Abstract Regular Tree Model Checking of
Complex Dynamic Data Structures
— Implementation Details

Adam Rogalewicz

FIT, Brno University of Technology, BoZetéchova 2, CZ-61266, Brno, Czech Republic.
e-mail: rogal ew@it.vutbr.cz

Abstract. This article describes some implementation details used in our proto-
type tool for verification of programs manipulating dynamic data structures. This
tool is based on the automata framework. We encode data structures into trees
and sets of trees as finite tree automata. The program behaviour is encoded as a
tree transducer. Then the abstract regular tree model checking technique can be
applied to compute a set of all reachable configurations.

1 Introduction

Automated verification of programs manipulating dynamic linked data structures is cur-
rently a very live research area. This is partly due to the fact that programs manipu-
lating pointers are often complex and tricky, and therefore methods for automatically
analysing them are quite welcome, and also because automated verification of such
programs is not easy. Programs manipulating dynamic linked data structures are typi-
cally infinite-state systems, their configurations have in general the form of unrestricted
graphs (often called shape graphs), and the shape invariants of these graphs may be
temporarily broken by the programs during destructive pointer updates.

In [5], we propose method based on technique regular tree model checking [9, 13,
6]. In regular tree model checking, configurations of the system being examined are
encoded as trees over a suitable ranked alphabet, sets of configurations are described by
tree automata, and transitions of the system are encoded as tree transducers. Then the
set of all configurations reachable from an initial set of configurations is computed by
repeatedly applying the tree transducers on the set of the so-far reached configurations
(encoded as tree automata). In order to make the method terminate as often as possible
and to fight the state explosion problem arising due to increasing sizes of the automata
to be handled, various kinds of automatically refinable abstractions over automata are
used. The technique combining regular tree model checking with automated abstrac-
tions is called abstract regular tree model checking [4], and it is successful on a lot of
case studies.

In order to be able to apply ARTMC for verification of programs manipulating
dynamic linked data structures, whose configurations (shape graphs) need not be tree-
like, we propose an original encoding of shape graphs based on tree automata. We use
trees to encode the tree skeleton of a shape graph. The edges of the shape graph that
are not directly encoded in the tree skeleton are then represented by routing expressions



over the tree skeleton—i.e., regular expressions over directions in a tree (as, e.g., left
up, right down, etc.) and the kind of nodes that can be visited on the way. Both the
tree skeletons and the routing expressions are automatically discovered by our method.
The idea of using routing expressions is inspired by PALE [12] and graph types [11]
although there, they have a bit different form (see below) and are defined manually.

The complete description of this method can be found in [5]. This method was pro-
totypely implemented in a tool based on MONA [10] GTA library, and a series of case
studies were verified for safety properties. This article brings some more details about
the prototype implementation — encoding of transducers as mona-automata (preliminary
proposals are in [1]), implementation of finite-height abstraction, automatic creation of
routing expressions, and initial partition of automata states.

2 MONA

Mona [10] is a tool which was designed for decision of WS1S and WS2S (Weak
Second-order Theory of One or Two successors) formulas validity. WS1S is a frag-
ment of arithmetic augmented with second-order quantification over finite sets of nat-
ural numbers. Mona is based on the relation between the logic and the finite (tree)
automata theory. For each WS1S formula, there exists a corresponding finite automa-
ton. For each WS2S formula there exists a corresponding tree automaton. Validity of a
formula is equal to non-emptiness of the corresponding automata. The conjunction of
formulas is related to the intersection of automata, the formulas disjunction to the au-
tomata union, the negation to the automata complementation. Mona receives a formula,
converts it into the corresponding automaton and checks for emptiness.

The implementation of Mona contains two
interesting libraries. The first one for finite au-
tomata and the second one for guided tree au-
tomata (GTA). Both are based on BDDs (binary
decision diagrams) [7] with a strong emphasis
to efficiency and complexity. Instead of alphabet
symbols, binary codes are used. Bits in binary
coded symbols are numbered from 0, and some
bits can be undefined. Example of BDD can be
seen on figure 1. In this BDD, we distinguish al-
phabet symbols using the first 4 bits. Note, that
not all bits must be used to distinguish the out- @ @
put. The input node is called BDD-root. There Fig.1. An example of a binary de-
can be defined several BDD-roots — e.g. one for cision diagram (BDD)
each automaton state. Leaves of the BDD define
the value associated with concrete BDD-root, and the symbol of alphabet. This defini-
tion is much more efficient than the classical sequential definition of automata rules.

