\{b\}\{a, b\}^{*}\{a\}\{a, b\}^{*}$ that does not belong to $\{a\}^{*}\{b\}^{*}$.
(b) By analogy, if y contains at least one symbol a, the last jumping derivation step can place y at the end of the sentence and therefore, place at least one a behind some b s.

Jumping grammars are weak with sequences

Lemma 7.

$\{a\}^{*}\{b\}^{*} \notin \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Proof Idea.

- Assume MONG $G=(V, T, P, S)$ such that $L\left(G,{ }_{j} \Rightarrow\right)=\{a\}^{*}\{b\}^{*}$.
- Let $p: x \rightarrow y \in P$ and $S_{j} \Rightarrow^{*} u x v{ }_{j} \Rightarrow w[p]$ where $w \in L\left(G,{ }_{j} \Rightarrow\right)$, $u, v \in T^{*}$ and $y \in\{a\}^{+} \cup\{b\}^{+} \cup\{a\}^{+}\{b\}^{+}$.
- In addition, assume that the sentential form $u x v$ is longer than x such that $u v \in\{a\}^{+}\{b\}^{+}$.
(a) If y contains at least one symbol b, the last jumping derivation step can place y at the beginning of the sentence and create a string from $\{a, b\}^{*}\{b\}\{a, b\}^{*}\{a\}\{a, b\}^{*}$ that does not belong to $\{a\}^{*}\{b\}^{*}$.
(b) By analogy, if y contains at least one symbol a, the last jumping derivation step can place y at the end of the sentence and therefore, place at least one a behind some b s.
- This is a contradiction.

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:

- REG and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- REG and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$.

Proof.

- Since $\mathbf{R E G} \subset \mathbf{C F}$, it is sufficient to prove that REG - $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$, $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)-\mathbf{C F}$, and REG $\cap \mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$ are non-empty

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:

- REG and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- REG and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$.

Proof.

- Since REG $\subset \mathbf{C F}$, it is sufficient to prove that REG $-\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$, $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)-\mathbf{C F}$, and REG $\cap \mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$ are non-empty
- By previous lemma 7, $\{a\}^{*}\{b\}^{*} \in \mathbf{R E G}-\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:

- REG and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- REG and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$.

Proof.

- Since REG $\subset \mathbf{C F}$, it is sufficient to prove that REG - $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$, $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)-\mathbf{C F}$, and $\mathbf{R E G} \cap \mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$ are non-empty
- By previous lemma 7, $\{a\}^{*}\{b\}^{*} \in \mathbf{R E G}-\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
- For $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)-\mathbf{C F} \neq \emptyset$, see Example 5 .

Incomparability with regular and context-free languages

Corollary 8.

The following pairs of language families are incomparable, but not disjoint:

- REG and $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$;
- $\mathbf{C F}$ and $\mathscr{L}\left(\Gamma_{M O N G}, j \Rightarrow\right)$;
- REG and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$;
- CF and $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$.

Proof.

- Since $\mathbf{R E G} \subset \mathbf{C F}$, it is sufficient to prove that REG - $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$, $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)-\mathbf{C F}$, and $\mathbf{R E G} \cap \mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$ are non-empty
- By previous lemma 7, $\{a\}^{*}\{b\}^{*} \in \mathbf{R E G}-\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
- For $\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)-\mathbf{C F} \neq \emptyset$, see Example 5.
- Regular language $\{a\}^{*} \in \mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$, so $\operatorname{REG} \cap \mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$ is non-empty.

Open Problems

Since simple regular language such as $\{a\}^{+}\{b\}^{+}$cannot be generated by jumping CSGs or even jumping MONGs, we pinpoint the following open problem:

Problem 9.

- Is $\mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ proper?

Open Problems

Since simple regular language such as $\{a\}^{+}\{b\}^{+}$cannot be generated by jumping CSGs or even jumping MONGs, we pinpoint the following open problem:

Problem 9.

- Is $\mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ proper?
- Is $\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$ proper?

Context-sensitive jumping is weaker than classical one

Theorem 10.

$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right) \subset \mathbf{C S}$.

Proof.

