Jumping Grammars

Zbyněk Křivka

krivka@fit.vutbr.cz Brno University of Technology Faculty of Information Technology Czech Republic

Seminar of FM Research Group at FIT BUT, March 31, 2015

(ロ)

Outline

Introduction

Definitions and Examples

Results

Generative Power of Jumping Grammars Properties of Jumping Derivations

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Typical grammars and automata work strictly continuously

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted
- Jumping Finite Automata ideas applied to Grammars

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted
- Jumping Finite Automata ideas applied to Grammars

- Typical grammars and automata work strictly continuously
- Adaptation of classical models to work on words discontinuously
- Models structure unchanged; only the computation is adapted
- Jumping Finite Automata ideas applied to Grammars

Possible application fields?

Note: Just theoretical study right now!

- applied mathematics
- computational linguistics
- bioinformatics (DNA computing)
- strongly-scattered information processing

イロト イポト イヨト イヨト 三日

We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

 We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.

 We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

Let z = uxv. By using $x \rightarrow y$, *G* rewrites uxv to uyv.

イロト イポト イヨト イヨト 三日

 We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

Let z = uxv. By using $x \rightarrow y$, G rewrites uxv to uyv.

Jumping grammars:

Let z = uxv. By using $x \rightarrow y$, G performs:

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

 We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

Let z = uxv. By using $x \rightarrow y$, *G* rewrites uxv to uyv.

Jumping grammars:

Let z = uxv. By using $x \rightarrow y$, G performs:

1. selects an occurrence of *x* in *z*;

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

 We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

Let z = uxv. By using $x \rightarrow y$, *G* rewrites uxv to uyv.

Jumping grammars:

Let z = uxv. By using $x \rightarrow y$, G performs:

- 1. selects an occurrence of x in z;
- 2. erase x from z;

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

 We take a grammar of some type (Chomsky classification, etc.) with productions of form

 $x \rightarrow y$

- Starting from starting nonterminal, we repeatedly rewrites strings to get a sentence.
- Classical grammars:

Let z = uxv. By using $x \rightarrow y$, *G* rewrites uxv to uyv.

Jumping grammars:

Let z = uxv. By using $x \rightarrow y$, G performs:

- 1. selects an occurrence of *x* in *z*;
- 2. erase x from z;
- 3. G jumps anywhere in uv and inserts y there.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 目 ・

Trivial Example – DNA Computing

► DNA is a string over {*G*, *A*, *T*, *C*}. For instance, *GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC*

Trivial Example – DNA Computing

- DNA is a string over {G, A, T, C}. For instance,
 GGGGAGTGGGATTGGGGAGAGGGGTTTGCCCCGCTCCC
- ► We want to study all strings with the same number of *C*s and *G*s and the same number of *A*s and *T*s. For instance,

CGGCATCCGGTA, but CGCACCGGTA

Trivial Example – DNA Computing

- DNA is a string over {G, A, T, C}. For instance,
 GGGGAGTGGGATTGGGGAGAGGGGTTTGCCCCGCTCCC
- ▶ We want to study all strings with the same number of *C*s and *G*s and the same number of *A*s and *T*s. For instance,

CGGCATCCGGTA, but CGCACCGGTA

► Consider the jumping right-linear grammar with productions $1 \rightarrow C2, 2 \rightarrow G1, 1 \rightarrow 3, 3 \rightarrow A4, 4 \rightarrow T3, 3 \rightarrow \varepsilon$

イロト イポト イヨト イヨト 三日

Similar devices

Algebraic approach

- Commutative language closure
- Formal Macroset Theory a sentence as a multiset of symbols, order of symbols is totally irrelevant (Kudlek & Martín-Vide & Păun, 2000)
- Accepting devices = Automata
 - Jumping Finite Automata (Meduna & Zemek, 2012)
- Generating devices = Grammars
 - Commutative Grammars (Crespi-Reghizzi & Mandrioli, 1976)
 - Insertion-Deletion Systems (Kari, 1991+, Verlan, 2000+)
 - Petri Nets

Definitions and Examples

▲ロト▲舂▶▲車▶▲車▶ ● ● ののの

Formal Language Theory - Basic Notions

- ► For an alphabet, *V*, *V*^{*} represents the free monoid generated by *V* under concatenation.
- Unit of V^* is denoted by ε .
- ► The set of all permutations of w, perm(w), is defined as perm $(w) = \{b_1b_2\cdots b_n \mid b_i \in alph(w) \text{ for all } i = 1, 2, \dots, n, \text{ and} (b_1, b_2, \dots, b_n) \text{ is a permutation of } (a_1, a_2, \dots, a_n) \text{ where} w = a_1a_2\cdots a_n\}.$

Definition 1 (General Grammars).

A general grammar (GG for short) is a quadruple, G = (V, T, P, S), where

- V is an alphabet,
- T ⊆ V is an alphabet of terminals, N = V T is an alphabet of nonterminals,
- P is a finite relation from V^{*} − T^{*} to V^{*} (a member is called rule or production), we write p: x → y, and
- $S \in V T$ is the start nonterminal.

Definition 2 (Four modes of *derivation steps*).

Let $u, v \in V^*$. We define the four derivation relations over V^* as follows

- (i) $u_s \Rightarrow v$ in *G* iff there exist $x \to y \in P$ and $w, z \in V^*$ such that u = wxz and v = wyz;
- (ii) $u_{lj} \Rightarrow v$ in *G* iff there exist $x \rightarrow y \in P$ and $w, t, z \in V^*$ such that u = wtxzand v = wytz;
- (iii) $u_{rj} \Rightarrow v$ in *G* iff there exist $x \rightarrow y \in P$ and $w, t, z \in V^*$ such that u = wxtz and v = wtyz;

(iv)
$$u_j \Rightarrow v$$
 in G iff $u_{lj} \Rightarrow v$ or $u_{rj} \Rightarrow v$ in G.

