
Jumping Grammars

Zbyněk Křivka
krivka@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Czech Republic

Seminar of FM Research Group at FIT BUT,
March 31, 2015

1 / 38

krivka@fit.vutbr.cz

Outline

Introduction

Definitions and Examples

Results
Generative Power of Jumping Grammars
Properties of Jumping Derivations

Conclusion

2 / 38

Introduction

3 / 38

Motivation

I Typical grammars and automata work strictly continuously

I Adaptation of classical models to work on words discontinuously
I Models structure unchanged; only the computation is adapted
I Jumping Finite Automata – ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
I applied mathematics
I computational linguistics
I bioinformatics (DNA computing)
I strongly-scattered information processing

4 / 38

Motivation

I Typical grammars and automata work strictly continuously
I Adaptation of classical models to work on words discontinuously

I Models structure unchanged; only the computation is adapted
I Jumping Finite Automata – ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
I applied mathematics
I computational linguistics
I bioinformatics (DNA computing)
I strongly-scattered information processing

4 / 38

Motivation

I Typical grammars and automata work strictly continuously
I Adaptation of classical models to work on words discontinuously
I Models structure unchanged; only the computation is adapted

I Jumping Finite Automata – ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
I applied mathematics
I computational linguistics
I bioinformatics (DNA computing)
I strongly-scattered information processing

4 / 38

Motivation

I Typical grammars and automata work strictly continuously
I Adaptation of classical models to work on words discontinuously
I Models structure unchanged; only the computation is adapted
I Jumping Finite Automata – ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
I applied mathematics
I computational linguistics
I bioinformatics (DNA computing)
I strongly-scattered information processing

4 / 38

Motivation

I Typical grammars and automata work strictly continuously
I Adaptation of classical models to work on words discontinuously
I Models structure unchanged; only the computation is adapted
I Jumping Finite Automata – ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
I applied mathematics
I computational linguistics
I bioinformatics (DNA computing)
I strongly-scattered information processing

4 / 38

Motivation

I Typical grammars and automata work strictly continuously
I Adaptation of classical models to work on words discontinuously
I Models structure unchanged; only the computation is adapted
I Jumping Finite Automata – ideas applied to Grammars

Possible application fields?
Note: Just theoretical study right now!
I applied mathematics
I computational linguistics
I bioinformatics (DNA computing)
I strongly-scattered information processing

4 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y

I Starting from starting nonterminal, we repeatedly rewrites strings to
get a sentence.

I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.
I Jumping grammars:

Let z = uxv. By using x→ y, G performs:

1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y
I Starting from starting nonterminal, we repeatedly rewrites strings to

get a sentence.

I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.
I Jumping grammars:

Let z = uxv. By using x→ y, G performs:

1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y
I Starting from starting nonterminal, we repeatedly rewrites strings to

get a sentence.
I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.

I Jumping grammars:
Let z = uxv. By using x→ y, G performs:

1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y
I Starting from starting nonterminal, we repeatedly rewrites strings to

get a sentence.
I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.
I Jumping grammars:

Let z = uxv. By using x→ y, G performs:

1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y
I Starting from starting nonterminal, we repeatedly rewrites strings to

get a sentence.
I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.
I Jumping grammars:

Let z = uxv. By using x→ y, G performs:
1. selects an occurrence of x in z;

2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y
I Starting from starting nonterminal, we repeatedly rewrites strings to

get a sentence.
I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.
I Jumping grammars:

Let z = uxv. By using x→ y, G performs:
1. selects an occurrence of x in z;
2. erase x from z;

3. G jumps anywhere in uv and inserts y there.

5 / 38

Basic Idea of Jumping Grammars

I We take a grammar of some type (Chomsky classification, etc.) with
productions of form

x→ y
I Starting from starting nonterminal, we repeatedly rewrites strings to

get a sentence.
I Classical grammars:

Let z = uxv. By using x→ y, G rewrites uxv to uyv.
I Jumping grammars:

Let z = uxv. By using x→ y, G performs:
1. selects an occurrence of x in z;
2. erase x from z;
3. G jumps anywhere in uv and inserts y there.

5 / 38

Trivial Example – DNA Computing

I DNA is a string over {G, A, T , C}. For instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

I We want to study all strings with the same number of Cs and Gs and
the same number of As and Ts. For instance,

CGGCATCCGGTA, but CGCACCGGTA

I Consider the jumping right-linear grammar with productions

1→ C2, 2→ G1, 1→ 3, 3→ A4, 4→ T3, 3→ ε

6 / 38

Trivial Example – DNA Computing

I DNA is a string over {G, A, T , C}. For instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

I We want to study all strings with the same number of Cs and Gs and
the same number of As and Ts. For instance,

CGGCATCCGGTA, but CGCACCGGTA

I Consider the jumping right-linear grammar with productions

1→ C2, 2→ G1, 1→ 3, 3→ A4, 4→ T3, 3→ ε

6 / 38

Trivial Example – DNA Computing

I DNA is a string over {G, A, T , C}. For instance,

GGGGAGTGGGATTGGGAGAGGGGTTTGCCCCGCTCCC

I We want to study all strings with the same number of Cs and Gs and
the same number of As and Ts. For instance,

CGGCATCCGGTA, but CGCACCGGTA

I Consider the jumping right-linear grammar with productions

1→ C2, 2→ G1, 1→ 3, 3→ A4, 4→ T3, 3→ ε

6 / 38

Similar devices

I Algebraic approach
I Commutative language closure
I Formal Macroset Theory - a sentence as a multiset of symbols, order

of symbols is totally irrelevant (Kudlek & Martı́n-Vide & Păun, 2000)
I Accepting devices = Automata

I Jumping Finite Automata (Meduna & Zemek, 2012)
I Generating devices = Grammars

I Commutative Grammars (Crespi-Reghizzi & Mandrioli, 1976)
I Insertion-Deletion Systems (Kari, 1991+, Verlan, 2000+)
I Petri Nets

7 / 38

Definitions and Examples

8 / 38

Formal Language Theory - Basic Notions
I For an alphabet, V, V∗ represents the free monoid generated by V

under concatenation.
I Unit of V∗ is denoted by ε.
I The set of all permutations of w, perm(w), is defined as

perm(w) = {b1b2 · · · bn | bi ∈ alph(w) for all i = 1, 2, . . . , n, and
(b1, b2, . . . , bn) is a permutation of (a1, a2, . . . , an) where
w = a1a2 · · · an}.

