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Abstract: This paper deals with a new algorithm of a parallel simulated annealing HGSA which includes genetic 
crossover operations. The genetic crossover is used as an enhancement of the origin  parallel simulated annealing PSA 
which allows to recombine  solutions produced by individual simulate annealing processes at fixed time intervals. It is 
found that the proposed algorithm can speed—up the search the global optimum  more effectively, compared to 
PAGASA [1] algorithm and parallel simulated annealing PSA. The performance of the HSGA algorithm is tested on the 
three known TSP benchmark.  
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1 Introduction 
 
Simulated Annealing (SA) is one of the frequently used  algorithms known  as an effective technique for solving 
combinatorial optimization problems [2]. SA is based on the analogy to the solid annealing and it simulates the process 
of hardening the solid from the high temperature state  to the equilibrium state [3].  Starting with an initial solution 
(vector of variables) obtained by random or constructive means, the annealing algorithm is a sequence of small random 
perturbations. The perturbation that improves solution is always accepted, whereas a perturbation that worsens the 

current solution by an amount ∆C, based on predefined cost function, is accepted with probability kT
C
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control parameter analogous to the temperature in the annealing of physical system [2][4]. SA can find global solution,  
however requires huge computational time. There are two solutions of this problem: Parallelization SA or aggregation 
SA with other optimization algorithms.  
Generally,  GA parallelization is very simple  whereas the SA is naturally sequential. On the other hand it is 
mathematically proved, that  SA converges steadily to the solution. However  such  a strong evidence does not hold  for  
GA. Therefore, the hybrid method of SA with GA operators is good approach for parallelization of the optimization 
process.  
In this paper, it is proposed parallel simulated annealing using genetic algorithm. This algorithm is a hybrid SA using 
the GA operations. The proposed algorithm can reduce the computational cost even in continuous problems. The 
performance of the designed algorithm is tested on the known TSP benchmarks and the effectiveness of the proposed 
algorithm will be discussed in this paper. 
 
1.1 Parameter setting 

• Initial temperature T0: It must be chosen so that almost all perturbations are accepted.  
 

y=(number of perturbations accepted) / (total number of perturbations attempted) 
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where y is the acceptance probability, +∆Cost is the average change in cost over all perturbations, which lessen 
cost function, m- is the number of perturbations with the cost function decrease and m+ is the number of 
perturbations with the cost function increase.  

• kmax: number of iterations of Metropolis algorithm in one temperature phase. The number kmax is based on the 
requirement that at each value of T quasi-equilibrium is succeeded. 
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where  is size of the vector subspace. )( iXN
• Decrement coefficient α: The coefficient α (the term in brackets) is proposed to reduce the temperature 
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where δ is a measure of how close the equilibrium vectors of two successive iterations are to each other, σ is the 
standard deviation of the cost function up to the temperature Tk. The stopping criterion is based on the monitoring 
of the relevant reduction of the cost function during the optimisation process  
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whereε is a small positive number called the stopping parameter, s )( oTC is the average value of the cost function 

at T0. This condition is based on extrapolation of the smoothed average cost )(TsCost obtained during the 
optimization process. 

 
This is a theory how to set the SA parameters. But in practice the value of SA parameters of some problems are known 
or are determined experimentally. This is the case of TSP problem solved in this paper 
 
1.2 A short survey of hybrid parallel genetic simulated annealing 

There are many hybrid parallel genetic simulated annealing algorithms (HGSA), but there are only two main concepts. 
The first one is based on the algorithm SA which is enhanced with particular genetic operations. The second one is 
based on the  concept of GA which uses Metropolis algorithm at the selection process. In the paper we analyzed three 
variants of HGSA: 
• S. W. Mahfoud and D. E. Goldberg proposed algorithm based on the  concept of GA which uses the Metropolis 

algorithm in the  selection process [5]. 
• M. Krajíc described parallel hybrid genetic simulated annealing, which is based on concept of SA and it uses 

genetic operations (mutation and crossover)[1]. 
• N. Mori, J. Yoshida and H. Kita suggested  the thermodynamical selection rule in genetic algorithm [6]. 
 
We proposed the hybrid parallel genetic simulated annealing using architecture master-slave. Each processes including 
master process execute simple SA algorithm. The crossover and mutation operations are used just after the 
communications between processes. The detail description is presented in the next chapters. 
The paper is organized as follows: In the second chapter  the parallel simulated annealing is described. In the third 
chapter the structure of HGSA is analyzed more in details. The experimental results are presented in chapter 4. 
 
 
2 Parallel Simulated Annealing (PSA) 
 
2.1 Simulated annealing 

Simulated Annealing (SA) algorithm has basically three important phases: solution generation, acceptance criterion  and 
cooling. SA represents a one-point solution generation. The  new point/solution is created by a small perturbation. The 
acceptance criterion then judges if the transition from the current solution to the new solution is realized. This 
acceptance criterion is defined as follows: 

random()< min[1, T
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where x is the vector of variables, f(x´) is the new cost function, f(x) is old cost function, T is temperature and random() 
is an random number. 
According to this criterion, even when the value of the next solution is worse, the solution can be accepted. In the  
cooling phase the new temperature is determined by the decrement  function Ti+1=αTi [2],  where Ti is the i-th 
temperature stage and α determines the gradient of cooling. The three operations- generation, acceptance criterion and 
cooling are repeated  until the termination condition is reached. 
 