- Transitive-reflexive and transitive closures of _h⇒ are denoted by _h⇒* and _h⇒⁺, for h ∈ {s, lj, rj, j}.
- ▶ Let $k \ge 0$ and $_h \Rightarrow_k = \{(x, y) \mid (x, y) \in _h \Rightarrow, occur(N, x) \le k, occur(N, y) \le k\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Definition 3 (Generated Language).

Let G = (V, T, P, S) be a GG. Set

$$L(G, {}_{h} \Longrightarrow) = \{ x \in T^{*} \mid S {}_{h} \Longrightarrow^{*} x \}.$$

 $L(G, {}_{h} \Rightarrow)$ is said to be the *language that G* generates by using {}_{h} \Rightarrow.

For any $X \subseteq \Gamma_{GG}$, set

$$\mathscr{L}(X, {}_{h} \Longrightarrow) = \{ L(G, {}_{h} \Longrightarrow) \mid G \in X \}.$$

Grammars Subclasses

Let G be a GG.

- ► *G* is a monotonous grammar (MONG) if every $x \rightarrow y \in P$ satisfies $|x| \leq |y|$.
- *G* is a context-sensitive grammar (CSG) if every $x \to y \in P$ satisfies $x = \alpha A\beta$ and $y = \alpha \gamma \beta$ such that $A \in N$, $\alpha, \beta \in V^*$, and $\gamma \in V^+$.
- ► *G* is a context-free grammar (CFG) if every $x \rightarrow y \in P$ satisfies $x \in N$.
- ► *G* is an ε -free context-free grammar (CFG^{- ε}) if *G* is a CFG and every $x \rightarrow y \in P$ satisfies $y \neq \varepsilon$.
- G is a linear grammar (LG) if G is a CFG and every x → y ∈ P satisfies y ∈ T*NT* ∪ T*.
- ► *G* is a right-linear grammar (RLG) if *G* is a CFG and every $x \rightarrow y \in P$ satisfies $y \in T^*N \cup T^*$.
- G is a regular grammar (RG) if G is a CFG and every x → y ∈ P satisfies y ∈ TN ∪ T.

Language Families

Grammar Classes

Let Γ_X denote the set of all *X* grammars, for all $X \in \{GG, MONG, CSG, CFG, CFG^{-\varepsilon}, LG, RLG, RG\}.$

Definition 4 (Well-known Language Families).

Set

- **REG** = $\mathscr{L}(\Gamma_{RLG}, \mathfrak{s} \Rightarrow),$
- LIN = $\mathscr{L}(\Gamma_{LG}, \mathfrak{s} \Rightarrow),$
- **CF** = $\mathscr{L}(\Gamma_{CFG}, {}_{s} \Rightarrow),$
- $\mathbf{CS} = \mathscr{L}(\Gamma_{MONG}, \mathfrak{s} \Rightarrow)$, and
- $\mathbf{RE} = \mathscr{L}(\Gamma_{GG}, \mathfrak{s} \Rightarrow).$
- ► Let *k* be a positive integer. Set $\mathbf{CF}_k = \bigcup_{i\geq 1}^k \mathscr{L}(\Gamma_{CFG}, s \Rightarrow_i)$ and $\mathbf{CF}_{fin} = \{L \mid L \in \mathbf{CF}_i, \text{ for some } i \geq 1\}$ (grammars of finite index).

 $\text{Recall FIN} \subset \text{REG} \subset \text{LIN} \subset \text{CF}_{\textit{fin}} \subset \text{CF} \subset \text{CS} \subset \text{RE}$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Jumping Grammars – Examples

Example 5 (Example of Jumping Regular Grammar). Consider RG

$$G = (\{A, B, C, a, b, c\}, \Sigma = \{a, b, c\}, P, A)$$

where $P = \{A \rightarrow aB, B \rightarrow bC, C \rightarrow cA, C \rightarrow c\}$.

 $L(G, \mathfrak{s} \Rightarrow) = \{abc\}\{abc\}^* \in \mathbf{REG}, \text{ but}$

 $L(G, {}_{j} \Rightarrow) = \{w \in \Sigma^{*} \mid \mathsf{occur}(\{a\}, w) = \mathsf{occur}(\{b\}, w) = \mathsf{occur}(\{c\}, w)\} \in \mathbf{CS}.$

Jumping Grammars – Examples

Example 6 (Example of Jumping Context-Sensitive Grammar).

Consider CSG $G = (\{S, A, B, a, b\}, \{a, b\}, P, S)$ with productions:

S	\rightarrow	aABb
S	\rightarrow	ab
AB	\rightarrow	AABB
aA	\rightarrow	aa
Bb	\rightarrow	bb

$$L(G, {}_{s} \Longrightarrow) = \{a^{n}b^{n} \mid n \ge 1\}.$$

Using $_{j} \Rightarrow$, we can make the following derivation sequence: $S_{j} \Rightarrow aABb_{j} \Rightarrow aAABb_{j} \Rightarrow aAABbb_{j} \Rightarrow aaABbb_{j} \Rightarrow aaBbbaa_{j} \Rightarrow abbbaa$ Notice: $L(G, _{s} \Rightarrow) \in \mathbf{CF}$, but we cannot generate it by any jumping CFG, CSG or even MONG.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Proof Idea.

► Assume MONG G = (V, T, P, S) such that $L(G, {}_i \Rightarrow) = \{a\}^* \{b\}^*$.

- ► Assume MONG G = (V, T, P, S) such that $L(G, {}_{i} \Rightarrow) = \{a\}^{*}\{b\}^{*}$.
- ► Let $p: x \to y \in P$ and $S_j \Rightarrow^* uxv_j \Rightarrow w[p]$ where $w \in L(G, j \Rightarrow)$, $u, v \in T^*$ and $y \in \{a\}^+ \cup \{b\}^+ \cup \{a\}^+ \{b\}^+$.