- By demonstrating transformation of any jumping MONG, $G=\left(V_{G}, T, P_{G}, S\right)$, to an equivalent MONG, $H=\left(V_{H}, T, P_{H}, S\right)$.

Context-sensitive jumping is weaker than classical one

Theorem 10.

$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right) \subset \mathbf{C S}$.

Proof.

- By demonstrating transformation of any jumping MONG, $G=\left(V_{G}, T, P_{G}, S\right)$, to an equivalent MONG, $H=\left(V_{H}, T, P_{H}, S\right)$.
- Set $V_{H}=N_{H} \cup T$ and $N_{H}=N_{G} \cup\left\{\bar{X} \mid X \in V_{G}\right\}$.

Context-sensitive jumping is weaker than classical one

Theorem 10.

$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right) \subset \mathbf{C S}$.

Proof.

- By demonstrating transformation of any jumping MONG, $G=\left(V_{G}, T, P_{G}, S\right)$, to an equivalent MONG, $H=\left(V_{H}, T, P_{H}, S\right)$.
- Set $V_{H}=N_{H} \cup T$ and $N_{H}=N_{G} \cup\left\{\bar{X} \mid X \in V_{G}\right\}$.
- Let π be the homomorphism from V_{G}^{*} to V_{H}^{*} defined by $\pi(X)=\bar{X}$ for all $X \in V_{G}$. Set $P_{H}=P_{1} \cup P_{2}$ where

Context-sensitive jumping is weaker than classical one

Theorem 10.

$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right) \subset \mathbf{C S}$.

Proof.

- By demonstrating transformation of any jumping MONG, $G=\left(V_{G}, T, P_{G}, S\right)$, to an equivalent MONG, $H=\left(V_{H}, T, P_{H}, S\right)$.
- Set $V_{H}=N_{H} \cup T$ and $N_{H}=N_{G} \cup\left\{\bar{X} \mid X \in V_{G}\right\}$.
- Let π be the homomorphism from V_{G}^{*} to V_{H}^{*} defined by $\pi(X)=\bar{X}$ for all $X \in V_{G}$. Set $P_{H}=P_{1} \cup P_{2}$ where
- $P_{1}=\bigcup_{\alpha \rightarrow \beta \in P_{G}}\{\alpha \rightarrow \pi(\beta), \pi(\beta) \rightarrow \beta\}$

Context-sensitive jumping is weaker than classical one

Theorem 10.

$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right) \subset \mathbf{C S}$.

Proof.

- By demonstrating transformation of any jumping MONG, $G=\left(V_{G}, T, P_{G}, S\right)$, to an equivalent MONG, $H=\left(V_{H}, T, P_{H}, S\right)$.
- Set $V_{H}=N_{H} \cup T$ and $N_{H}=N_{G} \cup\left\{\bar{X} \mid X \in V_{G}\right\}$.
- Let π be the homomorphism from V_{G}^{*} to V_{H}^{*} defined by $\pi(X)=\bar{X}$ for all $X \in V_{G}$. Set $P_{H}=P_{1} \cup P_{2}$ where
- $P_{1}=\bigcup_{\alpha \rightarrow \beta \in P_{G}}\{\alpha \rightarrow \pi(\beta), \pi(\beta) \rightarrow \beta\}$
- $P_{2}=\bigcup_{\alpha \rightarrow \beta \in P_{G}}\left\{X \pi(\beta) \rightarrow \pi(\beta) X, \pi(\beta) X \rightarrow X \pi(\beta) \mid X \in V_{G}\right\}$

Context-sensitive jumping is weaker than classical one

Theorem 10.

$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right) \subset \mathbf{C S}$.

Proof.

