5'-3' WK FINITE and PUSHDOWN AUTOMATA

Benedek Nagy

Eastern Mediterranean University, Famagusta <u>nbenedek.inf@gmail.com</u>

Brno, 2017

Outline of the talk

- Chomsky hierarchy (preliminaries)
 - 5'-3' WK finite automata
 - Pushdown automata
- 5'-3' WK pushdown automata
 - Definition
 - Examples
 - Some results (semi-linearity, pumping property)
- Concluding remarks

An extended Chomsky hierarchy

- Finite
- Union-free regular Finite automata
- Regular
- Even/Fix-rated linear
- Linear
- Context-free
- Permutation
- Context-sensitive LBA,
- Recursively enumerable Turing machine

5'-3' WK finite automata Pushdown automata Einite U-free

Regular

Even-Linear

Linear

Context-Free

Permutation

Context-Sensitive

Recursively Enumerable

Motivation

- Context-free grammars/languages are popular
 - Theory well-developed
 - Several applications
- Non context-free
 - In several cases, CF is not enough
 - CS is to large (very complex languages are included)
- AIM: larger than CF, but moderate complexity
- Regular-linear (finite automata – 2-head finite automata) analogy

Finite automata

- (Q,s,V,F,d)
 Q: set of states, s: initial state (in Q)
 V: input alphabet (terminal alphabet in grammars)
 - F: set of final states (subset of Q)
 - d: transition function
- Deterministic: $d:QxV \rightarrow Q$
- Non-deterministic: d:Qx(VU{λ})→2^Q
 (ε is also used in the role of the empty word)

Linear languages

• Definition by grammar:

$$A \to v, A \to vBw$$

- Normal form for the grammar: $A \rightarrow aB, A \rightarrow Ba, A \rightarrow a \ (A, B \in N, a \in T)$
- Even-linear languages (normal form):

$$A \to aBb, A \to a. A \to \lambda$$

Linear languages – parallelism in automata

- Finite automata
 - With 2 heads: reading the word from the beginning and from its end, parallely:

(Q,s,V,d,F) non-deterministic version:

 $d:Qx(VU{\lambda})x(VU{\lambda})\rightarrow 2^{Q}$

(deterministic version, if at most 1 transition allowed in any configuration, i.e., QxV*)

2-head automata - results

- the non-deterministic 2-head automata accept exactly the linear languages.
- for each 2-head automaton there is an equivalent one (with 2-head), in which in each step (transaction) only one of the heads are moving. (normal form)
- The deterministic version of the 2-head automata is weaker : new class: 2detLin

Examples (two possible notions)

Pushdown automata

- (input) tape, finite control, stack (memory) (nondeterministic) :
- Σ tapealphabet, Q set of states, q₀ initial state
- Γ stackalphabet, Z₀ initial symbol in the stack
- δ transition function: (T \cup { λ })xQx Γ) \rightarrow 2^{Γ *xQ} (finite)
- Configuration: (v,q,z)
- v the remaining part of the input word
- z the contents of the stack; q actual state
- initial: (w, q₀,Z₀), accepting: (λ ,q, λ) OR (λ ,q_f, z)

2-Head Pushdown Automata (2hpda)

- The ordered septuple $M = (Q, \Sigma, \Gamma, \delta s, Z, F)$ is a 2-head pushdown automaton (2hpda), where
 - Q is the finite set of states,
 - $-s \in Q$ is the initial state,
 - $\mathsf{F} \subseteq \mathsf{Q}$ is the set of final (or accepting) states,
 - Σ , Γ are the input and stack alphabets with
 - the initial stack symbol $Z \in \Gamma$.
 - The transition function δ is defined as a mapping from $Qx(\Sigma \cup \{\lambda\})^2 x\Gamma$ into finite subsets of $Q x \Gamma^*$.

How 2hpda works

A <u>configuration</u> of a 2hpda is a triplet (q, v, y) containing the actual state q, the unread (unprocessed) part v of the input and the actual content y of the stack (the top element is written as the first symbol of y.) The initial configuration of M on input w is (s, w, Z). The transitions of M are defined between pairs of its configurations: $(q, avb, Xy) \vdash (q', v, xy)$, where $q, q' \in Q$, $a, b \in \Sigma \cup \{\lambda\}, v \in \Sigma^*, y, x \in \Gamma^*$ and $(q', x) \in \delta(q, a, b, X)$. The reflexive and transitive closure of this relation is denoted by \vdash^* (as usual).