- ► Assume MONG G = (V, T, P, S) such that $L(G, {}_{i} \Rightarrow) = \{a\}^{*}\{b\}^{*}$.
- ► Let $p: x \to y \in P$ and $S_j \Rightarrow^* uxv_j \Rightarrow w[p]$ where $w \in L(G, j \Rightarrow)$, $u, v \in T^*$ and $y \in \{a\}^+ \cup \{b\}^+ \cup \{a\}^+ \{b\}^+$.
- In addition, assume that the sentential form uxv is longer than x such that uv ∈ {a}⁺{b}⁺.

- ► Assume MONG G = (V, T, P, S) such that $L(G, {}_{j} \Rightarrow) = \{a\}^{*}\{b\}^{*}$.
- ► Let $p: x \to y \in P$ and $S_j \Rightarrow^* uxv_j \Rightarrow w[p]$ where $w \in L(G, j \Rightarrow)$, $u, v \in T^*$ and $y \in \{a\}^+ \cup \{b\}^+ \cup \{a\}^+ \{b\}^+$.
- In addition, assume that the sentential form uxv is longer than x such that uv ∈ {a}⁺{b}⁺.
 - (a) If *y* contains at least one symbol *b*, the last jumping derivation step can place *y* at the beginning of the sentence and create a string from {*a*, *b*}*{*b*}{*a*, *b*}*{*a*}{*a*, *b*}* that does not belong to {*a*}*{*b*}*.

- ► Assume MONG G = (V, T, P, S) such that $L(G, {}_{i} \Rightarrow) = \{a\}^{*}\{b\}^{*}$.
- ► Let $p: x \to y \in P$ and $S_j \Rightarrow^* uxv_j \Rightarrow w[p]$ where $w \in L(G, j \Rightarrow)$, $u, v \in T^*$ and $y \in \{a\}^+ \cup \{b\}^+ \cup \{a\}^+ \{b\}^+$.
- ► In addition, assume that the sentential form uxv is longer than x such that $uv \in \{a\}^+\{b\}^+$.
 - (a) If *y* contains at least one symbol *b*, the last jumping derivation step can place *y* at the beginning of the sentence and create a string from {*a*, *b*}*{*b*}{*a*, *b*}*{*a*}{*a*, *b*}* that does not belong to {*a*}*{*b*}*.
 - (b) By analogy, if y contains at least one symbol a, the last jumping derivation step can place y at the end of the sentence and therefore, place at least one a behind some bs.

- ► Assume MONG G = (V, T, P, S) such that $L(G, {}_{i} \Rightarrow) = \{a\}^{*}\{b\}^{*}$.
- ► Let $p: x \to y \in P$ and $S_j \Rightarrow^* uxv_j \Rightarrow w[p]$ where $w \in L(G, j \Rightarrow)$, $u, v \in T^*$ and $y \in \{a\}^+ \cup \{b\}^+ \cup \{a\}^+ \{b\}^+$.
- In addition, assume that the sentential form uxv is longer than x such that uv ∈ {a}⁺{b}⁺.
 - (a) If *y* contains at least one symbol *b*, the last jumping derivation step can place *y* at the beginning of the sentence and create a string from {*a*, *b*}*{*b*}{*a*, *b*}*{*a*}{*a*, *b*}* that does not belong to {*a*}*{*b*}*.
 - (b) By analogy, if y contains at least one symbol a, the last jumping derivation step can place y at the end of the sentence and therefore, place at least one a behind some bs.
- This is a contradiction.

The following pairs of language families are incomparable, but not disjoint:

- **REG** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **REG** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow).$

Proof.

► Since **REG** ⊂ **CF**, it is sufficient to prove that **REG** – $\mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$, $\mathscr{L}(\Gamma_{RG}, _{i} \Rightarrow)$ – **CF**, and **REG** $\cap \mathscr{L}(\Gamma_{RG}, _{i} \Rightarrow)$ are non-empty

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

1<mark>9 (</mark> 38

The following pairs of language families are incomparable, but not disjoint:

- **REG** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **REG** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow).$

Proof.

- ► Since **REG** ⊂ **CF**, it is sufficient to prove that **REG** $\mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$, $\mathscr{L}(\Gamma_{RG}, _{j} \Rightarrow)$ – **CF**, and **REG** $\cap \mathscr{L}(\Gamma_{RG}, _{j} \Rightarrow)$ are non-empty
- ► By previous lemma 7, $\{a\}^* \{b\}^* \in \mathbf{REG} \mathscr{L}(\Gamma_{MONG}, {}_j \Rightarrow).$

The following pairs of language families are incomparable, but not disjoint:

- **REG** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **REG** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow).$

Proof.

- ► Since **REG** ⊂ **CF**, it is sufficient to prove that **REG** $\mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$, $\mathscr{L}(\Gamma_{RG}, _{i} \Rightarrow)$ – **CF**, and **REG** $\cap \mathscr{L}(\Gamma_{RG}, _{i} \Rightarrow)$ are non-empty
- ► By previous lemma 7, $\{a\}^*\{b\}^* \in \mathbf{REG} \mathscr{L}(\Gamma_{MONG}, \downarrow \Rightarrow).$
- ► For $\mathscr{L}(\Gamma_{RG}, \underset{j}{\Rightarrow}) \mathbb{CF} \neq \emptyset$, see Example 5.

< □ > < 同 > < 臣 > < 臣 > < 臣 < ① < ①</p>

The following pairs of language families are incomparable, but not disjoint:

- **REG** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow);$
- **REG** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow);$
- **CF** and $\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow).$

Proof.

