
NETFLOW PROBE INTENDED FOR HIGH-SPEED NETWORKS

Martin Žádńık

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, Brno, Czech Republic
email: xzadni00@stud.fit.vutbr.cz

Toḿaš Pěcenka†, Jan Kǒrenek

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, Brno, Czech Republic
email:{pecenka, korenek}@fit.vutbr.cz

ABSTRACT

With growing speed of communication over the Internet
there is a need for a reliable monitoring devices which are
able to provide information about spectrum of traffic mix,
attacks, applications, etc. This paper proposes architecture
of network flow monitoring adapter based on hardware plat-
form COMBO6. With use of field programmable gate ar-
rays (FPGA) placed on these cards it is possible to monitor
flows in high-speed environment. Component parts of the
proposed architecture and implementation platform are de-
scribed. Several different models have been created to ana-
lyze and prove important characteristics of the architecture
and results are derived. The probe is able to monitor 1 mil-
lion simultaneous flows on an2Gbps network link.

1. INTRODUCTION

Providing accurate data about network traffic is important
for managing network, bandwidth provisioning, detecting
DoS attacks, billing and accounting. Although some ac-
tive devices have monitoring abilities it is usually only a
portion of the traffic about what they are able to give ap-
propriate data. E.g. during a traffic peak or an attack the
device is overwhelmed and unable to monitor whole band-
width. That significantly decreases value of statistical data
it exports. Monitoring abilities also differ from one device
to another because a lot of methods have been introduced
during last few decades. Each usually focuses on special
type of problem. For example monitoring based on simple
counters is suitable when network operator wants to know
the utilization of the device but it is absolutely improper for
billing of users or payload checking. Better solution is pro-
vided by devices where operators can specify rules for traffic
they want to analyze. Unfortunately then it is not possible to
reconstruct the whole traffic mix. Monitoring systems can
also be optimized on certain type of flows (e.g. TCP flows

∗Aknowledgement to CESNET z. s. p. o. project No. 34602/2004 ”Pro-
grammable hardware”

†Aknowledgement to project GA102/05/H050 - ”Integrated approach to
education of PhD students in the area of parallel and distributed systems”.

[1]). But usually traffic mix consists of more than one type
of flows.

NetFlow (general flow monitoring), first implemented in
Cisco routers, is the most widely used measurement solu-
tion today [2]. Number of bytes, packets, flag fields, time of
the flow are measured according to packets header. Keeping
state for every flow allows to tell with whom, how long, at
what intervals, with what protocol and port how much data
was transfered [2]. Stand alone, dedicated device for such
type of monitoring has several benefits: no need to change
routers that do not support NetFlow, high speed of data pro-
cessing, large flow cache, various enhancements to protect
itself against malicious traffic (sideway filters [3], heuristics
[4], etc.).

Nowadays FPGAs offer high performance in means of
computational power, flexibility, maximal external memory
bandwidth utilization and ratio of cost/performance. All
these favorable features allow to optimize architecture for
a specific application.

In this paper novel architecture of NetFlow monitoring
probe is proposed and evaluated. Its implementation on the
state-of-art hardware platform offers simultaneous process-
ing of up to1, 000, 000 flows at speed of 2Gbps. It can also
benefit from reprogrammable characteristic of FPGA so var-
ious enhancements are possible while the basic architecture
remains the same.

2. ARCHITECTURE OVERVIEW

The data and control flow diagram is shown on Figure 1. The
architecture consists of six main units which will be synthe-
sized in FPGAs. Function of each unit is briefly described
following paragraphs.

Incoming packets from network interface are entering
theInput Buffer(IBUF) block. For each incoming packet the
CRC is checked and only those ones with correct CRC pass
through. Every packet is assigned a timestamp and saved
into the internal IBUF memory, which serves as short-time
storage for incoming packets.