9 / 38

Definition 1 (General Grammars).
A general grammar (GG for short) is a quadruple, G = (V , T , P, S), where
I V is an alphabet,
I T ⊆ V is an alphabet of terminals, N = V − T is an alphabet of

nonterminals,
I P is a finite relation from V∗ − T∗ to V∗ (a member is called rule or

production), we write p : x→ y, and
I S ∈ V − T is the start nonterminal.

10 / 38

Definition 2 (Four modes of derivation steps).
Let u, v ∈ V∗. We define the four derivation relations over V∗ as follows

(i) u s⇒ v in G iff there exist x→ y ∈ P and w, z ∈ V∗ such that u = wxz
and v = wyz;

(ii) u lj⇒ v in G iff there exist x→ y ∈ P and w, t, z ∈ V∗ such that u = wtxz
and v = wytz;

(iii) u rj⇒ v in G iff there exist x→ y ∈ P and w, t, z ∈ V∗ such that
u = wxtz and v = wtyz;

(iv) u j⇒ v in G iff u lj⇒ v or u rj⇒ v in G.

I Transitive-reflexive and transitive closures of h⇒ are denoted by h⇒
∗

and h⇒
+, for h ∈ {s, lj, rj, j}.

I Let k ≥ 0 and h⇒k = {(x, y) | (x, y) ∈ h⇒, occur(N, x) ≤ k,
occur(N, y) ≤ k}.

11 / 38

Definition 3 (Generated Language).
Let G = (V , T , P, S) be a GG. Set

L(G, h⇒) = {x ∈ T∗ | S h⇒
∗ x}.

L(G, h⇒) is said to be the language that G generates by using h⇒.

For any X ⊆ ΓGG, set

L (X, h⇒) = {L(G, h⇒) | G ∈ X}.

12 / 38

Grammars Subclasses
Let G be a GG.
I G is a monotonous grammar (MONG) if every x→ y ∈ P satisfies
|x| ≤ |y|.

I G is a context-sensitive grammar (CSG) if every x→ y ∈ P satisfies
x = αAβ and y = αγβ such that A ∈ N, α, β ∈ V∗, and γ ∈ V+.

I G is a context-free grammar (CFG) if every x→ y ∈ P satisfies x ∈ N.
I G is an ε-free context-free grammar (CFG−ε) if G is a CFG and every

x→ y ∈ P satisfies y , ε.
I G is a linear grammar (LG) if G is a CFG and every x→ y ∈ P

satisfies y ∈ T∗NT∗ ∪ T∗.
I G is a right-linear grammar (RLG) if G is a CFG and every x→ y ∈ P

satisfies y ∈ T∗N ∪ T∗.
I G is a regular grammar (RG) if G is a CFG and every x→ y ∈ P

satisfies y ∈ TN ∪ T.

13 / 38

Language Families

Grammar Classes
Let ΓX denote the set of all X grammars, for all X ∈ {GG, MONG, CSG,
CFG, CFG−ε, LG, RLG, RG}.

Definition 4 (Well-known Language Families).
Set
I REG = L (ΓRLG, s⇒),
I LIN = L (ΓLG, s⇒),
I CF = L (ΓCFG, s⇒),
I CS = L (ΓMONG, s⇒), and
I RE = L (ΓGG, s⇒).
I Let k be a positive integer. Set CFk =

⋃k
i≥1 L (ΓCFG, s⇒i) and

CFfin = {L | L ∈ CFi, for some i ≥ 1} (grammars of finite index).

Recall FIN ⊂ REG ⊂ LIN ⊂ CFfin ⊂ CF ⊂ CS ⊂ RE

14 / 38

Jumping Grammars – Examples

Example 5 (Example of Jumping Regular Grammar).
Consider RG

G = ({A, B, C, a, b, c}, Σ = {a, b, c}, P, A)

where P = {A→ aB, B→ bC, C → cA, C → c}.

L(G, s⇒) = {abc}{abc}∗ ∈ REG, but

L(G, j⇒) = {w ∈ Σ∗ | occur({a}, w) = occur({b}, w) = occur({c}, w)} ∈ CS.

15 / 38

Jumping Grammars – Examples

Example 6 (Example of Jumping Context-Sensitive Grammar).
Consider CSG G = ({S, A, B, a, b}, {a, b}, P, S) with productions:

S → aABb
S → ab

AB → AABB
aA → aa
Bb → bb

L(G, s⇒) = {anbn | n ≥ 1}.

Using j⇒, we can make the following derivation sequence:
S j⇒ aABb j⇒ aAABBb j⇒ aAABbb j⇒ aaABbb j⇒ aBbbaa j⇒ abbbaa

Notice: L(G, s⇒) ∈ CF, but we cannot generate it by any jumping CFG,
CSG or even MONG.

16 / 38

Results

17 / 38

Jumping grammars are weak with sequences
Lemma 7.
{a}∗{b}∗ < L (ΓMONG, j⇒).

Proof Idea.

I Assume MONG G = (V , T , P, S) such that L(G, j⇒) = {a}∗{b}∗.

I Let p : x→ y ∈ P and S j⇒
∗ uxv j⇒ w [p] where w ∈ L(G, j⇒),

u, v ∈ T∗ and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+.
I In addition, assume that the sentential form uxv is longer than x such

that uv ∈ {a}+{b}+.

(a) If y contains at least one symbol b, the last jumping derivation step can
place y at the beginning of the sentence and create a string from
{a, b}∗{b}{a, b}∗{a}{a, b}∗ that does not belong to {a}∗{b}∗.