- ► Since **REG** ⊂ **CF**, it is sufficient to prove that **REG** $\mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$, $\mathscr{L}(\Gamma_{RG}, _{i} \Rightarrow)$ – **CF**, and **REG** $\cap \mathscr{L}(\Gamma_{RG}, _{i} \Rightarrow)$ are non-empty
- ► By previous lemma 7, $\{a\}^*\{b\}^* \in \mathbf{REG} \mathscr{L}(\Gamma_{MONG}, {}_j \Rightarrow).$
- ► For $\mathscr{L}(\Gamma_{RG}, \underset{i}{\Rightarrow}) \mathbf{CF} \neq \emptyset$, see Example 5.
- ► Regular language $\{a\}^* \in \mathscr{L}(\Gamma_{RG}, {}_j \Rightarrow)$, so **REG** $\cap \mathscr{L}(\Gamma_{RG}, {}_j \Rightarrow)$ is non-empty.

Open Problems

Since simple regular language such as $\{a\}^+\{b\}^+$ cannot be generated by jumping CSGs or even jumping MONGs, we pinpoint the following open problem:

Problem 9.

► Is
$$\mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{CSG}, _{j} \Rightarrow)$$
 proper?

Open Problems

Since simple regular language such as $\{a\}^+\{b\}^+$ cannot be generated by jumping CSGs or even jumping MONGs, we pinpoint the following open problem:

Problem 9.

- ► Is $\mathscr{L}(\Gamma_{CFG}, {}_{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow)$ proper?
- ► Is $\mathscr{L}(\Gamma_{CSG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$ proper?

Theorem 10. $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow) \subset \mathbf{CS}.$

Proof.

▶ By demonstrating transformation of any jumping MONG, $G = (V_G, T, P_G, S)$, to an equivalent MONG, $H = (V_H, T, P_H, S)$.

21/38

Theorem 10. $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow) \subset \mathbf{CS}.$

Proof.

- ▶ By demonstrating transformation of any jumping MONG, $G = (V_G, T, P_G, S)$, to an equivalent MONG, $H = (V_H, T, P_H, S)$.
- Set $V_H = N_H \cup T$ and $N_H = N_G \cup \{\overline{X} \mid X \in V_G\}$.

Theorem 10. $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow) \subset \mathbf{CS}.$

Proof.

- ▶ By demonstrating transformation of any jumping MONG, $G = (V_G, T, P_G, S)$, to an equivalent MONG, $H = (V_H, T, P_H, S)$.
- Set $V_H = N_H \cup T$ and $N_H = N_G \cup \{\overline{X} \mid X \in V_G\}$.
- ► Let π be the homomorphism from V_G^* to V_H^* defined by $\pi(X) = \overline{X}$ for all $X \in V_G$. Set $P_H = P_1 \cup P_2$ where

Theorem 10. $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow) \subset \mathbf{CS}.$

Proof.

▶ By demonstrating transformation of any jumping MONG, $G = (V_G, T, P_G, S)$, to an equivalent MONG, $H = (V_H, T, P_H, S)$.

Set
$$V_H = N_H \cup T$$
 and $N_H = N_G \cup \{\overline{X} \mid X \in V_G\}$.

► Let π be the homomorphism from V_G^* to V_H^* defined by $\pi(X) = \overline{X}$ for all $X \in V_G$. Set $P_H = P_1 \cup P_2$ where

21/38

$$\blacktriangleright P_1 = \bigcup_{\alpha \to \beta \in P_G} \{ \alpha \to \pi(\beta), \, \pi(\beta) \to \beta \}$$

Theorem 10. $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow) \subset \mathbf{CS}.$

Proof.

▶ By demonstrating transformation of any jumping MONG, $G = (V_G, T, P_G, S)$, to an equivalent MONG, $H = (V_H, T, P_H, S)$.

Set
$$V_H = N_H \cup T$$
 and $N_H = N_G \cup \{\overline{X} \mid X \in V_G\}$.

► Let π be the homomorphism from V_G^* to V_H^* defined by $\pi(X) = \overline{X}$ for all $X \in V_G$. Set $P_H = P_1 \cup P_2$ where

•
$$P_1 = \bigcup_{\alpha \to \beta \in P_G} \{ \alpha \to \pi(\beta), \pi(\beta) \to \beta \}$$

 $\blacktriangleright P_2 = \bigcup_{\alpha \to \beta \in P_G} \{ X \pi(\beta) \to \pi(\beta) X, \pi(\beta) X \to X \pi(\beta) \mid X \in V_G \}$

Theorem 10. $\mathscr{L}(\Gamma_{MONG}, {}_{i} \Rightarrow) \subset \mathbf{CS}.$

Proof.

▶ By demonstrating transformation of any jumping MONG, $G = (V_G, T, P_G, S)$, to an equivalent MONG, $H = (V_H, T, P_H, S)$.

Set
$$V_H = N_H \cup T$$
 and $N_H = N_G \cup \{\overline{X} \mid X \in V_G\}$.

► Let π be the homomorphism from V_G^* to V_H^* defined by $\pi(X) = \overline{X}$ for all $X \in V_G$. Set $P_H = P_1 \cup P_2$ where

Clearly, {a}*{b}* ∈ CS, so CS − ℒ(Γ_{MONG}, j⇒) is non-empty. Hence, this theorem holds.

21 / 38

Dyck Language with Finite Index?

Example 11.

Consider Dyck language of all well-written arithmetic expression only with $(,\,)$ and $[,\,].$

By classical CFG G

$$E \to (E)E, E \to [E]E, E \to \varepsilon$$

But G is not of a finite index!

Dyck Language with Finite Index?

Example 11.

Consider Dyck language of all well-written arithmetic expression only with $(,\,)$ and $[,\,].$

By classical CFG G

$$E \to (E)E, E \to [E]E, E \to \varepsilon$$

But G is not of a finite index!