- By demonstrating transformation of any jumping MONG, $G=\left(V_{G}, T, P_{G}, S\right)$, to an equivalent MONG, $H=\left(V_{H}, T, P_{H}, S\right)$.
- Set $V_{H}=N_{H} \cup T$ and $N_{H}=N_{G} \cup\left\{\bar{X} \mid X \in V_{G}\right\}$.
- Let π be the homomorphism from V_{G}^{*} to V_{H}^{*} defined by $\pi(X)=\bar{X}$ for all $X \in V_{G}$. Set $P_{H}=P_{1} \cup P_{2}$ where

$$
\begin{aligned}
& \text { - } P_{1}=\bigcup_{\alpha \rightarrow \beta \in P_{G}}\{\alpha \rightarrow \pi(\beta), \pi(\beta) \rightarrow \beta\} \\
& \text { - } P_{2}=\bigcup_{\alpha \rightarrow \beta \in P_{G}}\left\{X \pi(\beta) \rightarrow \pi(\beta) X, \pi(\beta) X \rightarrow X \pi(\beta) \mid X \in V_{G}\right\}
\end{aligned}
$$

- Clearly, $\{a\}^{*}\{b\}^{*} \in \mathbf{C S}$, so $\mathbf{C S}-\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$ is non-empty. Hence, this theorem holds.

Dyck Language with Finite Index?

Example 11.

Consider Dyck language of all well-written arithmetic expression only with (,) and [,].

By classical CFG G

$$
E \rightarrow(E) E, E \rightarrow[E] E, E \rightarrow \varepsilon
$$

But G is not of a finite index!

Dyck Language with Finite Index?

Example 11.

Consider Dyck language of all well-written arithmetic expression only with (,) and [,].

By classical CFG G

$$
E \rightarrow(E) E, E \rightarrow[E] E, E \rightarrow \varepsilon
$$

But G is not of a finite index!
By jumping RLG H

Observe that H is of index 1.

Jumping Finite Automata

Definition 12.

A general jumping finite automaton (GJFA) is a quintuple $M=(Q, \Sigma, R, s, F)$, where

- Q is finite set of states
- Σ is the input alphabet, $Q \cap \Sigma=\emptyset$,
- $R \subseteq Q \times \Sigma^{*} \times Q$ is finite, member are called rules, instead of $(p, y, q) \in R$, we write $p y \rightarrow q \in R$,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is a set of final states.

Jumping Finite Automata

Definition 12.

A general jumping finite automaton (GJFA) is a quintuple
$M=(Q, \Sigma, R, s, F)$, where

- Q is finite set of states
- Σ is the input alphabet, $Q \cap \Sigma=\emptyset$,
- $R \subseteq Q \times \Sigma^{*} \times Q$ is finite, member are called rules, instead of $(p, y, q) \in R$, we write $p y \rightarrow q \in R$,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is a set of final states.

If $p y \rightarrow q \in R$ implies that $|y| \leq 1$, then M is a jumping finite automaton (JFA).

Jumping Finite Automata - Language

Definition 13.

A configuration of M is any string in $\Sigma^{*} Q \Sigma^{*}$. The binary jumping relation, symbolically denoted by \curvearrowright, over $\Sigma^{*} Q \Sigma^{*}$:

- Let $x, z, x^{\prime}, z^{\prime} \in \Sigma^{*}$ such that $x z=x^{\prime} z^{\prime}$ and $p y \rightarrow q \in R$; then, M makes a jump from $x p y z$ to $x^{\prime} q z^{\prime}$, symbolically written as $x p y z \curvearrowright x^{\prime} q z^{\prime}$.
- In the standard manner, we extent \curvearrowright to \curvearrowright^{m}, where $m \geq 0, \curvearrowright^{+}$, and $\stackrel{ }{ }^{*}$.

The language accepted by M, denoted by $L(M)$, is defined as $L(M)=\left\{u v \mid u, v \in \Sigma^{*}, u s v \curvearrowright^{*} f, f \in F\right\}$.
GJFA and JFA denote the families of languages accepted by GJFAs and JFAs, respectively.

Recall known ${ }^{1}$ results
JFA \subset GJFA, FIN \subset GJFA, and FIN and JFA are incomparable.
${ }^{1}$ See "A. Meduna and P. Zemek, Jumping Automata. Int. J. Found. Comput.
Sci. 23(2012) 1555-1578."

$\mathbf{G J F A}=\mathscr{L}\left(\boldsymbol{\Gamma}_{\mathbf{R L G}},{ }_{j} \Rightarrow\right)$

Lemma 14.