STO

IBUF

HFE HASH HSRCH MAN

Statistical FIFO

2 Gbps Memory
NetFlow RecordHash

Memory Memory
State

Export

Fig. 1. Design flow diagram

Packets with assigned timestamp are then processed by
Header Field Extractor(HFE). It is a processor based on
RISC architecture controlled by specific instruction set in-
tended for analyzing of input packets. It reads packet from
the Input Buffer, analyzes control information in its head-
ers, extracts required fields from IP and TCP/UDP headers
and assemble the unique key which designates each flow.
The key consists of IP source address, IP destination ad-
dress, source port, destination port, transport layer protocol,
type of service (ToS). After processing each datagram HFE
is also able to provide required record forStatistical FIFO.
Possible slow performance of HFE can be compensated by
multiple instantiations of this unit.

The hash algorithms are made upon the key entering into
the Hash Unit (HU). As result HU provides two types of
hash values. The first one designates addresses where Hash
Search (the next unit) should look up for entries. The sec-
ond one determines whether addressed entries belong to the
key (thus reducing probability of undetected collision). In
addition, hash function (CRC with optional initializationof
registers) has to be modifiable on demand of the user to pro-
tect the device before being tricked.

TheHash Search(HSRCH) lookups for convenient en-
try in its memory according to generated hash value (fixed
number of additional lookups increase probability of finding
empty entry). This operation can end up with several differ-
ent results: no entry for the key is present and/or no empty
entry is available, entry has been already created. Result and
additional data are transferred to the Manager. It is also nec-
essary to remove expired entries according to requests from
Manager and acknowledge it back to the Manager. Look-up
technique allows to remove entries easily, has low rate of
false-positive and it is possible to store additional informa-
tion in the entry.

The Manager(MAN) is responsible for keeping states
of active and inactive flows. For this purpose bidirectional
bounded list is proposed. New or updated flows are re-
bounded to the top of the list so the oldest ones remain at
the bottom. Then it is easy to identify inactive flows and
send delete request to HSRCH. Its other duty is to copy in-
formation coming from Hash Search to Storage unit and vice
versa. Since Storage can also generate delete requests it is
up to Manager to guarantee no duplicate requests to Hash
Search.

Statistical data is held inStoragememory. The unit
reads data from Statistical FIFO and performs different op-
eration according to commands provided by Manager. The
unit is responsible for checking if records are not held for
too long (starting timestamp of the flow is compared with
actual timestamp while flow statistical data is updated). If
so, delete request is sent to Manager.

To sum up there is a sparsely occupied memory that pro-
vides large address space in Hash Search. Therefore the
probability of finding empty entry for new flows after sev-
eral lookups is very high. Another advantage is that the en-
try is not wide in comparison to whole record we want to
hold for one flow so the memory can have smaller capacity
and is better utilized than it would be if the whole record
was stored there. The advantage of bidirectional sorting list
implemented in Manager is precise export of inactive flows
without need of large lookup in the memory. Unfortunately
to implement it, multiple accesses to memory in short time
are required so it is necessary to implement it in SSRAM
memories.

Last block is intended to keep up to1, 000, 000 flow
records (64 byte each). Only DRAM memory offers such
a large capacity.

3. IMPLEMENTATION PLATFORM

The proposed architecture is suitable for COMBO6 cards
developed by Liberouter project [5]. COMBO6 is a PCI
card, which can be used in various applications. It consists
of Xilinx Virtex–II XC2V3000 FPGA, 2MB Ternary CAM,
256MB DRAM and three 2MB SSRAM (see [6] for details).
Various add-on cards can be used with COMBO6 card. For
purposes of NetFlow project new interface card with two
10GE interfaces, Xilinx Virtex–II XC2VP20 FPGA and four
SSRAMs (4MB each) is developed nowadays. COMBO6-
PTM card could also support NetFlow probe as a source of
precise timestamp [6].

With such hardware resources the architecture allows to
monitor2Gbps link in full rate and 10Gbps in sampled rate
with simultaneous processing of up to1, 000, 000 flows.

