Automatic Discovery of RTL Benchmark Circuits
with Predefined Testability Properties

Tomas Pecenka, Zdenék Kotasek, Lukas Sekanina, Josef Strnadel
Faculty of Information Technology
Brno University of Technology
Bozetéchova 2, 612 66 Brno, Czech Republic
{pecenka, kotasek, sekanina, strnadel } @fit.vutbr.cz

Abstract

The paper describes the utilization of evolutionary algo-
rithms for automatic discovery of benchmark circuits. The
main objective of the paper is to show that relatively large
and complex (benchmark) circuits can be evolved in case
that only a given property (e.g. testability) is required and
the function of the circuit is not considered. This principle
is demonstrated on automatic discovery of benchmark cir-
cuits with predefined structural and diagnostic properties.
Fitness evaluation for the proposed algorithm is based on
testability analysis with linear time complexity. During the
evolution, the solutions which are refused to be synthesized
by a design system are excluded from the process of devel-
oping a new generation of benchmark circuits. The evolved
circuits contain thousands of components and satisfy the re-
quired testability properties.

1. Introduction

Evolutionary circuit design has allowed engineers to dis-
cover novel electronic circuits automatically [14]. Some-
times the evolved circuits exhibit the features that the con-
ventional approaches were not be able to achieve ever. On
the other hand, only relatively small circuits were evolved
automatically. Many reasons can be identified why the evo-
lutionary approach is not “scalable* (i.e. is not able to gen-
erate circuits of arbitrarily increasing complexity). One of
the most difficult tasks of the evolutionary circuit design
which will be underlined in this paper, is that the large cir-
cuits require more time to be evaluated than smaller circuits.
Note that in a typical evolutionary algorithm, the number of
evaluation (fitness calculations) is given by the product of
the population size and the number of generations produced
by the algorithm. It is evident that the possibility to explore
a larger portion of the search space increases the probabil-

ity of obtaining a better solution in a given time available
for the evolution. As this paper deals with digital circuits,
we can mention that by increasing the number of inputs of
a digital circuit by one, the evaluation time doubles (i.e. it
grows exponentially), assuming that all possible input com-
binations are considered in the fitness calculation process.
A reasonable strategy seems to be to include only a subset
of input vectors into the training set; however, papers such
as [9] show that the evolved circuits do not usually work for
the remaining input vectors correctly.

If we were able to evaluate completely a candidate solu-
tion in a linear time (with respect to the number of circuit
inputs/components) the evolutionary design process should
be more effective and scalable. Hence we focused our at-
tention on the problems for which the evaluation process
requires only a linear time. In particular, some methods ex-
ist to predict testability of a design in a linear time.

In order to reduce test generation time and test appli-
cation complexity, it is important to consider and predict
testability of a design. If a test generation and its applica-
tion related to a particular design is cost-effective, then the
design is said to be testable. In this context, we speak about
the design property called testability. Usually, testability of
a design is estimated and numerically evaluated by a testa-
bility analysis (TA) method the goal of which is to detect
hard-to-test parts of the design. The proper utilization of
TA information can result in testability improvement of the
design. Therefore, it is reasonable to evaluate and charac-
terize EDA tools using benchmark circuits that are designed
to verify not only the function but also the testability.

A method exists which allows designers to obtain a
variety of testability properties (in terms of controllabil-
ity/observability parameters of circuit internal nodes) in a
linear time [13]. The main objective of this paper is to show
that relatively large and complex (benchmark) circuits can
be evolved in case that only a given testability property is
required and the function is not taken into account.

Other objectives were defined as follows: (1) a
user can specify the required testability (controllabil-
ity/observability) properties, (2) a library of internal com-
ponents with a variety of transparency properties must be
available for the process of developing a benchmark cir-
cuit, (3) the developed circuits must be synthesizable, i.e.
structures which are refused by the design system must be
excluded from being involved into resulting evolved struc-
tures, (4) the output of the system must be in the form of
VHDL code.

In this paper, a new methodology utilizing EA for the
process of generating benchmark circuits covering a wide
scale of testability properties is proposed. The paper is or-
ganized as follows. Section 2 briefly presents basic results
of the relevant research in the areas of benchmark circuit de-
sign, testability analysis and evolutionary design of digital
circuits. In Section 3, the proposed method of the evolution-
ary design of benchmark circuits is presented. Experiments
and results are summarized in Section 4. Conclusions and
direction for future research are presented in Section 5.