$\mathrm{GJFA} \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$.
Proof.
For every GJFA $M=(Q, \Sigma, R, s, F)$, we construct a RLG
$G=(Q \cup \Sigma \cup\{S\}, \Sigma, P, S)$, where S is a new nonterminal, $S \notin Q \cup \Sigma$, such that $L(M)=L\left(G,{ }_{j} \Rightarrow\right)$.

$$
P=\{S \rightarrow f \mid f \in F\} \cup\{q \rightarrow x p \mid p x \rightarrow q \in R\} \cup\{q \rightarrow x \mid s x \rightarrow q \in R\}
$$

Basic Idea

- Principle: analogous to conversion from classical general (lazy) finite automata to equivalent RLGs

$\mathbf{G J F A}=\mathscr{L}\left(\boldsymbol{\Gamma}_{\mathbf{R L G}},{ }_{j} \Rightarrow\right)$

Lemma 14.

$\mathbf{G J F A} \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$.
Proof.
For every GJFA $M=(Q, \Sigma, R, s, F)$, we construct a RLG
$G=(Q \cup \Sigma \cup\{S\}, \Sigma, P, S)$, where S is a new nonterminal, $S \notin Q \cup \Sigma$, such that $L(M)=L\left(G,{ }_{j} \Rightarrow\right)$.

$$
P=\{S \rightarrow f \mid f \in F\} \cup\{q \rightarrow x p \mid p x \rightarrow q \in R\} \cup\{q \rightarrow x \mid s x \rightarrow q \in R\}
$$

Basic Idea

- Principle: analogous to conversion from classical general (lazy) finite automata to equivalent RLGs
- First, S is nondeterministically rewritten to some f in G. Let $w=u v$.

$$
\begin{gathered}
u s v \frown^{*} y p x y^{\prime} \curvearrowright z q z^{\prime} z^{\prime \prime}[p x \rightarrow q] \frown^{*} f \text { in } M \\
\text { is simulated in } G \text { by } \\
S_{j} \Rightarrow f_{j} \Rightarrow^{*} z z^{\prime} q z^{\prime \prime}{ }_{j} \Rightarrow \operatorname{yxpy^{\prime }}[q \rightarrow x p]_{j}{ }^{*} \cdot w, \text { where } y y^{\prime}=z z^{\prime} z^{\prime \prime} .
\end{gathered}
$$

$\mathbf{G J F A}=\mathscr{L}\left(\boldsymbol{\Gamma}_{\mathbf{R L G}},{ }_{j} \Rightarrow\right)$

Lemma 15.

$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right) \subseteq$ GJFA.

Proof.

For every RLG $G=(V, T, P, S)$, we construct a GJFA $M=(N \cup\{\sigma\}, T, R$, $\sigma,\{S\}$), where σ is a new start state, $\sigma \notin V$ and $N=V-T$, such that $L\left(G,{ }_{j} \Rightarrow\right)=L(M)$.

$$
\begin{gathered}
R=\left\{B x \rightarrow A \mid A \rightarrow x B \in P, A, B \in N, x \in T^{*}\right\} \cup \\
\left\{\sigma x \rightarrow A \mid A \rightarrow x \in P, x \in T^{*}\right\}
\end{gathered}
$$

Basic Idea

- The start nonterminal of G corresponds to the only final state of M.

$$
S_{j} \Rightarrow^{*} y y^{\prime} A y^{\prime \prime} \Rightarrow z x B z^{\prime}[A \rightarrow x B]_{j} \Rightarrow^{*} w
$$

is simulated by M 's jumping moves as

$$
u \sigma v \curvearrowright^{*} z B x z^{\prime} \curvearrowright y A y^{\prime} y^{\prime \prime}[B x \rightarrow A] \curvearrowright^{*} S \text {, where } y y^{\prime} y^{\prime \prime}=z z^{\prime} \text { and }
$$

$$
w=u v .
$$

Equivalence with Jumping Finite Automata

Theorem 16.

GJFA $=\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$.
Proof.
This theorem holds by Lemmas 14 and 15.
Theorem 17.
$\mathrm{JFA}=\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$.
Proof.

- Consider jumping finite automata that processes only one input symbol in one move.

Equivalence with Jumping Finite Automata

Theorem 16.