(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

I This is a contradiction.

�
18 / 38

Jumping grammars are weak with sequences
Lemma 7.
{a}∗{b}∗ < L (ΓMONG, j⇒).

Proof Idea.

I Assume MONG G = (V , T , P, S) such that L(G, j⇒) = {a}∗{b}∗.

I Let p : x→ y ∈ P and S j⇒
∗ uxv j⇒ w [p] where w ∈ L(G, j⇒),

u, v ∈ T∗ and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+.

I In addition, assume that the sentential form uxv is longer than x such
that uv ∈ {a}+{b}+.

(a) If y contains at least one symbol b, the last jumping derivation step can
place y at the beginning of the sentence and create a string from
{a, b}∗{b}{a, b}∗{a}{a, b}∗ that does not belong to {a}∗{b}∗.

(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

I This is a contradiction.

�
18 / 38

Jumping grammars are weak with sequences
Lemma 7.
{a}∗{b}∗ < L (ΓMONG, j⇒).

Proof Idea.

I Assume MONG G = (V , T , P, S) such that L(G, j⇒) = {a}∗{b}∗.

I Let p : x→ y ∈ P and S j⇒
∗ uxv j⇒ w [p] where w ∈ L(G, j⇒),

u, v ∈ T∗ and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+.
I In addition, assume that the sentential form uxv is longer than x such

that uv ∈ {a}+{b}+.

(a) If y contains at least one symbol b, the last jumping derivation step can
place y at the beginning of the sentence and create a string from
{a, b}∗{b}{a, b}∗{a}{a, b}∗ that does not belong to {a}∗{b}∗.

(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

I This is a contradiction.

�
18 / 38

Jumping grammars are weak with sequences
Lemma 7.
{a}∗{b}∗ < L (ΓMONG, j⇒).

Proof Idea.

I Assume MONG G = (V , T , P, S) such that L(G, j⇒) = {a}∗{b}∗.

I Let p : x→ y ∈ P and S j⇒
∗ uxv j⇒ w [p] where w ∈ L(G, j⇒),

u, v ∈ T∗ and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+.
I In addition, assume that the sentential form uxv is longer than x such

that uv ∈ {a}+{b}+.
(a) If y contains at least one symbol b, the last jumping derivation step can

place y at the beginning of the sentence and create a string from
{a, b}∗{b}{a, b}∗{a}{a, b}∗ that does not belong to {a}∗{b}∗.

(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

I This is a contradiction.

�
18 / 38

Jumping grammars are weak with sequences
Lemma 7.
{a}∗{b}∗ < L (ΓMONG, j⇒).

Proof Idea.

I Assume MONG G = (V , T , P, S) such that L(G, j⇒) = {a}∗{b}∗.

I Let p : x→ y ∈ P and S j⇒
∗ uxv j⇒ w [p] where w ∈ L(G, j⇒),

u, v ∈ T∗ and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+.
I In addition, assume that the sentential form uxv is longer than x such

that uv ∈ {a}+{b}+.
(a) If y contains at least one symbol b, the last jumping derivation step can

place y at the beginning of the sentence and create a string from
{a, b}∗{b}{a, b}∗{a}{a, b}∗ that does not belong to {a}∗{b}∗.

(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

I This is a contradiction.

�
18 / 38

Jumping grammars are weak with sequences
Lemma 7.
{a}∗{b}∗ < L (ΓMONG, j⇒).

Proof Idea.

I Assume MONG G = (V , T , P, S) such that L(G, j⇒) = {a}∗{b}∗.

I Let p : x→ y ∈ P and S j⇒
∗ uxv j⇒ w [p] where w ∈ L(G, j⇒),

u, v ∈ T∗ and y ∈ {a}+ ∪ {b}+ ∪ {a}+{b}+.
I In addition, assume that the sentential form uxv is longer than x such

that uv ∈ {a}+{b}+.
(a) If y contains at least one symbol b, the last jumping derivation step can

place y at the beginning of the sentence and create a string from
{a, b}∗{b}{a, b}∗{a}{a, b}∗ that does not belong to {a}∗{b}∗.

(b) By analogy, if y contains at least one symbol a, the last jumping
derivation step can place y at the end of the sentence and therefore,
place at least one a behind some bs.

I This is a contradiction.

�
18 / 38

Incomparability with regular and context-free languages
Corollary 8.
The following pairs of language families are incomparable, but not disjoint:
I REG and L (ΓMONG, j⇒);

I CF and L (ΓMONG, j⇒);

I REG and L (ΓRG, j⇒);

I CF and L (ΓRG, j⇒).

Proof.

I Since REG ⊂ CF, it is sufficient to prove that REG − L (ΓMONG, j⇒),
L (ΓRG, j⇒) − CF, and REG ∩ L (ΓRG, j⇒) are non-empty

I By previous lemma 7, {a}∗{b}∗ ∈ REG −L (ΓMONG, j⇒).

I For L (ΓRG, j⇒) −CF , ∅, see Example 5.

I Regular language {a}∗ ∈ L (ΓRG, j⇒), so REG∩L (ΓRG, j⇒) is
non-empty.

�19 / 38

Incomparability with regular and context-free languages
Corollary 8.
The following pairs of language families are incomparable, but not disjoint:
I REG and L (ΓMONG, j⇒);

I CF and L (ΓMONG, j⇒);

I REG and L (ΓRG, j⇒);

I CF and L (ΓRG, j⇒).

Proof.

I Since REG ⊂ CF, it is sufficient to prove that REG − L (ΓMONG, j⇒),
L (ΓRG, j⇒) − CF, and REG ∩ L (ΓRG, j⇒) are non-empty

I By previous lemma 7, {a}∗{b}∗ ∈ REG −L (ΓMONG, j⇒).

I For L (ΓRG, j⇒) −CF , ∅, see Example 5.

I Regular language {a}∗ ∈ L (ΓRG, j⇒), so REG∩L (ΓRG, j⇒) is
non-empty.