2. Previous relevant research

Since the proposed method combines the concepts of
benchmark circuits, testability analysis and evolutionary de-
sign of digital circuits, the state of the art in these areas will
be briefly summarized in this section.

2.1. The principles of generating synthetic bench-
marks

The level of description of a benchmark circuit depends
on its application. For example, the evaluation of high-
level synthesis algorithms requires high-level behavioral de-
scriptions of circuits, while routing algorithms can only be
tested with low-level physical descriptions. The categories
of benchmark circuits are presented in [1]. The benchmark
circuits are subdivided into following suites: gate-level test
generation (ISCAS85, ISCASS89 suites), high level synthe-
sis (HLSynth89, HLSynth91, HLSynth92 suites), logic syn-
thesis (LGSynth89, LGSynth91, LGSynth93, LGSynth95
suites), physical implementation (Compaction86, PRWork-
shop88, Modgen89, LayoutSynth90, PDWorkshop91, Lay-
outSynth92, PDWorkshop93 suites), circuit simulation
(CircuitSim90 suite) and partitioning (Partitioning93 suite).

Many other benchmark suites exist that describe circuits
at various levels of abstraction. Information about some
popular benchmark suites (ACM/SIGMA, ITC, Politecnico
di Torino benchmarks, ...) can be found for example in [5].
However, the existing benchmark suites are not sufficient,
since they usually consist of too small circuits and they usu-
ally are not very representative for all circuit classes.

Recently, the generation of synthetic benchmark circuits
has been recognized as a viable alternative [15, 6, 7]. A
major advantage of synthetic benchmarks is that they pro-
vide full control over important characteristic parameters,
such as size, topological or functional parameters. For each
circuit class, different parameters are important in general.
The major drawback of synthetic benchmark suites is that
it is hard to prove (verify) that a set of circuits is repre-
sentative for all (or at least a class of) circuits for a given
application, since usually not all aspects are modelled in a
realistic way. Basically, benchmark validation methods can
be divided into two groups: direct and indirect. If the direct
validation is used then the selected (i.e. direct) parameters
of generated synthetic benchmarks and circuit class repre-
sentatives are compared. In indirect validation, generated
synthetic benchmarks and circuit class representatives are
compared by means of a suitable algorithm (e.g. by evaluat-
ing the number of connections after placement and routing).

2.2, Testability analysis (TA)

Several TA approaches (some of them are mentioned
below) have been proposed and they can be classified ac-
cording to several aspects. For example, the classification
can be based on the abstraction level a TA is supposed to
be applied for. Then the following TA approaches can be
distinguished: gate-level (e.g. [4]), register-transfer level
(e.g. [13]), functional level, behavioral level (e.g. [11]) or
multilevel TA approaches. According to TA results appli-
cation, TA approaches can be divided to general-purpose
TA approaches (e.g. [4, 13]) and special-purpose TA ap-
proaches (e.g. TA is used for inserting registers into partial
scan chains). According to the supposed test type, they can
be subdivided into probability-based approaches, determin-
istic test based approaches, etc.

Usually, testability of the design is evaluated by means
of controllability and observability parameters. Existing TA
approaches differ in the way in which controllability and
observability are defined and measured. In general, control-
lability (e.g. of an internal circuit node) is understood as an
ability to control the node inputs from circuit primary in-
puts. If it is possible to control the node inputs then such
a node is called a controllable node. Similarly, a node is
referred to as an observable node if the value present at the
node outputs can be observed at a circuit primary output.
The goal of controllability (observability) measures is to
evaluate the easiness of controlling (observing) signal val-
ues. On the basis of these values, testability of the design is
evaluated.

2.3. Evolutionary approaches in the field of diag-
nostics and testability of digital circuits

Evolutionary approaches to diagnostics and testability of
digital circuits have initially been used by Thompson [14]
who has tried to evolve fault tolerant circuits. Garvie
and Thompson have directly evolved simple digital circuits
from the scratch containing a built-in self-test system [3].
Sekanina and Ruzicka have demonstrated that inherently
easily testable image filters can be generated automatically
for real-world applications [10]. Lohn et al performed func-
tional recovery of a quadrature decoder after a stuck-at-zero
fault for a model of the FPGA [8]. Corno et al. have utilized
genetic programming to automatically induce test programs
for a microcontroller [2]. However, no approach is known
for direct evolutionary design of test circuits, i.e. the called
benchmarks with predefined testability properties.