M accepts the input $w \in \Sigma^*$ by a final state if $(s, w, Z) \vdash^* (q, \lambda, y)$ with a $q \in F$ $(y \in \Gamma^*)$. The language $L_f(M)$ accepted by M by final state contains exactly those words that M accepts by a final state. Further, let \mathcal{L}_f denote the family of languages that are accepted by some 2hpda by final state.

The input $w \in \Sigma^*$ is accepted by M by empty stack if $(s, w, Z) \vdash^* (q, \lambda, \lambda)$ with any $q \in Q$. Consequently, the set of words accepted in this way form the language $L_e(M)$ accepted (or recognized) by M by empty stack. The class of languages for that there are some 2hpda that accept them by empty stack is denoted by \mathcal{L}_e .

First results

- The class of languages that are accepted by empty-stack by some 2hpda and the class of languages that are accepted by nal state by some 2hpda are the same.
- Notation: \mathcal{L}_{2hpda} instead of \mathcal{L}_f and \mathcal{L}_e :
- The class \mathcal{L}_{2hpda} contains all context-free languages.

Technical results – normal forms

- 1. A 2hpda is in head normal form if in each transition at most one of its heads moves.
- 2. A 2hpda is in stack normal form if each of its transitions is
- either a clear pop, i.e., it is of type $(p, \lambda) \in \delta(q, a, b, X)$ $(p, q \in Q, a, b \in \Sigma \cup \{\lambda\}, X \in \Gamma);$
- or a push with exactly one stack symbol, i.e., $(p, YX) \in \delta(q, a, b, X)$ $(p, q \in Q, a, b \in \Sigma \cup \{\lambda\}, X, Y \in \Gamma)$;
- or the stack does not change: $(p, X) \in \delta(q, a, b, X)$ $(p, q \in Q, a, b \in \Sigma \cup \{\lambda\}, X \in \Gamma)$.
- 3. A 2hpda is in strong normal form if it is in both head normal form and stack normal form.

• Now, to underline the efficiency of 2hpda's some interesting examples are presented.

 But, first, we recall the concept of Mildly context-sensitive language classes

Mildly context-sensitive languages

- From motivation of formal linguistics
- Mildly context-sensitive classes of languages
 - Containing all CF languages
 - Containing only semi-linear languages
 - Polynomial word problem
 - They contain the 3 linguistically important non context-free languages:

Example 4.1 Let $M = (\{s, p, q\}, \{a, b, c\}, \{Z, X\}, \delta, s, Z, \{q\})$ be a 2hpda, where δ is defined as follows:

 $(s, XZ) \in \delta(s, a, c, Z) \quad (s, XX) \in \delta(s, a, c, X) \quad (p, \lambda) \in \delta(s, b, \lambda, X)$

 $(p,\lambda) \in \delta(p,b,\lambda,X)$ $(q,\lambda) \in \delta(p,\lambda,\lambda,Z).$

•	aaabbbccc	S	Z	
•	aabbbcc	S	XZ	
•	abbbc	S	XXZ	
•	bbb	S	XXXZ	
•	bb	р	XXZ	
•	b	р	XZ	
•	-	р	Z	
•	-	q	-	ACCEPT

Example 4.1 Let $M = (\{s, p, q\}, \{a, b, c\}, \{Z, X\}, \delta, s, Z, \{q\})$ be a 2hpda, where δ is defined as follows:

 $(s, XZ) \in \delta(s, a, c, Z) \quad (s, XX) \in \delta(s, a, c, X) \quad (p, \lambda) \in \delta(s, b, \lambda, X)$

 $(p,\lambda) \in \delta(p,b,\lambda,X)$ $(q,\lambda) \in \delta(p,\lambda,\lambda,Z).$

• The language of triple (multiple) agreement

$$L_{abc} = \{a^n b^n c^n \mid n > 0\}$$

is accepted.

Example 4.2 Let $M = (\{s, p, q, r\}, \{a, b, c\}, \{Z, X\}, \delta, s, Z, \{r\})$ be a 2hpda, where δ is defined as follows:

 $(s, XZ) \in \delta(s, a, \lambda, Z)$ $(s, XX) \in \delta(s, a, \lambda, X)$ $(p, X) \in \delta(s, b, d, X)$

 $(p, X) \in \delta(p, b, d, X)$ $(q, \lambda) \in \delta(p, c, \lambda, X)$ $(q, \lambda) \in \delta(q, c, \lambda, X)$

 $(r,\lambda)\in\delta(q,\lambda,\lambda,Z).$

• The language of crossed dependencies

 $L_{abcd} = \{a^n b^m c^n d^m \mid n, m > 0\}$ is recognized.