�19 / 38

Incomparability with regular and context-free languages
Corollary 8.
The following pairs of language families are incomparable, but not disjoint:
I REG and L (ΓMONG, j⇒);

I CF and L (ΓMONG, j⇒);

I REG and L (ΓRG, j⇒);

I CF and L (ΓRG, j⇒).

Proof.

I Since REG ⊂ CF, it is sufficient to prove that REG − L (ΓMONG, j⇒),
L (ΓRG, j⇒) − CF, and REG ∩ L (ΓRG, j⇒) are non-empty

I By previous lemma 7, {a}∗{b}∗ ∈ REG −L (ΓMONG, j⇒).

I For L (ΓRG, j⇒) −CF , ∅, see Example 5.

I Regular language {a}∗ ∈ L (ΓRG, j⇒), so REG∩L (ΓRG, j⇒) is
non-empty.

�19 / 38

Incomparability with regular and context-free languages
Corollary 8.
The following pairs of language families are incomparable, but not disjoint:
I REG and L (ΓMONG, j⇒);

I CF and L (ΓMONG, j⇒);

I REG and L (ΓRG, j⇒);

I CF and L (ΓRG, j⇒).

Proof.

I Since REG ⊂ CF, it is sufficient to prove that REG − L (ΓMONG, j⇒),
L (ΓRG, j⇒) − CF, and REG ∩ L (ΓRG, j⇒) are non-empty

I By previous lemma 7, {a}∗{b}∗ ∈ REG −L (ΓMONG, j⇒).

I For L (ΓRG, j⇒) −CF , ∅, see Example 5.

I Regular language {a}∗ ∈ L (ΓRG, j⇒), so REG∩L (ΓRG, j⇒) is
non-empty.

�19 / 38

Open Problems

Since simple regular language such as {a}+{b}+ cannot be generated by
jumping CSGs or even jumping MONGs, we pinpoint the following open
problem:

Problem 9.

I Is L (ΓCFG, j⇒) ⊆ L (ΓCSG, j⇒) proper?

I Is L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) proper?

20 / 38

Open Problems

Since simple regular language such as {a}+{b}+ cannot be generated by
jumping CSGs or even jumping MONGs, we pinpoint the following open
problem:

Problem 9.

I Is L (ΓCFG, j⇒) ⊆ L (ΓCSG, j⇒) proper?

I Is L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) proper?

20 / 38

Context-sensitive jumping is weaker than classical one

Theorem 10.
L (ΓMONG, j⇒) ⊂ CS.

Proof.

I By demonstrating transformation of any jumping MONG,
G = (VG, T , PG, S), to an equivalent MONG, H = (VH , T , PH , S).

I Set VH = NH ∪ T and NH = NG ∪ {X̄ | X ∈ VG}.
I Let π be the homomorphism from V∗G to V∗H defined by π(X) = X̄ for

all X ∈ VG. Set PH = P1 ∪ P2 where

I P1 =
⋃
α→β∈PG {α→ π(β), π(β)→ β}

I P2 =
⋃
α→β∈PG {Xπ(β)→ π(β)X, π(β)X → Xπ(β) | X ∈ VG}

I Clearly, {a}∗{b}∗ ∈ CS, so CS −L (ΓMONG, j⇒) is non-empty. Hence,
this theorem holds.

�

21 / 38

Context-sensitive jumping is weaker than classical one

Theorem 10.
L (ΓMONG, j⇒) ⊂ CS.

Proof.

I By demonstrating transformation of any jumping MONG,
G = (VG, T , PG, S), to an equivalent MONG, H = (VH , T , PH , S).

I Set VH = NH ∪ T and NH = NG ∪ {X̄ | X ∈ VG}.

I Let π be the homomorphism from V∗G to V∗H defined by π(X) = X̄ for
all X ∈ VG. Set PH = P1 ∪ P2 where

I P1 =
⋃
α→β∈PG {α→ π(β), π(β)→ β}

I P2 =
⋃
α→β∈PG {Xπ(β)→ π(β)X, π(β)X → Xπ(β) | X ∈ VG}

I Clearly, {a}∗{b}∗ ∈ CS, so CS −L (ΓMONG, j⇒) is non-empty. Hence,
this theorem holds.

�

21 / 38

Context-sensitive jumping is weaker than classical one

Theorem 10.
L (ΓMONG, j⇒) ⊂ CS.

Proof.

I By demonstrating transformation of any jumping MONG,
G = (VG, T , PG, S), to an equivalent MONG, H = (VH , T , PH , S).

I Set VH = NH ∪ T and NH = NG ∪ {X̄ | X ∈ VG}.
I Let π be the homomorphism from V∗G to V∗H defined by π(X) = X̄ for

all X ∈ VG. Set PH = P1 ∪ P2 where

I P1 =
⋃
α→β∈PG {α→ π(β), π(β)→ β}

I P2 =
⋃
α→β∈PG {Xπ(β)→ π(β)X, π(β)X → Xπ(β) | X ∈ VG}

I Clearly, {a}∗{b}∗ ∈ CS, so CS −L (ΓMONG, j⇒) is non-empty. Hence,
this theorem holds.

�

21 / 38

Context-sensitive jumping is weaker than classical one

Theorem 10.
L (ΓMONG, j⇒) ⊂ CS.

Proof.

I By demonstrating transformation of any jumping MONG,
G = (VG, T , PG, S), to an equivalent MONG, H = (VH , T , PH , S).

I Set VH = NH ∪ T and NH = NG ∪ {X̄ | X ∈ VG}.
I Let π be the homomorphism from V∗G to V∗H defined by π(X) = X̄ for

all X ∈ VG. Set PH = P1 ∪ P2 where

I P1 =
⋃
α→β∈PG {α→ π(β), π(β)→ β}

I P2 =
⋃
α→β∈PG {Xπ(β)→ π(β)X, π(β)X → Xπ(β) | X ∈ VG}

I Clearly, {a}∗{b}∗ ∈ CS, so CS −L (ΓMONG, j⇒) is non-empty. Hence,
this theorem holds.