3. Design method

We present a novel approach which utilizes an evolution-
ary algorithm to design a structure of benchmark circuit au-
tomatically according to the requirements specified by the
user. For indirect validation of generated benchmark cir-
cuits the register transfer level testability analysis based on
the controllability and observability measurements and on
transparency properties of internal components is used. The
requirements on the circuit function are not reflected in this
procedure.

3.1. Problem definition

Our objective is to produce high quality RT level (Reg-
ister Transfer level) benchmark circuits automatically. The
user is supposed to specify the number of primary inputs
and outputs of the circuit, the number and type of compo-
nents, the requirements on testability (average controllabil-
ity and observability) and parameters of the evolutionary
algorithm.

First it is necessary to define the format of the specifi-
cation reflecting user requirements. We have decide to use
.xml description. As an example the following .xml code
in Figure 1 can be used. We can see that 50% controlla-
bility and observability on average is required by the user.
There are 30 individuals in mating pool, mutation probabil-
ity is 2% and 95% of worst individuals are replaced in each
generation. The evolutionary algorithm will be run for 200
generations. The resulting circuit is expected to have five
primary inputs and outputs and will consist of ten 8-bit sub-
tractors, ten 16-bit adders, ten multipliers, five 8-bit multi-
plexers and five 16-bit multiplexers, i.e. of 40 components
in total.

<circuits>
<testability control="0.5" observ="0.5"/>
<evolution population="30" replacement="0.95"
mutation="0.02" steps="200"/>
<primary inputs="5" outputs="5"/>
<comp name="SUB" width="8" quantity="10"/>
<comp name="ADD" width="16" quantity="10"/>
<comp name="MUL" width="8,16" quantity="10"/>
<comp name="MUX2" width="8" quantity="5"/>
<comp name="MUX2" width="16" quantity="5"/>
</circuits>

Figure 1. Example of source code

The program generates a benchmark circuit according
to the predefined requirements. The resulting circuit con-
sists of components, each of them described behaviorally in
VHDL. All the generated circuits are synthesizable. At the
moment, the user cannot specify the position of registers.
The program inserts the registers automatically in order to
meet the requirements on testability and to minimize the
number of registers.

3.2. Circuit structure representation

Each circuit is considered as a graph represented by a
fixed-size integer array. Evolutionary algorithm operates on
these arrays. Registers are not reflected in the representa-
tion; they are “inserted” into a circuit before the testability
analysis and synthesis procedures are performed.

A circuit consists of components whose inputs and out-
puts are uniquely numbered. Primary inputs and primary
outputs are numbered too. Because any component input
can be connected to only a single component output, we
can represent the circuit as an array, in which the index is
the component input and the value is the identification of
the connected output. Primary inputs are treated as outputs
of a component and primary outputs are treated as inputs of
a component connected to the testbench circuit. Figure 2
gives a simple example.

3.3. Testability analysis method

An analysis method for testability evaluation of candi-
date circuit on RT level was developed [12]. The testability
of the circuit is expressed by controllability and observabil-
ity parameters. The controllability parameter expresses the
ability to control input ports of circuit components and ob-
servability expresses the ability to observe a value of output
ports of circuit components. The developed testability anal-
ysis method is formally defined. Time complexity of the
method was derived and the correctness of the method was
formally proved.

For the purposes of testability analysis, two weighted

ADD1

b)

| Primary outputs/ inputs of components (index) | 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5‘ 6‘ 7|
| Primary inputs/ outputs of components (values) [5[1[3[2][3[4]5]

Figure 2. Two types of mutation (a), (b). Cir-
cuit representation in chromosome (c)

digraphs representing the circuit structure and testability
properties are constructed. The first digraph (Gs) repre-
sents the test-pattern data-flow and the second digraph (G)
represents the test-response data-flow. Vertices of Gg (Gr)
are interface ports of all in-circuit components. An ori-
ented edge exists between two vertices if a diagnostics data
flow is possible between the start-vertex and end-vertex
data, i.e. if it is possible to transfer test-vectors (responses)
from start-vertex to end-vertex. The pairs of vertices be-
tween which test-vectors (responses) data flow is possible
are put in the relation together with information about re-
quired flow-condition. Those relations form a basis for con-
structing Gg (G) edges.