By jumping RLG H

$$\begin{array}{rccc} E & \rightarrow & ()E \\ E & \rightarrow & []E \\ E & \rightarrow & \varepsilon \end{array}$$

Observe that H is of index 1.

イロト イポト イヨト イヨト 三日

Jumping Finite Automata

Definition 12.

A general jumping finite automaton (GJFA) is a quintuple $M = (Q, \Sigma, R, s, F)$, where

- Q is finite set of states
- Σ is the input alphabet, $Q \cap \Sigma = \emptyset$,
- ► $R \subseteq Q \times \Sigma^* \times Q$ is finite, member are called *rules*, instead of $(p, y, q) \in R$, we write $py \rightarrow q \in R$,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is a set of *final states*.

Jumping Finite Automata

Definition 12.

A general jumping finite automaton (GJFA) is a quintuple $M = (Q, \Sigma, R, s, F)$, where

- Q is finite set of states
- Σ is the input alphabet, $Q \cap \Sigma = \emptyset$,
- ► $R \subseteq Q \times \Sigma^* \times Q$ is finite, member are called *rules*, instead of $(p, y, q) \in R$, we write $py \rightarrow q \in R$,
- $s \in Q$ is the start state, and
- $F \subseteq Q$ is a set of final states.

If $py \rightarrow q \in R$ implies that $|y| \le 1$, then *M* is a jumping finite automaton (JFA).

イロト (母) (ヨ) (ヨ) (つ) (つ)

Jumping Finite Automata – Language

Definition 13.

A configuration of *M* is any string in $\Sigma^* Q \Sigma^*$. The binary jumping relation,

symbolically denoted by \sim , over $\Sigma^* Q \Sigma^*$:

- ► Let $x, z, x', z' \in \Sigma^*$ such that xz = x'z' and $py \to q \in R$; then, M makes a jump from xpyz to x'qz', symbolically written as $xpyz \sim x'qz'$.
- ▶ In the standard manner, we extent \frown to \frown^m , where $m \ge 0$, \frown^+ , and \frown^* .

The *language* accepted by *M*, denoted by L(M), is defined as $L(M) = \{uv \mid u, v \in \Sigma^*, usv \curvearrowright^* f, f \in F\}.$

GJFA and **JFA** denote the families of languages accepted by GJFAs and JFAs, respectively.

Recall known¹ results

<u>JFA \subset GJFA, FIN \subset GJFA, and FIN and JFA are incomparable.</u>

¹See "A. Meduna and P. Zemek, Jumping Automata. *Int. J. Found. Comput. Sci.* **23**(2012) 1555–1578." $\mathbf{GJFA} = \mathscr{L}(\mathbf{\Gamma}_{\mathbf{RLG}}, \mathbf{A}_{j} \Rightarrow)$

Lemma 14. GJFA $\subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow).$

Proof.

For every GJFA $M = (Q, \Sigma, R, s, F)$, we construct a RLG $G = (Q \cup \Sigma \cup \{S\}, \Sigma, P, S)$, where *S* is a new nonterminal, $S \notin Q \cup \Sigma$, such that $L(M) = L(G, _{j} \Rightarrow)$.

$$P = \{S \to f \mid f \in F\} \cup \{q \to xp \mid px \to q \in R\} \cup \{q \to x \mid sx \to q \in R\}$$

Basic Idea

 Principle: analogous to conversion from classical general (lazy) finite automata to equivalent RLGs

・ロト ・ 御 ト ・ 注 ト ・ 注 ト ・ 注 …

 $\mathbf{GJFA} = \mathscr{L}(\mathbf{\Gamma}_{\mathbf{RLG}}, \mathbf{j} \Rightarrow)$

Lemma 14. GJFA $\subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow).$

Proof.

For every GJFA $M = (Q, \Sigma, R, s, F)$, we construct a RLG $G = (Q \cup \Sigma \cup \{S\}, \Sigma, P, S)$, where *S* is a new nonterminal, $S \notin Q \cup \Sigma$, such that $L(M) = L(G, _{j} \Rightarrow)$.

$$P = \{S \to f \mid f \in F\} \cup \{q \to xp \mid px \to q \in R\} \cup \{q \to x \mid sx \to q \in R\}$$

Basic Idea

- Principle: analogous to conversion from classical general (lazy) finite automata to equivalent RLGs
- First, S is nondeterministically rewritten to some f in G. Let w = uv.

$$usv \curvearrowright^* ypxy' \curvearrowright zqz'z'' [px \to q] \curvearrowright^* f \text{ in } M$$

is simulated in G by
$$S_j \Rightarrow f_j \Rightarrow^* zz'qz''_j \Rightarrow yxpy' [q \to xp]_j \Rightarrow^* w, \text{ where } yy' = zz'z''.$$

 $\mathbf{GJFA} = \mathscr{L}(\mathbf{\Gamma}_{\mathbf{RLG}}, \mathbf{A}_{i} \Rightarrow)$

Lemma 15. $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow) \subseteq \text{GJFA}.$

Proof.

For every RLG G = (V, T, P, S), we construct a GJFA $M = (N \cup \{\sigma\}, T, R, \sigma, \{S\})$, where σ is a new start state, $\sigma \notin V$ and N = V - T, such that $L(G, \downarrow \Rightarrow) = L(M)$.

$$R = \{Bx \to A \mid A \to xB \in P, A, B \in N, x \in T^*\} \cup \{\sigma x \to A \mid A \to x \in P, x \in T^*\}$$

Basic Idea

▶ The start nonterminal of *G* corresponds to the only final state of *M*.

$$S_{j} \Rightarrow^{*} yy'Ay''_{j} \Rightarrow zxBz' [A \rightarrow xB]_{j} \Rightarrow^{*} w$$

is simulated by *M*'s jumping moves as
 $u\sigma v \curvearrowright^{*} zBxz' \curvearrowright yAy'y'' [Bx \rightarrow A] \curvearrowright^{*} S$, where $yy'y'' = zz'$ and
 $w = uv$.