�

21 / 38

Context-sensitive jumping is weaker than classical one

Theorem 10.
L (ΓMONG, j⇒) ⊂ CS.

Proof.

I By demonstrating transformation of any jumping MONG,
G = (VG, T , PG, S), to an equivalent MONG, H = (VH , T , PH , S).

I Set VH = NH ∪ T and NH = NG ∪ {X̄ | X ∈ VG}.
I Let π be the homomorphism from V∗G to V∗H defined by π(X) = X̄ for

all X ∈ VG. Set PH = P1 ∪ P2 where

I P1 =
⋃
α→β∈PG {α→ π(β), π(β)→ β}

I P2 =
⋃
α→β∈PG {Xπ(β)→ π(β)X, π(β)X → Xπ(β) | X ∈ VG}

I Clearly, {a}∗{b}∗ ∈ CS, so CS −L (ΓMONG, j⇒) is non-empty. Hence,
this theorem holds.

�

21 / 38

Context-sensitive jumping is weaker than classical one

Theorem 10.
L (ΓMONG, j⇒) ⊂ CS.

Proof.

I By demonstrating transformation of any jumping MONG,
G = (VG, T , PG, S), to an equivalent MONG, H = (VH , T , PH , S).

I Set VH = NH ∪ T and NH = NG ∪ {X̄ | X ∈ VG}.
I Let π be the homomorphism from V∗G to V∗H defined by π(X) = X̄ for

all X ∈ VG. Set PH = P1 ∪ P2 where

I P1 =
⋃
α→β∈PG {α→ π(β), π(β)→ β}

I P2 =
⋃
α→β∈PG {Xπ(β)→ π(β)X, π(β)X → Xπ(β) | X ∈ VG}

I Clearly, {a}∗{b}∗ ∈ CS, so CS −L (ΓMONG, j⇒) is non-empty. Hence,
this theorem holds.

�

21 / 38

Dyck Language with Finite Index?

Example 11.
Consider Dyck language of all well-written arithmetic expression only with
(,) and [,].

By classical CFG G

E → (E)E, E → [E]E, E → ε

But G is not of a finite index!

By jumping RLG H

E → ()E
E → []E
E → ε

Observe that H is of index 1.

22 / 38

Dyck Language with Finite Index?

Example 11.
Consider Dyck language of all well-written arithmetic expression only with
(,) and [,].

By classical CFG G

E → (E)E, E → [E]E, E → ε

But G is not of a finite index!

By jumping RLG H

E → ()E
E → []E
E → ε

Observe that H is of index 1.

22 / 38

Jumping Finite Automata

Definition 12.
A general jumping finite automaton (GJFA) is a quintuple
M = (Q, Σ, R, s, F), where
I Q is finite set of states
I Σ is the input alphabet, Q∩ Σ = ∅,
I R ⊆ Q × Σ∗ ×Q is finite, member are called rules, instead of
(p, y, q) ∈ R, we write py→ q ∈ R,

I s ∈ Q is the start state, and
I F ⊆ Q is a set of final states.

If py→ q ∈ R implies that |y| ≤ 1, then M is a jumping finite automaton
(JFA).

23 / 38

Jumping Finite Automata

Definition 12.
A general jumping finite automaton (GJFA) is a quintuple
M = (Q, Σ, R, s, F), where
I Q is finite set of states
I Σ is the input alphabet, Q∩ Σ = ∅,
I R ⊆ Q × Σ∗ ×Q is finite, member are called rules, instead of
(p, y, q) ∈ R, we write py→ q ∈ R,

I s ∈ Q is the start state, and
I F ⊆ Q is a set of final states.

If py→ q ∈ R implies that |y| ≤ 1, then M is a jumping finite automaton
(JFA).

23 / 38

Jumping Finite Automata – Language

Definition 13.
A configuration of M is any string in Σ∗QΣ∗. The binary jumping relation,

symbolically denoted byy, over Σ∗QΣ∗:
I Let x, z, x′, z′ ∈ Σ∗ such that xz = x′z′ and py→ q ∈ R; then, M makes

a jump from xpyz to x′qz′, symbolically written as xpyzy x′qz′.
I In the standard manner, we extenty toym, where m ≥ 0,y+, and
y∗.

The language accepted by M, denoted by L(M), is defined as
L(M) = {uv | u, v ∈ Σ∗, usvy∗ f , f ∈ F}.
GJFA and JFA denote the families of languages accepted by GJFAs and
JFAs, respectively.

Recall known1 results
JFA ⊂ GJFA, FIN ⊂ GJFA, and FIN and JFA are incomparable.

1See “A. Meduna and P. Zemek, Jumping Automata. Int. J. Found. Comput.
Sci. 23(2012) 1555–1578.”

24 / 38

GJFA = L (ΓRLG, j⇒)

Lemma 14.
GJFA ⊆ L (ΓRLG, j⇒).

Proof.
For every GJFA M = (Q, Σ, R, s, F), we construct a RLG
G = (Q∪ Σ ∪ {S}, Σ, P, S), where S is a new nonterminal, S < Q∪ Σ, such
that L(M) = L(G, j⇒).

P = {S→ f | f ∈ F} ∪ {q→ xp | px→ q ∈ R} ∪ {q→ x | sx→ q ∈ R}

Basic Idea

I Principle: analogous to conversion from classical general (lazy) finite
automata to equivalent RLGs

I First, S is nondeterministically rewritten to some f in G. Let w = uv.

usvy∗ ypxy′ y zqz′z′′ [px→ q] y∗ f in M
is simulated in G by

S j⇒ f j⇒
∗ zz′qz′′ j⇒ yxpy′ [q→ xp] j⇒

∗ w, where yy′ = zz′z′′.

�

25 / 38

GJFA = L (ΓRLG, j⇒)

Lemma 14.
GJFA ⊆ L (ΓRLG, j⇒).

Proof.
For every GJFA M = (Q, Σ, R, s, F), we construct a RLG
G = (Q∪ Σ ∪ {S}, Σ, P, S), where S is a new nonterminal, S < Q∪ Σ, such
that L(M) = L(G, j⇒).

