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Motivation

The difficulty of the transition from the representation of an integer in a number system (e.g.

rep10(n) = 19605131) to its multiplicative representation (as a product of prime factors :

n = 7 × 13 × 17 × 19 × 23 × 29) is at the origin of many important open problems in

mathematics and computer science.

Our talk concerns the study of independence between multiplicative functions and functions defined

using a simple algorithm or ”deterministic” functions.
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A simple remark

The study of

subsets Ei of N, (i ∈ {1, ..., g})

is linked to the study of

infinite sequences of symbols over A = {a1, ..., ag},

w = w0, w1, ..., wn, ... with wn ∈ A.

Example 1. E1 = 2N, E2 = 2N+1 and w = (n mod 2)n∈N.
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Representation of integers in base q

If q is an integer greater than or equal to 2, any positive integer n can be written in a unique

way in base q in the form n =
∑`
j=0 njq

j, nj ∈ {0, . . . , q − 1}, n` ≥ 1 and we denote

by repq(n) = n` . . . n0 ∈ {0, . . . , q − 1}∗ the representation of n in base q (for any finite

alphabet A, we denote by A∗ the set of finite words over A).

To any E ⊂ N we associate the language Lq(E) = {repq(n), n ∈ E} ⊂ {0, . . . , q − 1}∗.

Many questions concerning arithmetic sequences can then be expressed in the framework of the

theory of formal languages, thus establishing a link between number theory, language theory and

combinatorics on words.
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Finite automata

Definition 1. A finite q-automaton is a quadruplet Aq = (S, Sf , s0, ϕ) with

i) S is a finite alphabet, (states) ;

ii) Sf ⊂ S, (final states) ;

iii) s0 ∈ S, (initial state) ;

iv) ϕ a map from S × {0, ..., q − 1} to S.

For any (s, d) ∈ S × {0, ..., q − 1}, we put ϕ(s, d) = s.d and we extend ϕ into a map ϕ̃

from E × N to E in the following way : if repq(n) = n` . . . n0, then we put for any s ∈ S,

ϕ̃(s, n) = s.n = (. . . ((s.n`).n`−1) . . .).n0.

Definition 2. We say thatE ⊂ N is recognizable by the finite q-automatonAq = (S, Sf , s0, ϕ)

if

E = {n ∈ N|ϕ̃(s0, n) ∈ Sf}.
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Graph associated to a finite automaton

The labeled graph G(Aq) associated to the finite automaton Aq is the graph G(Aq) = (S,U)
for which
i) S is the set of vertices of G(Aq) ;
ii) U = {(s, s′, d) ∈ E × E × {0, ..., q − 1}|ϕ(s, d) = s′} is the set of labeled edges of
G(Aq).

Example 2. The set {qn, n ∈ N} is recognizable by the finite q-automaton

Aq = {{s0, s1, s2}, {s1}, s0, ϕ}

whose graph G(Aq) is

s0 s1 s2

0

1

2, ..., q − 1

0

1, ..., q − 1

0, ..., q − 1
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Christol, Kamae, Mendes-France and Rauzy theorem (1980)

G. Christol, Kamae, Mendes-France and Rauzy, Suites algébriques, automates et substitutions,

Bull. Soc. Math. France 108 (1980), 401-419.

Theorem 1. The formal power series
∑
n∈EX

−n ∈ Fq[[X−1]] is algebraic over Fq(X)

if and only if

E is recognizable by a finite q-automaton.

Example 3. If E = {qn, n ∈ N}, then

f(X) =
∑
n∈E

X−n =
∑
n≥0

X−q
n
= X−1 + f(Xq) = X−1 + f(X)q.
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Prime numbers

The prime numbers constitute a fascinating sequence which poses many difficult questions. Let us

mention some known results and some open problems :

Known prime numbers

– primes of the form an+ b (Dirichlet theorem) ;

– primes such that αp (mod 1) belongs to some prescribed interval I ∈ [0,1], for α ∈ R−Q
(Vinogradov-Davenport theorem) ;

– primes of the form [nc] where 1 < c < c0 ≈ 1.1 (Piatetski-Shapiro theorem) ;

– primes of the form a2 + b4 (Friedlander-Iwaniec theorem) ;

– primes of the form a3 +2b3 (Heath-Brown theorem) ;

– arbitrarily long arithmetic progressions of primes (Green-Tao theorem).

8



Prime numbers

Open problems

– are there infinitely many primes of the form p+2 (prime twins) ?

– are there infinitely many primes of the form n2 +1 ?

– are there infinitely many primes of the form 2n− 1 (Mersenne primes, i.e. primes with no digit

0 in their representation in base 2) ?

– are there infinitely many primes of the form 22
n
+ 1 (Fermat primes, i.e. primes with exactly

two digits 1 in their representation in base 2) ?
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Prime numbers and finite automata

If E = P is the set of primes, it is natural to ask whether there is a simple algorithm for deciding

whether a given integer n does belong to E or not.