GJFA $=\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$.
Proof.
This theorem holds by Lemmas 14 and 15.
Theorem 17.
$\mathrm{JFA}=\mathscr{L}\left(\Gamma_{R G},{ }_{j} \Rightarrow\right)$.
Proof.

- Consider jumping finite automata that processes only one input symbol in one move.
- Proof is analogical to the proof of Theorem 16 with $x \in T$.

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)=\mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right)=\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow k\right)$.
Idea.

- Since $\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right) \subseteq \bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right)$ follows from the definitions, it suffices to proof that
$\cup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right) \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)($ transform G to $H)$.

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)=\mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right)=\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow k\right)$.
Idea.

- Since $\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right) \subseteq \bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right)$ follows from the definitions, it suffices to proof that
$\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right) \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)($ transform G to $H)$.
- $V_{H}=\left\{\langle x\rangle \mid x \in \bigcup_{i=1}^{k}\left(V_{G}-T\right)^{i}\right\} \cup T$

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)=\mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right)=\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow{ }_{k}\right)$.
Idea.

- Since $\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right) \subseteq \bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right)$ follows from the definitions, it suffices to proof that
$\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \exists_{k}\right) \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$ (transform G to H).
- $V_{H}=\left\{\langle x\rangle \mid x \in \bigcup_{i=1}^{k}\left(V_{G}-T\right)^{i}\right\} \cup T$
- $P_{H}=\left\{\langle\alpha A \beta\rangle \rightarrow \tau(x)\langle\gamma\rangle \mid A \rightarrow x \in P_{G}, \alpha, \beta \in N^{*}, \gamma=\alpha \beta \eta(x)\right.$, $1 \leq|\gamma| \leq k\} \cup\left\{\langle A\rangle \rightarrow x \mid A \rightarrow x \in P_{G}, x \in T^{*}\right\}$

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)=\mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right)=\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow{ }_{k}\right)$.
Idea.

- Since $\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right) \subseteq \bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right)$ follows from the definitions, it suffices to proof that
$\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \exists_{k}\right) \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$ (transform G to H).
- $V_{H}=\left\{\langle x\rangle \mid x \in \bigcup_{i=1}^{k}\left(V_{G}-T\right)^{i}\right\} \cup T$
- $P_{H}=\left\{\langle\alpha A \beta\rangle \rightarrow \tau(x)\langle\gamma\rangle \mid A \rightarrow x \in P_{G}, \alpha, \beta \in N^{*}, \gamma=\alpha \beta \eta(x)\right.$, $1 \leq|\gamma| \leq k\} \cup\left\{\langle A\rangle \rightarrow x \mid A \rightarrow x \in P_{G}, x \in T^{*}\right\}$

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)=\mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right)=\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \not{ }_{k}\right)$.
Idea.

- Since $\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{L G},{ }_{j} \Rightarrow\right) \subseteq \bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right)$ follows from the definitions, it suffices to proof that
$\bigcup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \exists_{k}\right) \subseteq \mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$ (transform G to H).
- $V_{H}=\left\{\langle x\rangle \mid x \in \bigcup_{i=1}^{k}\left(V_{G}-T\right)^{i}\right\} \cup T$
- $P_{H}=\left\{\langle\alpha A \beta\rangle \rightarrow \tau(x)\langle\gamma\rangle \mid A \rightarrow x \in P_{G}, \alpha, \beta \in N^{*}, \gamma=\alpha \beta \eta(x)\right.$, $1 \leq|\gamma| \leq k\} \cup\left\{\langle A\rangle \rightarrow x \mid A \rightarrow x \in P_{G}, x \in T^{*}\right\}$

Problem 19.

Is $\cup_{k \geq 1} \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow_{k}\right) \subseteq \mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow\right)$ proper?

General Jumping Grammars are Turing Complete

 Lemma 20.$\mathbf{R E} \subseteq \mathscr{L}\left(\Gamma_{G G},{ }_{j} \Rightarrow\right)$.
Construction.