Equivalence with Jumping Finite Automata

Theorem 16. GJFA = $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow)$.

Proof.

This theorem holds by Lemmas 14 and 15.

Theorem 17. JFA = $\mathscr{L}(\Gamma_{RG}, \rightarrow)$.

Proof.

 Consider jumping finite automata that processes only one input symbol in one move.

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Equivalence with Jumping Finite Automata

Theorem 16. GJFA = $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow).$

Proof.

This theorem holds by Lemmas 14 and 15.

Theorem 17.

JFA =
$$\mathscr{L}(\Gamma_{RG}, {}_{j} \Rightarrow).$$

Proof.

- Consider jumping finite automata that processes only one input symbol in one move.
- ▶ Proof is analogical to the proof of Theorem 16 with $x \in T$.

イロト イポト イヨト イヨト 二日

Theorem 18. $\mathscr{L}(\Gamma_{RLG}, {}_{j} \Rightarrow) = \mathscr{L}(\Gamma_{LG}, {}_{j} \Rightarrow) = \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, {}_{j} \Rightarrow_{k}).$ Idea.

► Since $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{LG}, _{j} \Rightarrow) \subseteq \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k})$ follows from the definitions, it suffices to proof that $\bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k}) \subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow)$ (transform *G* to *H*).

28/38

イロト イポト イヨト イヨト 三日

Theorem 18.

$$\mathscr{L}(\Gamma_{RLG, j} \Rightarrow) = \mathscr{L}(\Gamma_{LG, j} \Rightarrow) = \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG, j} \Rightarrow_k).$$

Idea.

► Since $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{LG}, _{j} \Rightarrow) \subseteq \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k})$ follows from the definitions, it suffices to proof that $\bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k}) \subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow)$ (transform *G* to *H*).

•
$$V_H = \{\langle x \rangle \mid x \in \bigcup_{i=1}^{k} (V_G - T)^i\} \cup T$$

イロト イポト イヨト イヨト 三日

Theorem 18.

$$\mathscr{L}(\Gamma_{RLG, j} \Rightarrow) = \mathscr{L}(\Gamma_{LG, j} \Rightarrow) = \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG, j} \Rightarrow_k).$$

Idea.

► Since $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{LG}, _{j} \Rightarrow) \subseteq \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k})$ follows from the definitions, it suffices to proof that $\bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k}) \subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow)$ (transform *G* to *H*).

•
$$V_H = \{\langle x \rangle \mid x \in \bigcup_{i=1}^k (V_G - T)^i\} \cup T$$

 $P_H = \{ \langle \alpha A\beta \rangle \to \tau(x) \langle \gamma \rangle \mid A \to x \in P_G, \, \alpha, \beta \in N^*, \, \gamma = \alpha \beta \eta(x), \\ 1 \le |\gamma| \le k \} \cup \{ \langle A \rangle \to x \mid A \to x \in P_G, \, x \in T^* \}$

28/38

イロト イポト イヨト イヨト 二日

Theorem 18.

$$\mathscr{L}(\Gamma_{RLG, j} \Rightarrow) = \mathscr{L}(\Gamma_{LG, j} \Rightarrow) = \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG, j} \Rightarrow_k).$$

Idea.

► Since $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{LG}, _{j} \Rightarrow) \subseteq \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k})$ follows from the definitions, it suffices to proof that $\bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k}) \subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow)$ (transform *G* to *H*).

•
$$V_H = \{\langle x \rangle \mid x \in \bigcup_{i=1}^k (V_G - T)^i\} \cup T$$

 $P_H = \{ \langle \alpha A\beta \rangle \to \tau(x) \langle \gamma \rangle \mid A \to x \in P_G, \, \alpha, \beta \in N^*, \, \gamma = \alpha \beta \eta(x), \\ 1 \le |\gamma| \le k \} \cup \{ \langle A \rangle \to x \mid A \to x \in P_G, \, x \in T^* \}$

28/38

イロト 不得 トイヨト イヨト 二日

Theorem 18.

$$\mathscr{L}(\Gamma_{RLG, j} \Rightarrow) = \mathscr{L}(\Gamma_{LG, j} \Rightarrow) = \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG, j} \Rightarrow_k).$$

Idea.

► Since $\mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{LG}, _{j} \Rightarrow) \subseteq \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k})$ follows from the definitions, it suffices to proof that $\bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, _{j} \Rightarrow_{k}) \subseteq \mathscr{L}(\Gamma_{RLG}, _{j} \Rightarrow)$ (transform *G* to *H*).

•
$$V_H = \{\langle x \rangle \mid x \in \bigcup_{i=1}^k (V_G - T)^i\} \cup T$$

 $P_H = \{ \langle \alpha A\beta \rangle \to \tau(x) \langle \gamma \rangle \mid A \to x \in P_G, \, \alpha, \beta \in N^*, \, \gamma = \alpha \beta \eta(x), \\ 1 \le |\gamma| \le k \} \cup \{ \langle A \rangle \to x \mid A \to x \in P_G, \, x \in T^* \}$

Problem 19.

 $ls \bigcup_{k \ge 1} \mathscr{L}(\Gamma_{CFG}, {}_{j} \Rightarrow_{k}) \subseteq \mathscr{L}(\Gamma_{CFG}, {}_{j} \Rightarrow) proper?$

イロト イポト イヨト イヨト 三日

General Jumping Grammars are Turing Complete Lemma 20. RE $\subseteq \mathscr{L}(\Gamma_{GG}, i \Rightarrow).$

Construction.