Loops is BDDs are forbidden, but a sharing between BDD paths is required. BDD
nodes with an equal behaviour are automatically merged. Therefore if equal rules are
defined from two automata states, this states will be manipulated by the same BDD-
root. We use the GTA library to manipulate bottom-up tree automata. The class of GTA




contains whole class of bottom-up tree automata. Bottom-up tree automaton [8] is a

generalisation of finite automaton. It is a finite state machine, which starts with several
heads (one at each leaf), and reads the tree from leaves to the root.

Remark: General tree automata can accept n-ary tree (with n-ary branching), but the

GTA library supports only binary ones (with the branching factor two). This is not a

huge restriction, because we can introduce an encoding of n-ary trees into binary ones.

2.1 Transduction

The GTA library does not provide transducers. However, as we proposed here, it allows
us to encode structure preserving transducers as automata.

The idea is to define symbols of alphabet only at even bits. Regular automata then
use just even bits in BDDs. Transducers are encoded as normal automata, where the
input is encoded in even bits, and the output in odd bits. The application of transducer
is done in following way:

1. Intersection between automaton and transducer
2. Projection of all even bits (the result of this step contains only odd bits)
3. Remapping of odd bits to even (1% — 0th 3rd — 2nd )

The result is an automaton, where each accepted tree is reachable (using the trans-
ducer) from some tree accepted by the original automaton. The reverse application of a
transducer is done by same 3 steps, but in a different order — (1) remapping (even bits
to odd), (2) intersection with the transducer, (3) projection on even bits.

2.2 Finite Height Abstraction

The first proposed abstraction method to accelerate the fixpoint computation is an ab-
straction based on languages of trees of a finite height. It defines two states equivalent,
if their languages up to the given height n are equivalent. There is just a finite number
of languages of height n, therefore this abstraction is finitary. A refinement is done by
an increase of the height n. The abstraction works as follows:

1. First, we create two initial classes of states — final ones, and non-final ones.

2. Two states q1, and gz are equal, if v € Al phabet AV([v(i, ) — q1] : 3[v(eq(i),eq(j)) —
gz] and via versa (change g1 and gz), where i, j are states, eq(x) is a state in equal
class as x (classes are created in step 1, or 3), and [x(a,b) — c] is an automaton
rule.

3. New classes are created according to the result of the previous step.

4. Steps 2, and 3 are iterated n-times, where “n” is the bound of the abstraction.

The implementation of steps 2, and 3 is done as follows: For each automaton state
“s”, we compute the following matrix of the size n x n (n is actual number of classes).
A field (clasg, classp) of this matrix associated to classes classa and classy, contains a
set of alphabet symbols {x|a € classa, b € classy,x(a,b) — s}. Only states with exactly
equal matrices can stay in the same class.



2.3 Predicate Based Abstraction

The second proposed abstraction is an abstraction based on predicate languages. Let
P = {P1,P,...,Py} be a set of predicates. Each predicate P €  is a tree language rep-
resented by a tree automaton. Let M = (Q, X, F, d) be a tree automaton. Then, two states
01,02 € Q are equivalent if their languages L(M,q1) and L(M,qgz2) have a nonempty
intersection with exactly the same subset of predicates from the set P.

In our implementation, one automaton defines a set of predicates — each state can
be chosen as a final state of the automaton. This allow us to check intersections with
all predicates defined by one automaton as follows: 4 is an automaton on which the
abstraction is applied, P is an automaton describing predicates, init(A) is an initial state
of the automaton A, States(A) is number of states in the automaton A.

Create matrix block of the size States(A2) x States(), and fill it by O’s.
Set block[init(4),init(P)] =1
Create a stack of tuples, and push (init(2), init()) into this stack.
Pop tuple (a,b) from the stack
Vie 4V e P :blockli, j] =1 do:
— If s € Alphabet : s(a,i) — x As(b, j) — y Ablock[x,y] = 0, set block[x,y] = 1
and push (x,y) into the stack.
— If s € Alphabet : s(i,a) — x As(j,b) — y Ablock[x,y] = 0, set block[x,y] = 1
and push (x,y) into the stack.
6. If stack is not empty, then continue by step 4.
7. Two states i, and j are equal, if fields block[i], and block[j] are equal.

arwbdpE

3 Encoding of Memory Configurations

To be able to use abstract regular tree model checking [4], we need to encode program
configurations as trees, and its sets as tree automata. The problem is, that dynamic data
structures are in general oriented graphs (called shape graphs). Therefore we proposed
an encoding of the graphs into the trees [5]. The main idea is, that a tree is used just as
a backbone, and edges between nodes are defined as expressions over directions in this
backbone, and over values of nodes.