- For every GG $G=\left(V_{G}, T, P_{G}, S_{G}\right)$, we construct another GG $H=\left(V_{H}=V_{G} \cup\left\{S_{H}, \$, \#,\llcorner\rfloor,\right\}, T, P_{H}, S_{H}\right)$ such that $L\left(G,{ }_{s} \Rightarrow\right)=L\left(H,{ }_{j} \Rightarrow\right)$.

General Jumping Grammars are Turing Complete

 Lemma 20.$\mathbf{R E} \subseteq \mathscr{L}\left(\Gamma_{G G},{ }_{j} \Rightarrow\right)$.
Construction.

- For every GG $G=\left(V_{G}, T, P_{G}, S_{G}\right)$, we construct another GG

$$
H=\left(V_{H}=V_{G} \cup\left\{S_{H}, \$, \#,\llcorner,\rfloor\right\}, T, P_{H}, S_{H}\right) \text { such that }
$$

$$
L\left(G,{ }_{s} \Rightarrow\right)=L\left(H,{ }_{j} \Rightarrow\right)
$$

- $S_{H}, \$, \#,\lfloor$, and \rfloor are new nonterminal symbols in H.

$$
\begin{gathered}
P_{H}=\left\{S_{H} \rightarrow \# S_{G}, \# \rightarrow\lfloor \$,\lfloor \rfloor \rightarrow \#, \# \rightarrow \varepsilon\} \cup\right. \\
\left.\{\$ \alpha \rightarrow\rfloor \beta \mid \alpha \rightarrow \beta \in P_{G}\right\} .
\end{gathered}
$$

General Jumping Grammars are Turing Complete

Lemma 20.
$\mathbf{R E} \subseteq \mathscr{L}\left(\Gamma_{G G},{ }_{j} \Rightarrow\right)$.
Construction.

- For every GG $G=\left(V_{G}, T, P_{G}, S_{G}\right)$, we construct another GG

$$
H=\left(V_{H}=V_{G} \cup\left\{S_{H}, \$, \#,\llcorner,\rfloor\right\}, T, P_{H}, S_{H}\right) \text { such that }
$$

$$
L\left(G,{ }_{s} \Rightarrow\right)=L\left(H,{ }_{j} \Rightarrow\right)
$$

- $S_{H}, \$, \#, \mathrm{~L}$, and \rfloor are new nonterminal symbols in H.

$$
\begin{gathered}
P_{H}=\left\{S_{H} \rightarrow \# S_{G}, \# \rightarrow\lfloor \$,\lfloor \rfloor \rightarrow \#, \# \rightarrow \varepsilon\} \cup\right. \\
\left.\{\$ \alpha \rightarrow\rfloor \beta \mid \alpha \rightarrow \beta \in P_{G}\right\} .
\end{gathered}
$$

- Idea: Every application of $\alpha \rightarrow \beta$ in G is simulated in H :

$$
\ldots \# \ldots \alpha \ldots{ }_{j} \Rightarrow \ldots\left\lfloor \$ \alpha \ldots{ }_{j} \Rightarrow \ldots\lfloor \rfloor \beta \ldots{ }_{j} \Rightarrow \ldots \# \ldots \beta \ldots\right.
$$

General Jumping Grammars are Turing Complete

 Lemma 20.$\mathbf{R E} \subseteq \mathscr{L}\left(\Gamma_{G G},{ }_{j} \Rightarrow\right)$.
Construction.

- For every GG $G=\left(V_{G}, T, P_{G}, S_{G}\right)$, we construct another GG

$$
H=\left(V_{H}=V_{G} \cup\left\{S_{H}, \$, \#,\llcorner,\rfloor\right\}, T, P_{H}, S_{H}\right) \text { such that }
$$

$$
L\left(G,{ }_{s} \Rightarrow\right)=L\left(H,{ }_{j} \Rightarrow\right)
$$

- $S_{H}, \$, \#$, L, and 」 are new nonterminal symbols in H.

$$
\begin{gathered}
P_{H}=\left\{S_{H} \rightarrow \# S_{G}, \# \rightarrow\lfloor \$,\lfloor \rfloor \rightarrow \#, \# \rightarrow \varepsilon\} \cup\right. \\
\left.\{\$ \alpha \rightarrow\rfloor \beta \mid \alpha \rightarrow \beta \in P_{G}\right\} .
\end{gathered}
$$