The proposed testability analysis algorithm is con-
structed as a graph-searching algorithm over G and Gj.
During the search process, accessibility of ports from circuit
primary inputs is analyzed in G (this step corresponds to
controllability analysis) and accessibility of ports at circuit
primary outputs is analyzed in G (this step corresponds to
observability analysis). Each measured diagnostic attribute
is evaluated (using a proper formula) by a real number from
(0; 1) interval, where 0 indicates an absence of this attribute
and 1 indicates occurrence of the attribute in its best form.
The evaluation of x-controllability (x means a port of the
circuit) can be understood as evaluation of easiness of con-
trolling values at x by means of stimuli generated at circuit
primary inputs”. Alike, evaluation of x-observability can be
understood as evaluation of “easiness of observing values
at x by means of circuit primary outputs”. Because x is un-
derstood as testable if it is both controllable and observable,
evaluation of testability is a function of controllability and
observability.

Some of important properties of proposed testability
analysis algorithm were proven in [13] - especially the al-
gorithm correctness and the time complexity. It was proven
that the algorithm runs in O(|V (Gs)|-|E(Gs)|+ |V (Gr)]-
|E(Gr)|) time complexity, where V(Gg) is the set of ver-
tices and E(Gg) is the set of edges of test-pattern data-flow

digraph Gs. Similarly, V(Gy) is the set of vertices and
E(G) is the set of edges of test-response data-flow digraph
Gr.

3.4. Evolutionary algorithm

An evolutionary algorithm operating with the represen-
tation introduced in Section 3.2 was used. The initial pop-
ulation consisting of P individuals is generated randomly.
New populations are formed using tournament selection and
mutation operator. The N weakest candidate circuits are re-
placed by mutated parents, elitism is ensured. The evolution
is left to run for a given number of generations. The fittest
individual is considered as an acceptable result and is trans-
formed to VHDL code.

In our methodology of developing benchmark circuits,
the mutation operator is applied to modify connections in
the circuit under development. It means that if a connection
exists in the circuit then as a result of mutation the connec-
tion is reconnected.

The principles can be summarized in the following way
(see Figure 2):

1. The input of a component on which the mutation oper-
ator will be applied is selected.

2. If the output connected to this input is also connected
to another component(s) then the selected input is sim-
ply reconnected to a randomly selected output of an-
other component or to one of the primary circuit inputs
(see Figure 2a).

3. If the output connected to this input is not connected
to another component(s) then another input of a com-
ponent or primary output of the circuit under design is
randomly selected and selected gates are simply recon-
nected (see Figure 2b).

4. The mutation operator always respects the size of data
path (i.e. it maintains the width of the data path).

3.5. Fitness calculation

The fitness function, which has to be maximized here,
combines three objectives: (1) circuit structure, (2) compo-
nent interconnections and (3) circuit testability.

At first, the circuit structure is evaluated. The circuit is
analyzed with the goal to identify isolated subcircuits (the
isolated subcircuit is a subcircuit which is not connected to
other parts of the benchmark circuit under design) and for
structures which are possibly to be removed during synthe-
sis (see Equation 1).

useless_comps
structure=025- ({1 — —— (1)

comps_count

where useless_comps denotes the number of components in
isolated subcircuits and the number of components to be re-
moved during the process of synthesis and comps_count de-
notes the number of all circuit components. Value of struc-
ture parameter is a real number from (0; 0.25) interval.

If isolated subcircuits and structures which could be re-
moved are found, the fitness evaluation process is stopped
and the value of connects and testability parameters is set to
0. If no separated subcircuits and structures which could be
removed are found in the circuit, the circuit interconnection
and testability analysis follows.

The goal of interconnection analysis is to evaluate the
variability of interconnections of the circuit (see Equa-
tion 2). The circuit is analyzed for components whose in-
puts are connected to the same point (short_cuts) and for
direct connections from primary inputs to primary outputs
(direct_connects). Comp_inputs denotes a sum of all com-
ponents inputs and pri_outputs denotes the number of cir-
cuit primary outputs. The value of connects parameter is
evaluated by a real number from (0; 1) interval.

short_cuts + direct_connects
connects = 1 — . -)
comp-nputs + pri_outputs

The testability analysis follows after interconnection
analysis. The testability parameters are calculated using
the algorithm presented in Section 3.3 (see [13] for de-
tails). An algorithm is able to evaluate average controllabil-
ity (avg_cont.) and observability (avg_obs.) of a candidate
circuit in linear time complexity. The values are compared
with the values of controllability (req_cont.) and observabil-
ity (req_obs.) required by the user. The value of testability
parameter is a real number from (0; 1) interval.