P = {S→ f | f ∈ F} ∪ {q→ xp | px→ q ∈ R} ∪ {q→ x | sx→ q ∈ R}

Basic Idea

I Principle: analogous to conversion from classical general (lazy) finite
automata to equivalent RLGs

I First, S is nondeterministically rewritten to some f in G. Let w = uv.

usvy∗ ypxy′ y zqz′z′′ [px→ q] y∗ f in M
is simulated in G by

S j⇒ f j⇒
∗ zz′qz′′ j⇒ yxpy′ [q→ xp] j⇒

∗ w, where yy′ = zz′z′′.

�

25 / 38

GJFA = L (ΓRLG, j⇒)

Lemma 15.
L (ΓRLG, j⇒) ⊆ GJFA.

Proof.
For every RLG G = (V, T, P, S), we construct a GJFA M = (N ∪ {σ}, T, R,
σ, {S}), where σ is a new start state, σ < V and N = V − T, such that
L(G, j⇒) = L(M).

R = {Bx→ A | A→ xB ∈ P, A, B ∈ N, x ∈ T∗} ∪
{σx→ A | A→ x ∈ P, x ∈ T∗}

Basic Idea

I The start nonterminal of G corresponds to the only final state of M.

S j⇒
∗ yy′Ay′′ j⇒ zxBz′ [A→ xB] j⇒

∗ w
is simulated by M’s jumping moves as

uσvy∗ zBxz′ y yAy′y′′ [Bx→ A] y∗ S, where yy′y′′ = zz′ and
w = uv.

�
26 / 38

Equivalence with Jumping Finite Automata

Theorem 16.
GJFA = L (ΓRLG, j⇒).

Proof.
This theorem holds by Lemmas 14 and 15. �

Theorem 17.
JFA = L (ΓRG, j⇒).

Proof.

I Consider jumping finite automata that processes only one input
symbol in one move.

I Proof is analogical to the proof of Theorem 16 with x ∈ T.

�

27 / 38

Equivalence with Jumping Finite Automata

Theorem 16.
GJFA = L (ΓRLG, j⇒).

Proof.
This theorem holds by Lemmas 14 and 15. �

Theorem 17.
JFA = L (ΓRG, j⇒).

Proof.

I Consider jumping finite automata that processes only one input
symbol in one move.

I Proof is analogical to the proof of Theorem 16 with x ∈ T.

�

27 / 38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
L (ΓRLG, j⇒) = L (ΓLG, j⇒) =

⋃
k≥1 L (ΓCFG, j⇒k).

Idea.

I Since L (ΓRLG, j⇒) ⊆ L (ΓLG, j⇒) ⊆
⋃

k≥1 L (ΓCFG, j⇒k) follows
from the definitions, it suffices to proof that⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓRLG, j⇒) (transform G to H).

I VH = {〈x〉 | x ∈
k⋃

i=1
(VG − T)i} ∪ T

I PH = {〈αAβ〉 → τ(x)〈γ〉 | A→ x ∈ PG, α, β ∈ N∗, γ = αβη(x),
1 ≤ |γ| ≤ k} ∪ {〈A〉 → x | A→ x ∈ PG, x ∈ T∗}

�

Problem 19.
Is
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓCFG, j⇒) proper?

28 / 38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
L (ΓRLG, j⇒) = L (ΓLG, j⇒) =

⋃
k≥1 L (ΓCFG, j⇒k).

Idea.

I Since L (ΓRLG, j⇒) ⊆ L (ΓLG, j⇒) ⊆
⋃

k≥1 L (ΓCFG, j⇒k) follows
from the definitions, it suffices to proof that⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓRLG, j⇒) (transform G to H).

I VH = {〈x〉 | x ∈
k⋃

i=1
(VG − T)i} ∪ T

I PH = {〈αAβ〉 → τ(x)〈γ〉 | A→ x ∈ PG, α, β ∈ N∗, γ = αβη(x),
1 ≤ |γ| ≤ k} ∪ {〈A〉 → x | A→ x ∈ PG, x ∈ T∗}

�

Problem 19.
Is
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓCFG, j⇒) proper?

28 / 38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
L (ΓRLG, j⇒) = L (ΓLG, j⇒) =

⋃
k≥1 L (ΓCFG, j⇒k).

Idea.

I Since L (ΓRLG, j⇒) ⊆ L (ΓLG, j⇒) ⊆
⋃

k≥1 L (ΓCFG, j⇒k) follows
from the definitions, it suffices to proof that⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓRLG, j⇒) (transform G to H).

I VH = {〈x〉 | x ∈
k⋃

i=1
(VG − T)i} ∪ T

I PH = {〈αAβ〉 → τ(x)〈γ〉 | A→ x ∈ PG, α, β ∈ N∗, γ = αβη(x),
1 ≤ |γ| ≤ k} ∪ {〈A〉 → x | A→ x ∈ PG, x ∈ T∗}

�

Problem 19.
Is
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓCFG, j⇒) proper?

28 / 38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
L (ΓRLG, j⇒) = L (ΓLG, j⇒) =

⋃
k≥1 L (ΓCFG, j⇒k).

Idea.

I Since L (ΓRLG, j⇒) ⊆ L (ΓLG, j⇒) ⊆
⋃

k≥1 L (ΓCFG, j⇒k) follows
from the definitions, it suffices to proof that⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓRLG, j⇒) (transform G to H).

I VH = {〈x〉 | x ∈
k⋃

i=1
(VG − T)i} ∪ T

I PH = {〈αAβ〉 → τ(x)〈γ〉 | A→ x ∈ PG, α, β ∈ N∗, γ = αβη(x),
1 ≤ |γ| ≤ k} ∪ {〈A〉 → x | A→ x ∈ PG, x ∈ T∗}

�

Problem 19.
Is
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓCFG, j⇒) proper?