- Idea: Every application of $\alpha \rightarrow \beta$ in G is simulated in H :

$$
\ldots \# \ldots \alpha \ldots_{j} \Rightarrow \ldots\left\lfloor \$ \alpha \ldots{ }_{j} \Rightarrow \ldots\lfloor \rfloor \beta \ldots{ }_{j} \Rightarrow \ldots \# \ldots \beta \ldots\right.
$$

Theorem 21.
$\mathscr{L}\left(\Gamma_{G G},{ }_{j} \Rightarrow\right)=\mathbf{R E}$.

Language Families Hierarchy - Results Summary

Semilinearity

Definition 22.

- Let $w \in V^{*}$ with $V=\left\{a_{1}, \ldots, a_{n}\right\}$.
- We define Parikh vector of w by $\psi_{V}(w)=\left(\operatorname{occur}\left(a_{1}, w\right), \operatorname{occur}\left(a_{2}, w\right), \ldots, \operatorname{occur}\left(a_{n}, w\right)\right)$.
- A set of vectors is called semilinear if it can be represented as a union of a finite number of sets of the form $\left\{v_{0}+\sum_{i=1}^{m} \alpha_{i} v_{i} \mid \alpha_{i} \in \mathbb{N}, 1 \leq i \leq m\right\}$ where v_{i} for $0 \leq i \leq m$ is an n-dimensional vector.
- A language $L \subseteq V^{*}$ is called semilinear if the set $\psi_{V}(L)=\left\{\psi_{V}(w) \mid w \in L\right\}$ is a semilinear set.
- A language family is semilinear if all its languages are semilinear.

Semilineary of Context-Free Jumping Language

Lemma 23.

For $X \in\{R G, R L G, L G, C F G\}, \mathscr{L}\left(\Gamma_{X},{ }_{j} \Rightarrow\right)$ is semilinear.

Proof.

- By Parikh's Theorem, for each context-free language $L \subseteq V^{*}, \psi_{V}(L)$ is semilinear.

Semilineary of Context-Free Jumping Language

Lemma 23.

For $X \in\{R G, R L G, L G, C F G\}, \mathscr{L}\left(\Gamma_{X},{ }_{j} \Rightarrow\right)$ is semilinear.

Proof.

- By Parikh's Theorem, for each context-free language $L \subseteq V^{*}, \psi_{V}(L)$ is semilinear.
- Let G be a CFG such that $L(G, s \Rightarrow)=L$.

Semilineary of Context-Free Jumping Language

Lemma 23.

For $X \in\{R G, R L G, L G, C F G\}, \mathscr{L}\left(\Gamma_{X},{ }_{j} \Rightarrow\right)$ is semilinear.

Proof.

- By Parikh's Theorem, for each context-free language $L \subseteq V^{*}, \psi_{V}(L)$ is semilinear.
- Let G be a CFG such that $L\left(G,{ }_{s} \Rightarrow\right)=L$.
- From the definition of ${ }_{j} \Rightarrow$ and CFG it follows that $\psi\left(L\left(G,{ }_{s} \Rightarrow\right)\right)=\psi\left(L\left(G,{ }_{j} \Rightarrow\right)\right)$ therefore $\psi\left(L\left(G,{ }_{j} \Rightarrow\right)\right)$ is semilinear as well.

Multiset Grammar and Language

Definition 24.

Let $G=(V, T, P, S) \in \Gamma_{G G}$ be a grammar and $u, v \in V^{*}$; then, $u_{m} \Rightarrow v[x \rightarrow y]$ in G iff there exist $x \rightarrow y \in P$ and $t, t^{\prime}, z, z^{\prime} \in V^{*}$ such that $t x t^{\prime} \in \operatorname{perm}(u)$ and $z y z^{\prime} \in \operatorname{perm}(v)$. Then, $L\left(G,{ }_{m} \Rightarrow\right)$ is called multiset language.