4. EVALUATING THE ARCHITECTURE

The architecture for monitoring has to be very accurate, re-
liable and with required performance. Following chapter
proves that demands on low error rate can be reached with
properly chosen sizes of external memories. So the design
on FPGA remains nearly the same. Throughput determines
the link speed the device can operate on as well as its behav-
ior in extreme situation. And so the next chapter explores
what throughput can be reached when units communicate
with each other supposing the traffic mix is known. In our
case we consider the device is working under normal con-

dition and also under attacks. The advantage of modeling
the system is that the network operator knows behavior of
the monitoring system in most serious cases. It is also a
valuable information for designers because they can find out
what causes the bottleneck of their design and they can focus
on its optimization. Output rate can be also derived which is
useful for higher-level programmers of drivers (throughput
of PCI, size of buffer).

4.1. Hash

Let us suppose that the Hash Search is able to distinguish
whether the flow belongs to certain entry or not.V is the
ratio of occupied entries to number of all entries. Then the
probability that Hash Search finds no empty item for new
flow is

P (failure) = V, (1)

which is too high. That is why additional lookups have
to be done. Then it holds that aftern lookups, probability of
no available item is geometric sum:

P (failure) = V ∗
1 − V n

1 − V
(2)

Note the exponential dependency between number of
lookups and the probability of failing to find empty entry
(Figure 2). Four curves shows the dependency on the occu-
pation of the memory. The designer can decide what size of
memory to choose to fit in desired probability. The proba-
bility should be around1 ∗ 10−4 to guarantee maximal limit
rate for forced export. That is when statistical record is re-
moved without meeting inactive or active flow timeout.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 5 6 7 8 9 10 11 12 13 14

P
ro

ba
bi

lit
y

Number of lookups

25%
35%
45%
50%

Fig. 2. Graph showing failure of finding empty entry aftern
lookups

As supposed above, the Hash Search is able to distin-
guish whether the flow belongs to certain entry or not ac-
cording to another hash number which is stored in every en-
try point. That is why it is not crucial when first hash map
two different flows to one entry.

Let us also suppose that we have a complete set ofF
possible flows. Every packet is assigned to one ofB buck-
ets (by hash function of lengthh), whereB < F . How-
ever, packets of the same flow are always assigned to the
same bucket. Collision is a situation when at least one of the
buckets contains packets from at least two different flows.
We are interested in number of such undetectable collisions
per second:

B = 2h (3a)

P (collision) =
k ∗ S

F
=

k ∗ F

B

F
=

k

B
(3b)

collision

second
= P (collision) ∗ x ∗ y (3c)

whereS is number of flows belonging to one bucket,k
is number of used items,x number of new flows per second
andy number of lookups per one incoming packet. Accord-
ing to equations 3 the number of undetectable collisions per
second is exponentially dependent on the hash length. For
example:

col

s
=

220

263
∗ 221 ∗ 14 = 3.3 ∗ 10−6 (4)

4.2. Mass Service System Model

The M/D/1 Kendall mass service system model is used for
the analytic system model of packet processing in critical
part of the design. We are interested in throughput of the
design during different traffic mix. The length of each queue
is monitored to find out whether belonging unit is able to
process all requests. There is a simplified view of the model
based on Petri Net on Figure 3.

A

DELETE REQUEST
DELETE
PACKET
NEW
UPDATE

A

97%

3%

exit

150 ns

150 ns 70 ns

exp(INTERVAL)

70 ns

10%

90%

40%

60%
HSRCH

70 ns

160 ns

90 ns

90 ns

30 ns

100 ns

B

B

const(INTERVAL)

MAN STO

exit

Fig. 3. Model of system based on Petri Net and token with
attributes

It is very hard to create mathematical model of such
a large system and verify it. Other techniques can reach
nearly as good results as theoretical solution even in shorter
time. Our model was implemented according to Figure 3
in C++/SIMLIB [7]. Integral part of model are memories
because they determine which command is generated out of

the unit. Time of service differs from one unit to another and
also from one command to another.