Example 4.3 Let $M = (\{s, p, q\}, \{a, b\}, \{Z, A, B\}, \delta, s, Z, \{q\})$ be a 2hpda, where δ is defined as follows:

 $\begin{aligned} (s, AZ) &\in \delta(s, a, \lambda, Z) & (s, BZ) \in \delta(s, b, \lambda, Z) & (s, AA) \in \delta(s, a, \lambda, A) \\ (s, BA) &\in \delta(s, b, \lambda, A) & (s, AB) \in \delta(s, a, \lambda, B) & (s, BB) \in \delta(s, b, \lambda, B) \\ \hline (p, A) &\in \delta(s, \lambda, \lambda, A) & (p, B) \in \delta(s, \lambda, \lambda, B) & (p, \lambda) \in \delta(p, \lambda, a, A) \\ (p, \lambda) &\in \delta(p, \lambda, b, B) & (q, \lambda) \in \delta(p, \lambda, \lambda, Z). \end{aligned}$

 The accepted language is the copy language, that is

$$L_{ww} = \{ww \mid w \in \{a, b\}^+\}.$$

• Observe: non-deterministic.

Example 4.4 Let $M = (\{s, p, q\}, \{a, b, c\}, \{Z, A, B\}, \delta, s, Z, \{q\})$ be a 2hpda, where δ is defined as follows:

- $(s, AZ) \in \delta(s, a, \lambda, Z) \quad (s, BZ) \in \delta(s, b, \lambda, Z) \quad (s, AA) \in \delta(s, a, \lambda, A)$
- $(s,BA)\in \delta(s,b,\lambda,A) \quad \ (s,AB)\in \delta(s,a,\lambda,B) \quad \ (s,BB)\in \delta(s,b,\lambda,B)$
- $(p,A) \in \delta(s,c,\lambda,A)$ $(p,B) \in \delta(s,c,\lambda,B)$ $(p,\lambda) \in \delta(p,\lambda,a,A)$

 $(p,\lambda) \in \delta(p,\lambda,b,B)$ $(q,\lambda) \in \delta(p,\lambda,\lambda,Z).$

• Marked copy is accepted:

$$L_{wcw} = \{wcw \mid w \in \{a, b\}^+\}.$$

Properties of 2HPDA Languages

• Each 2hpda language is semi-linear.

The Parikh image of a string w over an ordered alphabet $\{a_1, \ldots, a_k\}$ is the vector $\Psi(w) = (m_1, \ldots, m_k)$ of non-negative integers such that m_i is the number of occurrences of a_i in w. The Parikh image of a language L is the set of vectors $\Psi(L) = \{\Psi(w) \mid w \in L\}$. Two languages are *letter equivalent* if their Parikh images coincide.

A set of the form $\{\alpha_0 + n_1\alpha_1 + \cdots + n_m\alpha_m \mid n_j \ge 0 \text{ for } j = 1, 2, \ldots, m\}$, where $\alpha_0, \alpha_1, \ldots, \alpha_m$ are vectors of non-negative integers, is said to be a *linear* set. A *semi-linear* set is a finite union of linear sets. A language is semi-linear if its Parikh image is semi-linear. It is well-known [17] that the Parikh images of regular languages and Parikh images of context-free languages coincide with semi-linear sets; but there are non semi-linear context-sensitive languages.

Properties of 2HPDA Languages

• Each 2hpda language is semi-linear.

The Parikh image of a string w over an ordered alphabet $\{a_1, \ldots, a_k\}$ is the vector $\Psi(w) = (m_1, \ldots, m_k)$ of non-negative integers such that m_i is the number of occurrences of a_i in w. The Parikh image of a language L is the set of vectors $\Psi(L) = \{\Psi(w) \mid w \in L\}$. Two languages are *letter equivalent* if their Parikh images coincide.