2.2 Parallel simulated annealing 

Parallel simulated annealing is based on mutual cooperation of the master-slave processes. These PSA algorithms [7] 
are divided in two phase. In the first phase all processes are independent and each of them produces its optimised 
solution. The processes are independent because the communication could be too frequent at higher temperature and the 
time of communication could be much greater than the time of the optimization process. In the second phase processes 



cooperate by using the architecture master – slave and all slaves (and also master) work on its sequence of solutions. 
Generally, if some slave process accepts a solution, it sends it to master, which determines according its own rule of 
acceptance.  If  this solution is accepted or some new solution  found by master itself, it is sent to all slave processes.  In 
our case, the communication between master and slaves is performed after defined number of iterations at each 
temperature phase of Metropolis algorithm (e.g. after each 100th or 1000th iteration) and at the end of temperature phase. 

The general principle of the scheduling of the messages are shown in the Fig.1. 
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 parallel genetic simulated annealing (HGSA) 

r, we proposed parallel simulated annealing using genetic operations. HGSA is a hybrid method and it uses 
 with the operations that are used in genetic algorithms. The flow of the evolution is shown in Fig. 2 – this 
published in [8]. In the proposed algorithm, there are parallel processes and the sequential SA is running in 
ss. After some steps (after each 1000th iterations of Metropolis algorithm), the crossover is used to produced 
n. The performance of HGSA was tested on the traveling salesman problem.  

 
 

Fig.2: Hybrid parallel genetic simulated annealing 

munication, which is activated each 1000th iteration of Metropolis algorithm, each process sends its solution 
aster keeps to oneself one solution and one random chosen solution is sent to each slave. These activities 

n the roulette wheel, where the biggest probability of  selection has the individual with the smallest length of 

unication all processes have two individuals. Now the phase of genetic crossover starts. From two parent 
o children solution are generated. Because we solved the TSP problem, we used  partially matched crossover 
h produces only feasible solutions.  

over there are two parents and two children solutions. Then solution with the smallest tour length is  selected 
on is performed. In case of parent solution mutation is always performed, otherwise the mutation is 
by predefined probability. The mutation is realized by pairwise interchange of cities in the tour/solution -  



random generated  city  is interchanged  with his left neighbouring city. A new solution  is selected from actual solution 
of SA process and from the solution, which was obtained after genetic mutation. It is selected using the Metropolis 
criterion. 
 
3.1 Control parameters of PSA 

Tmax initial/maximum temperature 
Tmin final/minimum temperature 
α gradient of cooling (T= α*T) 
kmax count of iterations of Metropolis algorithm in one temperature phase 
Pmut mutation probability of offspring 
Iter iteration of Metropolis algorithm, where the processes communication each other 
 
 
4 Experimental results 
 
Hybrid genetic simulated annealing and variants of PSA algorithm were tested on three TSP problems, which were 
published on the website [9]. The most tests are performed on the benchmark of 52 cities see Fig.3 to 5. It was 
performed 15 runs for 52 cities in each versions of PSA. The efficiency of PSA versions were also proved by 
benchmark of  79 cities see Fig.6 and by benchmark of 100 cities. 
 
Optimal solution of TSP problems: 
• berlin52 - TSP52 (52 cities) - tour length equals to 7542 
• eil79 - TSP79 (79 cities)  - tour length equals to is 538 
• kroA100 – TSP100 (100 cities) - tour length equals to is 21282 
 
In all experiments the following control parameters were used: 
 

Kmax 10000 
Tmax 100 
Tmin  1 
Alpha 0,9 
Prmut 0,1 
Iter 1000 
Number of processors 6 

 
Tab.1: The value of SA parameters 
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Fig.3: Average tour length of TSP 52 for HGSA and three versions of PSA 

 
In Fig. 3 there are shown experimental results of three PSA versions. The versions differ only by the used time interval 
between master-slave communication. HGSA algorithm has fixed time interval – communication is performed after 
each 1000th iterations. All  PSA versions found similar average tour length. The optimal tour was not found in any of 15 
runs. But in case of HGSA the optimal solution was achieved  at each of  15 runs. 
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Fig.4: Computational time with relevant average tour length for HGSA and PSA versions 
 

In Fig. 4 the computational time and average tour length is shown. It is evident that the best solution provides HGSA  
and its computation time is equal to the fastest PSA version.  
 
In Fig.5 and Fig.6 the optimization curves of tour length are presented for HGSA and three PSA versions. It is displayed 
only the optimization process from temperature phase T=30 but the Tmax equals to 100. The optimilization process  runs 
all the computation time (from Tmax to T min).  
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Fig.5: Optimization process for TSP 52 (52 cities) 

 
In Fig.6 optimization curves of  three PSA algorithms and the HGSA are presented for TSP 79 problem. It was 
performed only five experiments. The only  HGSA achieves the global minimum. 
 
An  extra experiment was applied for  comparison the performance of HGSA with  PAGASA [1] on the TSP 
benchmark of 100 cities. HGSA achieves the tour length  equals to 21295 which is better than the tour length  21443 
achieved by PAGASA. Using the benchmark of  79 cities, PAGASA algorithm gets the best tour length of 540 units 
and HGSA achieved 538 unit tour length, which is the global optimum. 
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Fig.6: Optimization process of tour length for TSP 79 (79 cities) 

 
5 Conclusions 
 
We have developed a new hybrid optimization algorithm HSGA as an aggregation of parallel simulated annealing PSA 
and genetic algorithm. We have tested HGSA  on three benchmarks of the traveling salesman problems: TSP52, TSP79 
and TSP100. The comparison of the performance of HSGA and PSA was realized. HSGA algorithm achieved the global 
optimum in each of 15 runs for TSP52. The PSA version received only a local solution. Another experiment was 
arranged as a comparison of HSGA and a  version of hybrid PSA called PAGASA published in [1]. Four  100 cities 
TSP benchmark HSGA outperforms PAGASA. The future works will be focused on further testing of HSGA on the 
most complex benchmarks and development of advanced version of  HSGA algorithm. 
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