2_

testability = 1—0.5- (req-cont. — avg_cont)

0.5 - (req_obs. — avg_obs.)* 3)

The fitness function given by Equation 4 combines
the results of components interconnections and testability
analysis. The result value is a real number from (0; 1) inter-
val.

structure + 0.25 - connects +
0.5 - testability 4)

fitness =

4. Experiments and results

We have performed hundreds runs of the evolutionary
design process in order to find suitable parameters of the
evolutionary algorithm. Typical experiments are as follows.

4.1. Overall testing

Figures 3(a) and 3(b) show the examples of benchmark
circuits developed with our methodology. The first circuit
consists of 20 components and requires 83 Virtex slices af-
ter synthesis to Xilinx Virtex II FPGA. We required 80%
observability and 80% controllability on average; the ob-
tained results are 80.6% for observability and 74.5% for
controllability. The second circuit consists of 30 compo-
nents and requires 139 Virtex slices after synthesis to Xilinx
Virtex II FPGA. We required 20% observability and 33%
controllability on average; the obtained results are 20.4%
for observability and 36.7% for controllability. Notice that
registers were included to the circuits after the design of the
structure of the circuits, i.e. the figures contain more ele-
ments.

7:':'*,
I eI o I
T
T
T
\ e e
1 S O e | S e =

S e e |

‘ | =
= S £ s = B

(b)

Figure 3. Examples of evolved benchmark
circuits: 20-component circuit (a) and 30-
component circuit (b)

The circuits in Figure 3 are structurally different. These
differences are caused by specified testability requirements.
For circuit in Figure 3(a) 80% controllability and observ-
ability was required. It can be seen that the circuit con-
tains only a few short feedback loops. For circuit in Fig-
ure 3(b) 33% controllability and 20% observability were
required. It can be seen that the circuit contains many long
feedback loops. The structure of circuits matches the the-
ory that circuits with many feedback loops are hard to test
(some testabitily improvement methods are focused on long
feedbacks loops splitting).

4.2. Evolvability of the produced circuits and meet-
ing the requirements

The objective of this task was to observe how the max-
imal fitness value (gained from several independent runs)
increases during the evolution and how observability and
controllability of the evolved benchmark circuits differ from
the values required by the user. In other words, we investi-
gated whether the produced solution is improved over time.
This experiment was performed for a small circuit (20 com-
ponents) and a large circuit (500 components).

20-component circuit. Evolutionary algorithm was used
with the following parameters: population size was 40 in-
dividuals, 200 generations were produced, mutation proba-
bility was 2% and replacement probability was 95%. Re-
sults were obtained as average value from 20 independend
runs. The structural requirements on the produced circuits
were: 80% controllability, 80% observability, 5 inputs, 5
outputs, 20 components: 8xADD(8bit), 8xSUB(8bit) and
4xMUX2(8bit).

500-component circuit. Evolutionary algorithm was
used with the following parameters: population size
was 40 individuals, 200 generations were produced, mu-
tation probability was 2% and replacement probability
was 95%. Results were obtained as average value
from 10 independend runs. The structural require-
ments on the produced circuits were: 80% controllabil-
ity, 80% observability, 40 inputs, 40 outputs, 500 com-
ponents: 80xADD(8bit), 80xADD(16bit), 80xSUB(8bit),
80xSUB(16bit), 80xMUX2(8bit), 80xMUX?2(16bit) and
20xMUL(8,16bit).

Figures 4 and 5 show that the average fitness value
(gained from 20 (a) and 10 (b) independent runs) is con-
tinually improved over time, i.e. the quality of the solutions
does not stagnate on average.

1.000
0.995

0.990 /
0.985 /
0.980 I
0.975

Fitness

0.970

0 50 100 150 200
Generation

Figure 4. Evolution of a 20-component circuit.

Figure 6 shows the differences of required and obtained
controllability and observability values for 20 evolved 20-
component circuits. The obtained controllability ranges be-
tween 79.35% and 79.82% on average. The obtained ob-
servability ranges between 76.22% and 77.46% on average.

1.000
0.980

0.960
0.940

0.920 /
0.900 j/

0.880

Fitness

0 50 100 150 200
Generation

Figure 5. Evolution of a 500-component cir-
cuit.