28 / 38

Right-Linear, Linear and Finite Index Jumping Grammars

Theorem 18.
L (ΓRLG, j⇒) = L (ΓLG, j⇒) =

⋃
k≥1 L (ΓCFG, j⇒k).

Idea.

I Since L (ΓRLG, j⇒) ⊆ L (ΓLG, j⇒) ⊆
⋃

k≥1 L (ΓCFG, j⇒k) follows
from the definitions, it suffices to proof that⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓRLG, j⇒) (transform G to H).

I VH = {〈x〉 | x ∈
k⋃

i=1
(VG − T)i} ∪ T

I PH = {〈αAβ〉 → τ(x)〈γ〉 | A→ x ∈ PG, α, β ∈ N∗, γ = αβη(x),
1 ≤ |γ| ≤ k} ∪ {〈A〉 → x | A→ x ∈ PG, x ∈ T∗}

�

Problem 19.
Is
⋃

k≥1 L (ΓCFG, j⇒k) ⊆ L (ΓCFG, j⇒) proper?

28 / 38

General Jumping Grammars are Turing Complete
Lemma 20.
RE ⊆ L (ΓGG, j⇒).

Construction.

I For every GG G = (VG, T , PG, SG), we construct another GG
H = (VH = VG ∪ {SH , $, #, b, c}, T , PH , SH) such that
L(G, s⇒) = L(H, j⇒).

I SH , $, #, b, and c are new nonterminal symbols in H.

PH = {SH → #SG, #→ b$, b c → #, #→ ε} ∪

{$α→cβ | α→ β ∈ PG}.
I Idea: Every application of α→ β in G is simulated in H:

. . . # . . . α . . . j⇒ . . . b$α . . . j⇒ . . . bcβ . . . j⇒ . . . # . . . β . . .

�

Theorem 21.
L (ΓGG, j⇒) = RE.

29 / 38

General Jumping Grammars are Turing Complete
Lemma 20.
RE ⊆ L (ΓGG, j⇒).

Construction.

I For every GG G = (VG, T , PG, SG), we construct another GG
H = (VH = VG ∪ {SH , $, #, b, c}, T , PH , SH) such that
L(G, s⇒) = L(H, j⇒).

I SH , $, #, b, and c are new nonterminal symbols in H.

PH = {SH → #SG, #→ b$, b c → #, #→ ε} ∪

{$α→cβ | α→ β ∈ PG}.

I Idea: Every application of α→ β in G is simulated in H:

. . . # . . . α . . . j⇒ . . . b$α . . . j⇒ . . . bcβ . . . j⇒ . . . # . . . β . . .

�

Theorem 21.
L (ΓGG, j⇒) = RE.

29 / 38

General Jumping Grammars are Turing Complete
Lemma 20.
RE ⊆ L (ΓGG, j⇒).

Construction.

I For every GG G = (VG, T , PG, SG), we construct another GG
H = (VH = VG ∪ {SH , $, #, b, c}, T , PH , SH) such that
L(G, s⇒) = L(H, j⇒).

I SH , $, #, b, and c are new nonterminal symbols in H.

PH = {SH → #SG, #→ b$, b c → #, #→ ε} ∪

{$α→cβ | α→ β ∈ PG}.
I Idea: Every application of α→ β in G is simulated in H:

. . . # . . . α . . . j⇒ . . . b$α . . . j⇒ . . . bcβ . . . j⇒ . . . # . . . β . . .

�

Theorem 21.
L (ΓGG, j⇒) = RE.

29 / 38

General Jumping Grammars are Turing Complete
Lemma 20.
RE ⊆ L (ΓGG, j⇒).

Construction.

I For every GG G = (VG, T , PG, SG), we construct another GG
H = (VH = VG ∪ {SH , $, #, b, c}, T , PH , SH) such that
L(G, s⇒) = L(H, j⇒).

I SH , $, #, b, and c are new nonterminal symbols in H.

PH = {SH → #SG, #→ b$, b c → #, #→ ε} ∪

{$α→cβ | α→ β ∈ PG}.
I Idea: Every application of α→ β in G is simulated in H:

. . . # . . . α . . . j⇒ . . . b$α . . . j⇒ . . . bcβ . . . j⇒ . . . # . . . β . . .

�

Theorem 21.
L (ΓGG, j⇒) = RE.

29 / 38

Language Families Hierarchy - Results Summary

RE L (ΓGG, j⇒)

CS

L (ΓMONG, j⇒)

L (ΓCSG, j⇒)

CFCF−ε

L (ΓCFG, j⇒) L (ΓCFG−ε , j⇒)

LIN

REG

FIN

L (ΓRLG, j⇒)
⋃

k≥1 L (ΓCFG, j⇒k)

L (ΓRG, j⇒)

GJFA

JFA

30 / 38

Semilinearity

Definition 22.

I Let w ∈ V∗ with V = {a1, . . . , an}.
I We define Parikh vector of w by
ψV(w) = (occur(a1, w), occur(a2, w), . . . , occur(an, w)).

I A set of vectors is called semilinear if it can be represented as a union
of a finite number of sets of the form
{v0 +

∑m
i=1 αivi | αi ∈N, 1 ≤ i ≤ m} where vi for 0 ≤ i ≤ m is an

n-dimensional vector.
I A language L ⊆ V∗ is called semilinear if the set
ψV(L) = {ψV(w) | w ∈ L} is a semilinear set.

I A language family is semilinear if all its languages are semilinear.

31 / 38

Semilineary of Context-Free Jumping Language

Lemma 23.
For X ∈ {RG, RLG, LG, CFG}, L (ΓX , j⇒) is semilinear.

Proof.

I By Parikh’s Theorem, for each context-free language L ⊆ V∗, ψV(L) is
semilinear.

I Let G be a CFG such that L(G, s⇒) = L.
I From the definition of j⇒ and CFG it follows that
ψ(L(G, s⇒)) = ψ(L(G, j⇒)) therefore ψ(L(G, j⇒)) is semilinear as
well.

�

32 / 38

Semilineary of Context-Free Jumping Language

Lemma 23.
For X ∈ {RG, RLG, LG, CFG}, L (ΓX , j⇒) is semilinear.