Minsky and Papert had shown in 1966 that Lq(P) is never a rational language, i. e. the set

of prime numbers is not recognizable by a q-finite automaton. This fundamental result has been

generalized by Hartmanis and Shank and Schützenberger in 1968, showing that no infinite subset

of primes is recognizable by a finite automaton (or even by a pushdown automaton).

q-finite automaton can be identified to special cases of morphisms (or substitutions) on a finite

alphabet : the morphisms (or substitutions) of constant length equal to q. Mauduit showed in

1992 that the set of prime numbers can not be generated by a morphism (or substitution) on a

finite alphabet and introduced in 2006 a notion of q-infinite automaton for which Cassaigne and

Le Gonidec showed the non-recognizability of the set of primes.

On the other hand, this question has received a new light with the development by Agrawal, Kayal

and Saxena in 2004 of a polynomial time algorithm to solve it.
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Prime numbers in q-automatic sets

The search of prime numbers in a set recognizable by a q-finite automaton is a problem in general

extremely difficult. Thus, the sets {2n+1, n ∈ N} and {2n−1, n ∈ N} are both recognizable

by a 2-finite automaton and the associate problems correspond respectively to the research of

Fermat and Mersenne primes.

When E is a set recognizable by an irreducible q-finite automaton (i. e. that the graph of the

automaton is strongly connected), it follows from a remark due to Fouvry-Mauduit (1996) that the

set E contains infinitely many almost prime numbers But the following problem remains open :

Problem 1. For any E ⊂ N recognizable by an irreducible q-finite automaton, find an asymptotic

estimate of the number of primes less than x belonging to the set E.

When the finite automaton is not irreducible, the situation becomes very difficult. The first problem

to be studied in this direction concerns probably the search of prime numbers with missing digits.
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The Cantor sequence

c ∈ {0,1}N is the fixed point of the substitution σ defined on the alphabet {0,1} by

σ(0) = 010 and σ(1) = 111.

We have :

c = (cn)n∈N = 0101110101111111110101110101111111111111111111.......

It is an easy exercise to check that for any integer n ∈ N we have cn = 0 if and only if

rep3(n) ∈ {0,1}∗, so that he set {n ∈ N, cn = 0} is recognizable by the finite 3-automaton

A3 = {{s0, s1}, {s0}, s0, ϕ} whose graph G(A3) is

s0 s1

0,2

1

0,1,2
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Integers with missing digits

Erdős, Mauduit and Sárközy studied the repartition in residues classes of integers with missing

digits (1998) and showed an Erdős-Kac inequality for the function ω (counting the number of

distinct prime factors) resticted to integers with missing digits (1999).

But we could not solve the following problem that remains still open :

Problem 2. For any given D ⊂ {0, . . . , q − 1}, find an asymptotic estimate for card{p ≤
x, repq(p) ∈ D∗}.
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The Thue-Morse sequence

t ∈ {0,1}N is the fixed point of the substitution σ defined on the alphabet {0,1} by

σ(0) = 01 and σ(1) = 10.

We have :

t = (tn)n∈N = 01101001100101101001011001101001.......

If n =
∑
j≥0 njq

j with nj ∈ {0, ..., q − 1} is the representation of the integer n in base q,

then the sum of digits in base q function is defined by sq(n) =
∑
j≥0 nj.

It is an easy exercise to check that for any integer n ∈ N we have tn ≡ s2(n) mod 2, so that he

set {n ∈ N, tn = 1} is recognizable by the finite 2-automaton A2 = {{s0, s1}, {s1}, s0, ϕ}
whose graph G(A2) is

s0 s1

0

1

0

1
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Combinatorial properties of the Thue-Morse sequence

Theorem 2. (Thue 1912) The sequence t doesn’t contain any subword of the form WWw where

w is the first letter of the word W .

Theorem 3. (Morse 1921) The sequence t is non periodic but any subword occuring in t occurs

infinitely often with bounded gaps.

Let us define, for any infinite sequence w = w0w1...wk... ∈ {0,1}N and for any non negative

integer n, the complexity function pw by :

pw(n) = number of distincts blocks of lenght n occuring in w

Card{(b1, ..., bn) ∈ {0,1}n, ∃k s.t. wkwk+1...wk+n−1 = b1...bn}.

For the Thue Morse sequence, we have c1n ≤ pt(n) ≤ c2n.
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Resolution of the Gelfond conjecture for prime numbers

C. Mauduit and J. Rivat, Sur un problème de Gelfond : la somme des chiffres des nombres premiers,

Annals of Math., vol. 171(2010), 1591-1646.

The following theorem answers a question asked in 1968 by Gelfond concerning the sum of digits

of prime numbers.

Theorem 4. (Mauduit-Rivat, 2010) For any α ∈ R such that (q − 1)α ∈ R \ Z, there exists

σq(α) > 0 such that for any x ≥ 1,∑
p≤x

exp
(
2iπαsq(p)

)
�q,α x

1−σq(α).