► For every GG $G = (V_G, T, P_G, S_G)$, we construct another GG $H = (V_H = V_G \cup \{S_H, \$, \#, \lfloor, \rfloor\}, T, P_H, S_H)$ such that $L(G, _s \Rightarrow) = L(H, _j \Rightarrow)$.

General Jumping Grammars are Turing Complete

 $\mathbf{RE} \subseteq \mathscr{L}(\Gamma_{GG}, {}_{j} \Rightarrow).$

Construction.

- ► For every GG $G = (V_G, T, P_G, S_G)$, we construct another GG $H = (V_H = V_G \cup \{S_H, \$, \#, \lfloor, \rfloor\}, T, P_H, S_H)$ such that $L(G, _s \Rightarrow) = L(H, _j \Rightarrow)$.
- ► S_H , \$, #, [, and] are new nonterminal symbols in H.

$$\begin{split} P_{H} = \{S_{H} \rightarrow \#S_{G}, \# \rightarrow \lfloor \$, \lfloor \rfloor \rightarrow \#, \# \rightarrow \varepsilon\} \cup \\ \{\$\alpha \rightarrow \jmath\beta \mid \alpha \rightarrow \beta \in P_{G}\}. \end{split}$$

イロト イポト イヨト イヨト 三日

General Jumping Grammars are Turing Complete Lemma 20.

 $\mathbf{RE} \subseteq \mathscr{L}(\Gamma_{GG}, {}_{j} \Rightarrow).$

Construction.

- ► For every GG $G = (V_G, T, P_G, S_G)$, we construct another GG $H = (V_H = V_G \cup \{S_H, \$, \#, \lfloor, \rfloor\}, T, P_H, S_H)$ such that $L(G, _s \Rightarrow) = L(H, _j \Rightarrow)$.
- ► S_H , \$, #, [, and] are new nonterminal symbols in H.

$$\begin{split} P_{H} &= \{S_{H} \rightarrow \#S_{G}, \# \rightarrow \lfloor \$, \lfloor \rfloor \rightarrow \#, \# \rightarrow \varepsilon\} \cup \\ &\{\$\alpha \rightarrow \, \rfloor\beta \mid \alpha \rightarrow \beta \in P_{G}\}. \end{split}$$

▶ Idea: Every application of $\alpha \to \beta$ in *G* is simulated in *H*: ...#... α ...; \Rightarrow ...[$\beta\alpha$...; \Rightarrow ...[β ...; \Rightarrow ...#... β ...

・ ロ ト ・ 雪 ト ・ 目 ト ・ 目 ・

General Jumping Grammars are Turing Complete Lemma 20.

 $\mathbf{RE} \subseteq \mathscr{L}(\Gamma_{GG}, {}_{j} \Rightarrow).$

Construction.

- ► For every GG $G = (V_G, T, P_G, S_G)$, we construct another GG $H = (V_H = V_G \cup \{S_H, \$, \#, \lfloor, \rfloor\}, T, P_H, S_H)$ such that $L(G, _s \Rightarrow) = L(H, _j \Rightarrow)$.
- ► S_H , \$, #, [, and] are new nonterminal symbols in H.

$$\begin{split} P_{H} &= \{S_{H} \rightarrow \#S_{G}, \# \rightarrow \lfloor \$, \lfloor \rfloor \rightarrow \#, \# \rightarrow \varepsilon\} \cup \\ &\{\$\alpha \rightarrow \, \rfloor\beta \mid \alpha \rightarrow \beta \in P_{G}\}. \end{split}$$

▶ Idea: Every application of $\alpha \rightarrow \beta$ in *G* is simulated in *H*:

$$\dots \# \dots \alpha \dots j \Rightarrow \dots \lfloor \$ \alpha \dots j \Rightarrow \dots \lfloor \rfloor \beta \dots j \Rightarrow \dots \# \dots \beta \dots$$

Theorem 21.

 $\mathscr{L}(\Gamma_{GG}, {}_{j} \Rightarrow) = \mathbf{RE}.$

.

(日)(御)(王)(王)(王)

Language Families Hierarchy - Results Summary

30 / 38

Semilinearity

Definition 22.

- Let $w \in V^*$ with $V = \{a_1, ..., a_n\}$.
- ► We define Parikh vector of w by $\psi_V(w) = (\operatorname{occur}(a_1, w), \operatorname{occur}(a_2, w), \dots, \operatorname{occur}(a_n, w)).$
- A set of vectors is called *semilinear* if it can be represented as a union of a finite number of sets of the form $\{v_0 + \sum_{i=1}^m \alpha_i v_i \mid \alpha_i \in \mathbb{N}, 1 \le i \le m\}$ where v_i for $0 \le i \le m$ is an *n*-dimensional vector.
- ► A language $L \subseteq V^*$ is called *semilinear* if the set $\psi_V(L) = \{\psi_V(w) \mid w \in L\}$ is a semilinear set.
- A language family is semilinear if all its languages are semilinear.

Semilineary of Context-Free Jumping Language

Lemma 23. For $X \in \{RG, RLG, LG, CFG\}, \mathscr{L}(\Gamma_X, \to)$ is semilinear.

Proof.

▶ By Parikh's Theorem, for each context-free language $L \subseteq V^*$, $\psi_V(L)$ is semilinear.

Semilineary of Context-Free Jumping Language

Lemma 23.

For $X \in \{\text{RG}, \text{RLG}, \text{LG}, \text{CFG}\}, \mathscr{L}(\Gamma_X, \downarrow \Rightarrow)$ is semilinear.

Proof.

- By Parikh's Theorem, for each context-free language L ⊆ V*, ψ_V(L) is semilinear.
- ▶ Let *G* be a CFG such that $L(G, {}_{s} \Rightarrow) = L$.