Experiment setup: Memory tables are filled up to 50 per-
cent with subsequent packets each creating new flow much
like an attack. Then simulation starts and runs for 1s with
an attack (interval between packets is constant, 98 percent
of packets create new flow).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 225 230 235 240 245 250 255 260 265

Q
ue

ue
 le

ng
th

 [r
eq

ue
st

s]

Interval between packets [ns]

Hash search
Manager
Storage

Fig. 4. Maximal length of queues

The mass service model evaluates throughput of the de-
sign according to maximal length (maximal length of the
queue does not have to exceed 32 requests) of queue prior to
every unit 4. Please note that IBUF and HFE units are not
present in the model. It is because they can be instantiated
multiple times in parallel thus increasing their throughput.

Results of simulations confirm that throughput of the
model is suitable for two gigabit links. Proposed architec-
ture is able to process 4 million 64-byte packets per second
(Figure 4) when every packet creates new flow (the worst
case).

4.3. Hardware resources utilisation

New add-on card for NetFlow adapter is designed now. Let
us have a closer look how its hardware resources could be
utilized in the most efficient way. Four SSRAMs (4MB
each) memory modules are convenient as Hash Search mem-
ory of entries. From graph on Figure 2 can be seen that uti-
lization of this memory does not have to exceed fifty percent
when after fourteen lookups the probability of no available
empty entry should be reasonably low (0.0001). Given goal
is to monitor one million simultaneous flow which requires
221 of entries. The entry is 64 bit wide in respect to available
memory. Then the first hash is 21 bits long and the second
one 42 bits long (the rest of the entry is occupied by pointer
to Manager and/or Storage memory). The number of unde-
tected errors is then3.3 ∗ 10−6 per second (1 error per 84
hour) Equation 4.

5. CONCLUSION

In the paper the architecture of high performance flow mon-
itoring adapter was presented. The architecture was evalu-
ated to find out its limits in means of throughput and error
rate. Utilizing COMBO6 cards the proposed architecture
allows to monitor two gigabit links with 1 million simulta-
neous flows. This design can be enhanced to monitor 10GE
network link by employing input sampling unit (rate1/5).
Thanks to FPGA technology various heuristics (e.g. sample
and hold [8], renormalization, sideway filters [9], . . .) can
be added to increase power and monitoring abilities. Our
future work concentrates on more simulations and tests as
well as on implementing the architecture in VHDL.

6. REFERENCES

[1] D. Schuehler and J. Lockwood, “A modular system for FPGA-
based TCP flow processing in high-speed networks,” in14th
International Conference on Field Programmable Logic and
Applications (FPL), Antwerp, Belgium, Aug. 2004, pp. 301–
310.

[2] “Cisco,” 2005. [Online]. Available: www.cisco.com

[3] N. Duffield and C. Lund, “Predicting resource usage and esti-
mation accuracy in an ip flow measurement collection infras-
tructure,” inIMC ’03: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement. ACM Press, 2003, pp.
179–191.

[4] C. Estan and G. Varghese, “New directions in traffic measure-
ment and accounting: Focusing on the elephants, ignoring the
mice,” ACM Trans. Comput. Syst., vol. 21, no. 3, pp. 270–313,
2003.

[5] “Liberouter,” 2005. [Online]. Available: www.liberouter.org

[6] J. Novotný, O. Fučı́k, and R. Kokotek, “Schematics and
PCB of COMBO6 Card,” CESNET, Tech. Rep., 2002. [On-
line]. Available: http://www.cesnet.cz/doc/techzpravy/2002/-
combo6/combo6.pdf

[7] P. Peringer, “SIMLIB/C++,” 2004. [Online]. Available:
http://www.fit.vutbr.cz/ peringer/SIMLIB/index.html.en

[8] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a
better netflow,”SIGCOMM Comput. Commun. Rev., vol. 34,
no. 4, pp. 245–256, 2004.

[9] T. Košnár, “Notes to flow-based traffic analysis systemde-
sign,” CESNET, Tech. Rep., 2004.