A set of the form $\{\alpha_0 + n_1\alpha_1 + \cdots + n_m\alpha_m \mid n_j \ge 0 \text{ for } j = 1, 2, \ldots, m\}$, where $\alpha_0, \alpha_1, \ldots, \alpha_m$ are vectors of non-negative integers, is said to be a *linear* set. A *semi-linear* set is a finite union of linear sets. A language is semi-linear if its Parikh image is semi-linear. It is well-known [17] that the Parikh images of regular languages and Parikh images of context-free languages coincide with semi-linear sets; but there are non semi-linear context-sensitive languages.

• HINT: 2hpda \rightarrow letter equivalent PDA

The place in the hierarchy

The class is \mathcal{L}_{2hpda} strictly between the context-free and context-sensitive classes.

Closure properties

The language class accepted by the class of 2-head pushdown automata is closed under operations

- union,
- reversal and
- homomorphisms.

NON-Closure properties

We need some tools...

Pumping of 2hpda languages

• Let *L* be a 2hpda language. If *L* is infinite, then there is a value $n \in N$ such that each word $w \in L$ with |w| > n can be written in the form $w = u_0v_1u_1v_2u_2v_3u_3v_4u_4$ such that $|v_1v_2v_3v_4| > 0$ and for each $r \in N \ u_0v_1^ru_1v_2^ru_2v_3^ru_3v_4^ru_4 \in L$.

CF-composability

- Let *L* be a 2hpda language. Then,
- there exist two context-free languages L_1 and L_2 with the following properties
- every $w \in L$ can be factorized to w = uv, such that $u \in L_1$, $v \in L_2$;
- for every word $u \in L_1$ there is a word $v \in L_2$ such that $uv \in L$; and
- for every word $v \in L_2$ there is a word $u \in L_1$ such that $uv \in L$.

NON-Closure properties

The language class accepted by the class of 2-head pushdown automata is NOT closed under operations

- intersection,
- complement (union-yes, intersection-no→NO)
- concatenation
- and square, Kleene-star, Kleene-plus.

Some relations

New type of automata:

Finite Automata — Pushdown Automata 2-head finite automata — 2hpda

Some relations

New type of automata: Finite Automata Pushdown Automata Regular CF 2-head finite automata 2hpda Linear NEW CLASS of LANG.

NEW CLASS of LANG.

Semi-linear, all CF lang. are included Important mildly CS languages Pumping and closure properties

Parsing (in P, actually, n⁵) Special subclasses of 5′-3′ WK-PDA: deterministic, stateless, to introduce the determinisistic variants, acceptance with final states will be more important

 We have seen some examples already: marked copy, multiple agreement, cross dependencies.

2hPDA and control PDA

Definition 3.1 Let $M = (Q, \Sigma, \Gamma, q_0, \bot, F, \delta)$ be a 2hPDA in head normal form. Let $\Sigma' := \{\overleftarrow{a} \mid a \in \Sigma\} \cup \{\overrightarrow{a} \mid a \in \Sigma\}$, and let $M' = (Q, \Sigma', \Gamma, q_0, \bot, F, \delta')$ be a (1h)PDA, where we define δ' as follows:

- let $(q', s') \in \delta'(q, \overleftarrow{a}, s)$, if and only if, $(q', s') \in \delta(q, a, \lambda, s)$, where $q, q' \in Q$, $s \in \Gamma$, $s' \in \Gamma^*$ and $a \in \Sigma$;
- let $(q', s') \in \delta'(q, \overrightarrow{a}, s)$, if and only if, $(q', s') \in \delta(q, \lambda, a, s)$, where $q, q' \in Q$, $s \in \Gamma$, $s' \in \Gamma^*$ and $a \in \Sigma$;
- let $(q', s') \in \delta'(q, \lambda, s)$, if and only if, $(q', s') \in \delta(q, \lambda, \lambda, s)$, where $q, q' \in Q$, $s \in \Gamma$ and $s' \in \Gamma^*$.

We call M' the control PDA of M.

Theorem 3.2 Let $M = (Q, \Sigma, \Gamma, q_0, \bot, F, \delta)$ be a 2hPDA in head normal form, and let $M' = (Q, \Sigma', \Gamma, q_0, \bot, F, \delta')$ be its control PDA. Then M is deterministic, if and only if, both (i) and (ii) hold.

(i) M' is deterministic, and (ii) for every $q \in Q$ and $r \in \Gamma$, at most one of the following can be true: (ii/a) $\exists a \in \Sigma : \delta'(q, \overleftarrow{a}, r) \neq \emptyset$, (ii/b) $\exists a \in \Sigma : \delta'(q, \overrightarrow{a}, r) \neq \emptyset$, (ii/c) $\delta'(q, \lambda, r) \neq \emptyset$.