Semilineary of Context-Free Jumping Language

Lemma 23.

For $X \in \{\text{RG}, \text{RLG}, \text{LG}, \text{CFG}\}, \mathscr{L}(\Gamma_X, \to)$ is semilinear.

Proof.

- By Parikh's Theorem, for each context-free language L ⊆ V*, ψ_V(L) is semilinear.
- ▶ Let *G* be a CFG such that $L(G, {}_{s} \Rightarrow) = L$.
- ▶ From the definition of $_j$ ⇒ and CFG it follows that $\psi(L(G, _s \Rightarrow)) = \psi(L(G, _j \Rightarrow))$ therefore $\psi(L(G, _j \Rightarrow))$ is semilinear as well.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 目 ・

Multiset Grammar and Language

Definition 24.

Let $G = (V, T, P, S) \in \Gamma_{GG}$ be a grammar and $u, v \in V^*$; then, $u_m \Rightarrow v [x \rightarrow y]$ in *G* iff there exist $x \rightarrow y \in P$ and $t, t', z, z' \in V^*$ such that $txt' \in perm(u)$ and $zyz' \in perm(v)$. Then, $L(G, _m \Rightarrow)$ is called multiset language.

Lemma 25.

Let $G \in \Gamma_{GG}$; then, $w \in L(G, _m \Rightarrow)$ implies that $perm(w) \subseteq L(G, _m \Rightarrow)$.

Proof.

Consider Definition 24 with *v* representing every permutation of *v* in every $u_m \Rightarrow v$ in *G* to see that this lemma hold true.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 目 ト

Theorem 26.

 $\mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow)$ is not semilinear. Neither is $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow)$.

Idea.

► Recall that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow)$ contains non-semilinear languages² and

²See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: *Pre-proceedings of the Workshop on Multiset Processing* (Curtea de Arges, August 21-25, 2000), pages 149-158.

Theorem 26.

 $\mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow)$ is not semilinear. Neither is $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow).$

Idea.

- ► Recall that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow)$ contains non-semilinear languages² and
- ► $\mathscr{L}(\Gamma_{CSG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$ follows from the definition.

²See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: *Pre-proceedings of the Workshop on Multiset Processing* (Curtea de Arges, August 21-25, 2000), pages 149-158.

Theorem 26.

 $\mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow)$ is not semilinear. Neither is $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow).$

Idea.

- ► Recall that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow)$ contains non-semilinear languages² and
- ► $\mathscr{L}(\Gamma_{CSG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$ follows from the definition.
- ► We only need to prove that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow) \subseteq \mathscr{L}(\Gamma_{CSG}, {}_j \Rightarrow).$

²See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: *Pre-proceedings of the Workshop on Multiset Processing* (Curtea de Arges, August 21-25, 2000), pages 149-158.

Theorem 26.

 $\mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow)$ is not semilinear. Neither is $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow).$

Idea.

- ► Recall that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow)$ contains non-semilinear languages² and
- ► $\mathscr{L}(\Gamma_{CSG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$ follows from the definition.
- ► We only need to prove that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow) \subseteq \mathscr{L}(\Gamma_{CSG}, {}_j \Rightarrow).$

²See Theorem 1 in "M. Kudlek, C. Martín-Vide, and Gh. Păun, Toward FMT (Formal Macroset Theory), In: *Pre-proceedings of the Workshop on Multiset Processing* (Curtea de Arges, August 21-25, 2000), pages 149-158.

Theorem 26.

 $\mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow)$ is not semilinear. Neither is $\mathscr{L}(\Gamma_{MONG}, {}_{j} \Rightarrow).$

Idea.

- ► Recall that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow)$ contains non-semilinear languages² and
- ► $\mathscr{L}(\Gamma_{CSG}, _{j} \Rightarrow) \subseteq \mathscr{L}(\Gamma_{MONG}, _{j} \Rightarrow)$ follows from the definition.
- ► We only need to prove that $\mathscr{L}(\Gamma_{MONG}, {}_m \Rightarrow) \subseteq \mathscr{L}(\Gamma_{CSG}, {}_j \Rightarrow).$

Corollary 27.

$$\mathscr{L}(\Gamma_{CFG}, {}_{j} \Rightarrow) \subset \mathscr{L}(\Gamma_{CSG}, {}_{j} \Rightarrow).$$

Closure Properties of Jumping Grammars - Work in Progress

Operations	U	\cap	Complement	Reversal
$\mathscr{L}(\Gamma_{JRG}, \mathfrak{z})$	+	+	+	+
$\mathscr{L}(\Gamma_{RLG}, j \Rightarrow)$	+	-	-	+
$\mathscr{L}(\Gamma_{CFG}, \downarrow)$	+	-	-	+?
$\mathscr{L}(\Gamma_{CSG}, i \Rightarrow)$	+	-	-	
$\mathscr{L}(\Gamma_{MONG}, \mathfrak{z})$	+	-	-	
$\mathscr{L}(\Gamma_{GG}, \mathbf{x}_{j} \Rightarrow)$	+	-	-	+

Table: Empty cell = unknown

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

36 / 38

Jumping Grammars

Closure properties

- Closure properties
- Right and Left jumps

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

 Addition of regulating mechanism (matrix, random-context, scattered-context, ...)

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

- Addition of regulating mechanism (matrix, random-context, scattered-context, ...)
- Grammar systems with jumping components?

イロト イポト イヨト イヨト 三日

Jumping Grammars

- Closure properties
- Right and Left jumps
- Alternative Jumping Context-Sensitive Grammars
- Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

- Addition of regulating mechanism (matrix, random-context, scattered-context, ...)
- Grammar systems with jumping components?

• . . .

イロト イポト イヨト イヨト 三日

Thanks for your attention!

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶ ④9.0