50 T T
s Controlability
4.0 F Observability ------- A
SR PSR PN S .
g 30F
c s
[L
8 20F
a 105
0.0FC
0 5 10 15 20

Generated circuits

Figure 6. The differences of required and ob-
tained controllability and observability for 20
evolved 20-component circuits.

Figure 7 shows the differences of required and ob-
tained controllability and observability for 10 evolved 500-
component circuits. The obtained controllability ranges be-
tween 77.02% and 78.82% on average. The obtained ob-
servability ranges between 72.99% and 75.18% on average.

12.0 ———————
E Controlability]
100 | Observability ------- 3
) - s
Q F ~ R e 5
§ 6.0 f
£ 40f
o E \/ L —]
2.0 F A
0.0t
0 2 4 6 8 10

Generated circuits

Figure 7. The differences of required and ob-
tained controllability and observability for 10
evolved 500-component circuits.

The average time required for the evolutionary design of
circuit was 6.7 minutes for 20-component circuit and 9.4
hours for 500-component circuit on Intel P4-2.6GHz with
512MB RAM.

The developed program is able to generate circuits up
to size of thousand of RT components. The time needed
to generate circuits of such complexities is about days (In-
tel P4-2.6GHz with 512MB RAM). The complexity of re-
sulting gate level circuits depends on complexity and data-
width of used components. The complexity of evolved gate
level circuits can be very high if library components which
represent complex circuits on RT level are used instead of
elementary RT level components. In the developed method
the user is allowed to add new library components. There-
fore, various circuits with required complexity/testability
properties can be generated automatically.

4.3. Controllability/observability design space ex-
ploration

The objective of this task was to utilize the proposed evo-
lutionary method to explore a part of the design space in
case that controllability (observability) is changed and ob-
servability (controllability) remains a constant.

This experiment was performed for a 50-components
circuit. Evolutionary algorithm was used with the fol-
lowing parameters: population size was 30 individuals,
200 generations were produced, mutation probabil-
ity was 2% and replacement probability was 95%.
Results were obtained as average value from 20 in-
dependend runs. The structural requirements on the
produced circuits were: 8 inputs, 8 outputs, 50 com-
ponents: 8xADD(8bit), 8xSUB(8bit), 8xMUX2(8bit),
8xADD(16bit), 8xSUB(16bit), 8xMUX2(16bit) and
2xMUL(8,16bit). The testability requirements on the
produced circuits were: (a) 50% controllability (fixed),
observability is incremented with the step of 10%; (b) 50%
observability (fixed), controllability is incremented with
the step of 10%.

1.00

)

o 0.80

g 0.60 R —m—m Controlability

';L 0.40 —— Observability o
= Reg. Observability i
3

£ 020 Req. Controlability |
(0]

2

0.00 kst
0 02 04 06 08 1

Desired observability [-]

Figure 8. Testability parameters obtained
when observability increases from 0.0 to 1.0
and controllability is fixed (=0.5).

The average time required for circuit generation was 34.6
minutes (Intel P4-2.6GHz, 512MB RAM). It can be seen
in Figure 8 and Figure 9 that requirements on controllabil-
ity and observability parameters of circuit could be satisfied

1.00

£ g0 "
[N
‘g L
g 0.60 e =t Controlability
— -
& 0.40 - —— Observability e
= g Req. Observability
g 020 Req. Controlability |
5}
7 000 &
0 0.2 0.4 0.6 0.8 1

Desired controllability [-]

Figure 9. Testability parameters obtained
when controllability increases from 0.0 to 1.0
and observability is fixed (=0.5).

only on a specific range of possible values of controllability
and observability parameters. This restriction is caused by
structural properties of the circuit (the number of circuits
primary inputs/outputs, the number and diagnostic proper-
ties of used components). For example, the structure of cir-
cuit does not allow creating circuits with the 0% control-
lability (observability) parameters because the 0% control-
lability (observability) circuit corresponds to a circuit with
none controllable input (observable output).

5. Conclusions

In our research we have verified that useful benchmark
circuits can effectively be evolved. The evolved circuits
are relatively complex; so far no other methodology in the
evolvable hardware field was used to evolve so large cir-
cuits. The reason is that we have not dealt with function-
ality of the circuits. As we have analyzed the testability
only, we were able to evaluate a candidate circuit in the lin-
ear time with respect to the number of components. When
functionality is evolved, the fitness calculation time grows
exponentially with the number of components (and inputs).