Proof.

I By Parikh’s Theorem, for each context-free language L ⊆ V∗, ψV(L) is
semilinear.

I Let G be a CFG such that L(G, s⇒) = L.

I From the definition of j⇒ and CFG it follows that
ψ(L(G, s⇒)) = ψ(L(G, j⇒)) therefore ψ(L(G, j⇒)) is semilinear as
well.

�

32 / 38

Semilineary of Context-Free Jumping Language

Lemma 23.
For X ∈ {RG, RLG, LG, CFG}, L (ΓX , j⇒) is semilinear.

Proof.

I By Parikh’s Theorem, for each context-free language L ⊆ V∗, ψV(L) is
semilinear.

I Let G be a CFG such that L(G, s⇒) = L.
I From the definition of j⇒ and CFG it follows that
ψ(L(G, s⇒)) = ψ(L(G, j⇒)) therefore ψ(L(G, j⇒)) is semilinear as
well.

�

32 / 38

Multiset Grammar and Language

Definition 24.
Let G = (V , T , P, S) ∈ ΓGG be a grammar and u, v ∈ V∗; then,
u m⇒ v [x→ y] in G iff there exist x→ y ∈ P and t, t′, z, z′ ∈ V∗ such that
txt′ ∈ perm(u) and zyz′ ∈ perm(v). Then, L(G, m⇒) is called multiset
language.

Lemma 25.
Let G ∈ ΓGG; then, w ∈ L(G, m⇒) implies that perm(w) ⊆ L(G, m⇒).

Proof.
Consider Definition 24 with v representing every permutation of v in every
u m⇒ v in G to see that this lemma hold true. �

33 / 38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
L (ΓCSG, j⇒) is not semilinear. Neither is L (ΓMONG, j⇒).

Idea.

I Recall that L (ΓMONG, m⇒) contains non-semilinear languages2 and

I L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) follows from the definition.

I We only need to prove that L (ΓMONG, m⇒) ⊆ L (ΓCSG, j⇒).

�

Corollary 27.
L (ΓCFG, j⇒) ⊂ L (ΓCSG, j⇒).

2See Theorem 1 in “M. Kudlek, C. Martı́n-Vide, and Gh. Păun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158.”

34 / 38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
L (ΓCSG, j⇒) is not semilinear. Neither is L (ΓMONG, j⇒).

Idea.

I Recall that L (ΓMONG, m⇒) contains non-semilinear languages2 and
I L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) follows from the definition.

I We only need to prove that L (ΓMONG, m⇒) ⊆ L (ΓCSG, j⇒).

�

Corollary 27.
L (ΓCFG, j⇒) ⊂ L (ΓCSG, j⇒).

2See Theorem 1 in “M. Kudlek, C. Martı́n-Vide, and Gh. Păun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158.”

34 / 38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
L (ΓCSG, j⇒) is not semilinear. Neither is L (ΓMONG, j⇒).

Idea.

I Recall that L (ΓMONG, m⇒) contains non-semilinear languages2 and
I L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) follows from the definition.

I We only need to prove that L (ΓMONG, m⇒) ⊆ L (ΓCSG, j⇒).

�

Corollary 27.
L (ΓCFG, j⇒) ⊂ L (ΓCSG, j⇒).

2See Theorem 1 in “M. Kudlek, C. Martı́n-Vide, and Gh. Păun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158.”

34 / 38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
L (ΓCSG, j⇒) is not semilinear. Neither is L (ΓMONG, j⇒).

Idea.

I Recall that L (ΓMONG, m⇒) contains non-semilinear languages2 and
I L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) follows from the definition.

I We only need to prove that L (ΓMONG, m⇒) ⊆ L (ΓCSG, j⇒).

�

Corollary 27.
L (ΓCFG, j⇒) ⊂ L (ΓCSG, j⇒).

2See Theorem 1 in “M. Kudlek, C. Martı́n-Vide, and Gh. Păun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158.”

34 / 38

Non-semilinearity of Context-Sensitive Jumping
Languages

Theorem 26.
L (ΓCSG, j⇒) is not semilinear. Neither is L (ΓMONG, j⇒).

Idea.

I Recall that L (ΓMONG, m⇒) contains non-semilinear languages2 and
I L (ΓCSG, j⇒) ⊆ L (ΓMONG, j⇒) follows from the definition.

I We only need to prove that L (ΓMONG, m⇒) ⊆ L (ΓCSG, j⇒).

�

Corollary 27.
L (ΓCFG, j⇒) ⊂ L (ΓCSG, j⇒).

2See Theorem 1 in “M. Kudlek, C. Martı́n-Vide, and Gh. Păun, Toward FMT
(Formal Macroset Theory), In: Pre-proceedings of the Workshop on Multiset
Processing (Curtea de Arges, August 21-25, 2000), pages 149-158.”

34 / 38

Closure Properties of Jumping Grammars - Work in
Progress

Operations ∪ ∩ Complement Reversal
L (ΓJRG, j⇒) + + + +
L (ΓRLG, j⇒) + - - +
L (ΓCFG, j⇒) + - - +?
L (ΓCSG, j⇒) + - -
L (ΓMONG, j⇒) + - -
L (ΓGG, j⇒) + - - +

Table: Empty cell = unknown

35 / 38

Conclusion

36 / 38

Extensions and Future

Jumping Grammars

I Closure properties

I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps

I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars

I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?

I . . .

37 / 38

Extensions and Future

Jumping Grammars

I Closure properties
I Right and Left jumps
I Alternative Jumping Context-Sensitive Grammars
I Relationship with Formal Macroset Theory

New Jumping Grammars with Regulation

I Addition of regulating mechanism (matrix, random-context,
scattered-context, ...)

I Grammar systems with jumping components?
I . . .

37 / 38

Thanks for your attention!

38 / 38

	Introduction
	Definitions and Examples
	Results
	Generative Power of Jumping Grammars
	Properties of Jumping Derivations

	Conclusion