Corollary 1. The frequencies of 0 and 1 in the sequence

tP = (tp)p∈P = 10011101001011010.......

are equal to 1
2.
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A local theorem

M. Drmota, C. Mauduit and J. Rivat, Prime numbers with an average sum of digits, Compositio
Mathematica 145 (2009), 271-292.
Theorem 5. (Drmota-Mauduit-Rivat, 2009) We have, uniformly for any positive integer k ≥ 0
such that (k, q − 1) = 1

card{p ≤ x : sq(p) = k} =
q − 1

ϕ(q − 1)

π(x)√
2πσ2q logq x

(
exp(−

(k − µq logq x)2

2σ2q logq x
) +O((logx)−

1
2+ε)

)
,

with µq :=
q−1
2 , σ2q := q2−1

12 and any given ε.

This theorem provides a local version of both Copeland-Erdős normality theorem (1946) and of
Bassily-Katai central limit theorem (1995). It follows from Theorem 6 that the number of primes
whose binary representation contains n digits 0 and n digits 1 is asymptotically equal to

4n−1
√
π log 2n3/2

.

But the following problem remains open :

Problem 3. Find an asymptotic estimate of the number of primes whose binary representation
contains 2n digits 0 and n digits 1.
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The Rudin-Shapiro sequence

r ∈ {0,1}N is the projection of the fixed point ρ of the substitution σ defined on the alphabet

{a, b, c, d} by σ(a) = ab, σ(b) = ac, σ(c) = db and σ(d) = dc. We have :

ρ = abacabdbabacdcacabacabdb.......

and

r = (rn)n∈N = 000100100001110100010010.......

It is an easy exercise to check that if rep2(n) = n` . . . n0 ∈ {0,1}∗ is the representation

of n in base 2 , then rn ≡
∑

0≤j<` njnj+1 mod 2, so that he set {n ∈ N, rn = 1} is

recognizable by the finite 2-automaton A2 = {{s0, s1, s2, s3}, {s2, s3}, s0, ϕ} whose graph

G(A2) is

s0 s1 s2 s3

0
1 1

0

0

1

0

1
18



Prime number theorem for Rudin-Shapiro-sequence

C. Mauduit and J. Rivat, Prime numbers along Rudin-Shapiro sequences, Journal of the European

Mathematical Society (to appear).

Theorem 6. (Mauduit-Rivat, 2015) There exists σ > 0 such that for any θ ∈ R and x ≥ 1,∑
p≤x

rp exp(2iπpθ)� x1−σ.

Corollary 2. The frequencies of 0 and 1 in the sequence

rP = (rp)p∈P = 010011010.......

are equal to 1
2.
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Computational complexity of the Möbius function

We denote by µ the Möbius function, defined by µ(1) = 1, µ(p1 . . . pk) = (−1)k if

p1, . . . , pk are distinct prime numbers and µ(n) = 0 if n is divisible by the square of a prime

number. The function µ is multiplicative, i. e. µ(mn) = µ(m)µ(n) for any coprime positive

integers m and n and µ2 is the characteristic function of square-free numbers.

µ = (µ(n))n≥1 = 1,−1,−1,0,−1,1,−1,0,0,1,−1,0,−1,1,1,0,−1,0,−1,0, ...

The results and problems presented in this talk show the independence between the multiplicative

property ”to be a prime number”and q-automatic properties. They are naturally connected to the

Möbius randomness principle for q-automatic sequences u. This principle often stated vaguely in

the literature, says that ”for any reasonable sequence u = (u(n))n∈N of complex numbers, the

sum
∑
n≤x µ(n)u(n) is relatively small ”.

20



Green and Bourgain theorems

Some recent works of Green and Bourgain concern the particular case where u is a sequence with

values in the finite alphabet A = {−1,1} and are motivated by the study of the computational

complexity of µ. The goal is to prove the orthogonality of the Möbius function with certain classes

of Boolean functions in relation with a series of questions stated by Kalai on his blog.

Theorem 7. (Green, 2012) If u ∈ {−1,1}N is computable by a Boolean function representable

by a circuit of depth at most d and size at most nd, then∑
n<2ν

µ(n)u(n) = O(2ν exp(d log ν − ν1/6d)). (1)

From a result of Linial-Mansour-Nisan, the problem turns into giving good estimates for the Fourier-

Walsh transform
∑
n<2ν µ(n)(−1)sE(n), where E ⊂ N verifies cardE = O(

√
ν

log ν) and sE
is the restricted sum of binary digits function, defined by sE(n) =

∑
j≤`
j∈E

nj if repq(n) =

n` . . . n0.
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By generalizing the method introduced by Mauduit-Rivat to study the extreme case where E = N
in the proof of Theorem 5, Bourgain extended in 2012 the estimate (1) to any set E by showing

that

max
E⊂{0,...,ν−1}

∑
n<2ν

µ(n)(−1)sE(n) = O(2ν−ν
1/10

). (2)

Moreover, by studying precisely the distribution of these Fourier-Walsh coefficients, Bourgain de-

duced in 2013, using a result of Bshouty-Tamon concerning the localization of the Walsh-Fourier

spectrum of monotone Boolean functions, a proof of the orthogonality of these functions with

the Möbius function and in very recent paper a lower bounds for the number of prime numbers

captured by these functions.
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