Properties of det2HPDA

- A deterministic PDA may run into loops during input processing, if λ-movements are allowed. The PDA may stuck in an infinite loop of λ movements either leaving unprocessed letters on the input tape, or it may successfully read the input word, and then get into an infinite loop. These loops can be eliminated.
- We have proven similar result for det2hPDA:
- Each det2hpda is equivalent with a loop-free det2hpda.

Properties of det2HPDA Languages

- The deterministic 2hPDA language family contains the deterministic context-free language family and also det.LIN and 2detLIN families.
- Based on loop elimination, the deterministic 2hPDA language family is closed under complement.
- This class is incomparable with LIN and CF.
- Anti-closure properties: it is not closed under union, intersection, concatenation, Kleene-star.
- Closure: it is closed under reversal (detCF is NOT!); closed under intersection with regular languages

Stateless / simple variants

 Every language of the class of 5' – 3' WK pda languages can be accepted by a stateless (N) 5' – 3' WK pda.

 Every language of the class of 5' – 3' WK pda languages can be accepted by a 5' – 3' WK pda with the property that at most one of the heads read some symbol(s) in each transition.

Thank you!

- 1. B. Nagy: On 5'→3' sensing Watson-Crick finite automata (2007), DNA13, The 13th International Meeting on DNA Computing, Memphis, Tennessee, USA, 327-336. (preproceedings)
- 2. B. Nagy: On 5'→3' sensing Watson-Crick finite automata, DNA 13, Lecture Notes in Computer Science LNCS 4848 (2008), 256-262.
- 3. On a hierarchy of 5'→3' sensing WK finite automata languages, CiE 2009, Computability in Europe 2009: Mathematical Theory and Computational Practice, Abstract Booklet, University of Heidelberg, Germany, 266-275.
- 4. with. P. Leupold, 5'→3' Watson-Crick automata with several runs, Workshop on Non-Classical Models of Automata and Applications (NCMA), (satellite event of the International Symposium on Fundamentals of Computation Theory FCT), Wroclaw, Poland, (2009) 167-180.
- 5. $5' \rightarrow 3'$ Watson-Crick automata with several runs, Fundamenta Informaticae 104 (2010) 71-91. (co-author: Peter Leupold)
- 6. Benedek Nagy: 5' → 3' Sensing Watson-Crick Finite Automata, Sequence and Genome Analysis II Methods and Applications, iConcept Press (2010), 39-56.
- 7. with O. Egecioglu and L. Hegedüs: Stateless Multicounter 5'→3' Watson-Crick Automata, BIC-TA 2010, Fifth IEEE International Conference on Bio-Inspired Computing: Theories and Applications, Liverpool, UK, (Volume II), 1599-1606.
- Hierarchy Results On Stateless Multicounter 5' → 3' Watson-Crick Automata, IWANN 2011, LNCS 6691 (2011), 465-472. (co-authors: Ö. Egecioglu, L. Hegedüs)
- Hierarchies of Stateless Multicounter 5' → 3' Watson-Crick Automata Languages, Fundamenta Informaticae FI 110 (2011), 111-123. (co-authors: Ö. Egecioglu, L. Hegedüs)
- 10.Benedek Nagy: A class of 2-head finite automata for linear languages, Triangle 8 (Languages. Mathematical Approaches) (2012), 89-99.
- 11.László Hegedüs, Benedek Nagy, Ömer Egecioglu: Stateless Multicounter 5' → 3' Watson-Crick Automata: The Deterministic Case, Natural Computing 11 (2012), 361-368.
- 12.B. NAGY, On a hierarchy of 5' → 3' sensing Watson-Crick finite automata languages. Journal of Logic and Computation 23 (2013), 855-872.
- 13.Nagy Benedek: DNS számítógépek és formális modelljeik, Typotex, Budapest, 2014. (DNA computing and its formal models, in Hungarian)
- 14.Benedek Nagy: A Family Of Two-Head Pushdown Automata, NCMA 2015: 7th Workshop on Non Classical Models of Automata and Applications, Porto, Portugal, 177-191.
- 15.Dávid Angyal, Benedek Nagy: An extension of the LR parsing algorithm for two-head pushdown automata. NCMA 2017: 71-86