Lemma 25.
Let $G \in \Gamma_{G G}$; then, $w \in L\left(G,{ }_{m} \Rightarrow\right)$ implies that perm $(w) \subseteq L\left(G,{ }_{m} \Rightarrow\right)$.
Proof.
Consider Definition 24 with v representing every permutation of v in every $u_{m} \Rightarrow v$ in G to see that this lemma hold true.

Non-semilinearity of Context-Sensitive Jumping Languages

Theorem 26.

$\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ is not semilinear. Neither is $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Idea.

- Recall that $\mathscr{L}\left(\Gamma_{\text {MONG }},{ }_{m} \Rightarrow\right)$ contains non-semilinear languages ${ }^{2}$ and

[^0]
Non-semilinearity of Context-Sensitive Jumping Languages

Theorem 26.

$\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ is not semilinear. Neither is $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Idea.

- Recall that $\mathscr{L}\left(\Gamma_{\text {MONG }},{ }_{m} \Rightarrow\right)$ contains non-semilinear languages ${ }^{2}$ and
- $\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$ follows from the definition.

[^1]
Non-semilinearity of Context-Sensitive Jumping Languages

Theorem 26.

$\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ is not semilinear. Neither is $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Idea.

- Recall that $\mathscr{L}\left(\Gamma_{M O N G},{ }_{m} \Rightarrow\right)$ contains non-semilinear languages ${ }^{2}$ and
- $\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$ follows from the definition.
- We only need to prove that $\mathscr{L}\left(\Gamma_{M O N G},{ }_{m} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$.

[^2]
Non-semilinearity of Context-Sensitive Jumping Languages

Theorem 26.

$\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ is not semilinear. Neither is $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Idea.

- Recall that $\mathscr{L}\left(\Gamma_{M O N G},{ }_{m} \Rightarrow\right)$ contains non-semilinear languages ${ }^{2}$ and
- $\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$ follows from the definition.
- We only need to prove that $\mathscr{L}\left(\Gamma_{M O N G},{ }_{m} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$.

[^3]
Non-semilinearity of Context-Sensitive Jumping Languages

Theorem 26.

$\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$ is not semilinear. Neither is $\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$.
Idea.

- Recall that $\mathscr{L}\left(\Gamma_{M O N G},{ }_{m} \Rightarrow\right)$ contains non-semilinear languages ${ }^{2}$ and
- $\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$ follows from the definition.
- We only need to prove that $\mathscr{L}\left(\Gamma_{M O N G},{ }_{m} \Rightarrow\right) \subseteq \mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$.

Corollary 27.
$\mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow\right) \subset \mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$.

[^4]
Closure Properties of Jumping Grammars - Work in Progress

Operations	\cup	\cap	Complement	Reversal
$\mathscr{L}\left(\Gamma_{J R G},{ }_{j} \Rightarrow\right)$	+	+	+	+
$\mathscr{L}\left(\Gamma_{R L G},{ }_{j} \Rightarrow\right)$	+	-	-	+
$\mathscr{L}\left(\Gamma_{C F G},{ }_{j} \Rightarrow\right)$	+	-	-	$+?$
$\mathscr{L}\left(\Gamma_{C S G},{ }_{j} \Rightarrow\right)$	+	-	-	
$\mathscr{L}\left(\Gamma_{M O N G},{ }_{j} \Rightarrow\right)$	+	-	-	
$\mathscr{L}\left(\Gamma_{G G},{ }_{j} \Rightarrow\right)$	+	-	-	+

Table: Empty cell = unknown

Conclusion

Extensions and Future

Jumping Grammars

- Closure properties

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

- Addition of regulating mechanism (matrix, random-context, scattered-context, ...)

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

- Addition of regulating mechanism (matrix, random-context, scattered-context, ...)
- Grammar systems with jumping components?

Extensions and Future

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

- Addition of regulating mechanism (matrix, random-context, scattered-context, ...)
- Grammar systems with jumping components?
- ...

Thanks for your attention!

[^0]: ${ }^{2}$ See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 149-158."

[^1]: ${ }^{2}$ See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 149-158."

[^2]: ${ }^{2}$ See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 149-158."

[^3]: ${ }^{2}$ See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 149-158."

[^4]: ${ }^{2}$ See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset Processing (Curtea de Arges, August 21-25, 2000), pages 149-158."