Thus, the evolved circuits have certain diagnostic prop-
erties. The aspect of function covered by the circuit was
not seen important at the moment and was not taken into
account.

In the future, the research will be focused on verification
of relation between controllability and observability param-
eters and testability of the circuit measured by the number
of circuit test vectors generated by the commercial ATPG
(Automated Test Pattern Generation) tool and to the im-
provement of the testability analysis method. Testability
analysis based on controllability and observability parame-
ters evaluation is always performed for the complete circuit
now. However, each circuit contains parts which were not
modified when compared to the last evaluation. Therefore,
it is not needed to analyze these parts again. The utilization
of the testability analysis method which is able to analyze
only the modified parts of the circuit (incremental testability

analysis) could reduce the time needed for fitness evaluation
and thus more complex circuits could be evolved.

5.1. Acknowledgements

This work has been financially supported by the
Grant Agency of the Czech Republic under contract
No. 102/04/0737 "Modern Methods of Digital Systems
Synthesis” and by the FRVS foundation under contract
No. 3041/2005/G1 “Evolutionary Design of Benchmark
Circuits”.

References

(1]
(2]

(3]

(4]

(3]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

Computer-Aided Design Benchmarking
http://www.cbl.ncsu.edu/benchmarks.

F. Corno, G. Cumani, M. S. Reorda, and G. Squillero. Effi-
cient machine-code test-program induction. In Congress on
Evolutionary Computation, pages 1486—1491, 2002.

M. Garvie and A. Thompson. Evolution of self-diagnosing
hardware. In A. Tyrell, P. Haddow, and J. Torresen, editors,
Proc. of 5th Int. Conf. on Evolvable Systems (ICES 2003):
From Biology to Hardware, volume 2606 of LNCS, pages
238-248, Trondheim, Norway, 2003. Springer-Verlag.

L. H. Goldstein and E. L. Thigpen. Scoap: Sandia controlla-
bility/observability analysis program. In DAC ’80: Proceed-
ings of the 17th conference on Design automation, pages
190-196. ACM Press, 1980.

J. Harlow. Overview of popular benchmark sets. /EEE De-
sign & Test of Computers, 17(3):15-18, 2000.

M. Hutton, J. Rose, and D. Corneil. Automatic generation of
synthetic sequential benchmark circuits. /EEE Transactions
on CAD, 21(8):928-940, 2002.

P. D. Kundarewich and J. Rose. Synthetic circuit gen-
eration using clustering and iteration. In Proceedings of
the 2003 ACM/SIGDA eleventh international symposium on
Field program-mable gate arrays, pages 245-247, 2003.

J. Lohn, G. Larchev, and R. DeMara. A genetic representa-
tion for evolutionary fault recovery in virtex fpgas. In Pro-
ceedings of the 5th International Conference on Evolvable
Systems: From Biology to Hardware, pages 47-56, Trond-
heim, Norway, 2003.

J. F. Miller and P. Thomson. Aspects of digital evolution:
Geometry and learning. Lecture Notes in Computer Science,
1478:25-35, 1998.

L. Sekanina and R. Rika. Easily testable image operators:
The class of circuits where evolution beats engineers. In
The 2003 NASA/DoD Conf. on Evolvable Hardware, pages
135-144, Chicago, 2003.

S. Seshadri and M. Hsiao. Behavioral-level dft via formal
operator testability measures. Journal of Electronic Testing,
18(6):596-611, 2002.

J. Strnadel. Normalized testability measures based on rtl
digital circuit graph model analysis. In Proceedings of the
Sth International Scientific Conference Electronic Comput-
ers, pages 200-205, Kosice, 2002.

Laboratory.

[13]

(14]

[15]

J. Strnadel. Testability Analysis and Improvements of
Register-Transfer Level Digital Circuits. PhD thesis, Faculty
of Information Technology, Brno University of Technology,
Brno, 2004.

A. Thompson. Hardware Evolution: Automatic design
of electronic circuits in reconfigurable hardware by artifi-
cial evolution. Distinguished dissertation series. Springer-
Verlag, 1998.

P. Verplaetse, D. Stroobandt, and J. Van Campenhout. Syn-
thetic benchmark circuits for timing-driven physical design
applications. In H. Arabnia, editor, Proceedings of the In-
ternational Conference on VLSI, pages 31-37, Las Vegas,
Nevada, USA, 6 2002. CSREA Press.