Let ¥ be a set of pointer variables, M a set of markers, D a finite set of data values,
and R a set of so-called pointer descriptors. Then the tree encoding of a shape graph
has the following form: At the top of the tree is located a node containing a program
location (a line of the program). The second node from the top contains undefined
pointer variable — it is a symbol from the alphabet 2%. The third node contains null
pointers — also a symbol from alphabet 2%. Under this node is located the top node of
the heap contents — the top memory node. Each memory node (top or inner) can have n
sons — inner memory nodes. The memory node contains symbol of the alphabet 27 x
2M 5 D x (R U{L, T}k This symbol encodes pointer variables pointing to this node,
markers set in this node, the data value of this node, and n so-called pointer descriptors
— each for one next pointer beginning from this memory node. This descriptors are
symbolic names — references to routing expressions. “_1” is a special pointer descriptor
denoting null pointer, and “T” denotes an undefined pointer.



i
Sublree 1 N, |

Subtree 2

pointers |markers | data

oo, | . [o

\ —

Subtreel  Subtree2 Subtreen

Subtreen

Fig. 2. Splitting memory nodes in Mona into data and next pointer nodes

Routing expressions are regular expressions over the directions in tree, and deter-
mine the destination of the pointers. There is a finite number of routing expressions
which are updated during the computation. Each routing expression is paired with a
marker — only a marked node can be a destination of the pointer (this decreases the
non-determinism of routing expressions).

As the library supports binary trees only (we need n-ary ones), we split each memory
node labelled with S, = 2% x 2™ x D x (R U{_L, T})¥ in the above definition of a tree
memory encoding into a data node labelled with 2% x 2 x D and a series of k next
pointer nodes, each labelled with ® U {_L, T }—cf. Fig. 2.

3.1 Routing Expressions

In our prototype implementation, we encode routing expressions as a transducers mov-
ing token (selected bit in BDD representation) from a source node to a destination one.
The destination node must contain the marker paired with the routing expression.

Automatic Creation of Routing Expression After execution of acommand x.next =y,
it is necessary to update pointer expression assigned to this command. This routing ex-
pression must cover all newly added combinations of sources and destinations. The
source nodes contain the pointer variable x, and the destination nodes variable y (po-
sition of x and y is unique in each tree). We need to extract the relation between this
two pointer variables. For this extraction, we use a special transducer. This transducer
transforms the input automaton to another one with a restricted alphabet (only 4 sym-
bols) in the following way: Node without x and y — 00, node containing x — 10 node
containing y — 01 node containing both x and y — 11.

After applying this transducer, we received an automaton, where the relation be-
tween x and y is preserved. (remark: we work with a set of trees leadsto we obtained a
set of relations). We call this automaton a shape automaton. In addition, this automaton
contains also information about a position of these variables in the tree. But we need to
extract just the relation between x and y. Therefore we modified this shape automaton
in the following way: Everything below and above the shortest path between x and y is
substituted by 00* (an unbounded number of reading of the symbol 00). This can not
be done by a transduction — a special procedure is used. This procedure go through the
automaton and search for states under, and over the shortest path. After applying of this
procedure, we receive an automaton, where x can be placed almost everywhere (not
all positions allows to place y according to relation) in the tree, and y is placed at the
position related to x.



Now, we can create a routing expression (transducer) according to this shape. The
transducer is created by the intersection of the modified shape with a 1-state template
transducer. This template transducer has four types of rules starting from the 3" bit of
BDD. The first 2 bits are used according to the shape: 00 — copying rule, 10 — check for
presence of the token end delete it, 01 — check that the token is not set, and set it, 11 —
copy node, and check for token (next pointer points to the current node).

After the intersection, we project out first 2 bits, and remap bits to get an ordinary
transducer (2 — 0,3 — 1,4 — 2,...). Now we have the desired routing expression.

Cover Check The creation of routing expressions is due to a set of projections an
expensive process. In most of the cases, it is not necessary to run it, because the actual
routing expression is sufficient. Therefore we introduce a cover check procedure to
decide whether to run the creation, or not.

The cover check is a simple procedure. At the beginning we have a set of trees,
where in each tree, the source node is marked by the variable x, and the destination one
contains the variable y, and a marker (paired with the tested routing expression). Then
we apply the following steps:

1. Set the token to the node containing the variable x.

2. Delete markers paired with the tested routing expression from nodes without the
variable y

3. Apply the routing expression.

4. Apply the routing expression in a reverse way (as the reverse transducer) on the
result from the previous step.

5. Check, whether the original set obtained by the step 2 is included in the result of
the step 4.

If there is some tree with the combination of a source and a destination not covered
by the routing expression, this tree will be lost after the step 3. Then this tree is not
included in the result obtained after the backward transition (step 4).

3.2 Initial partition

As it was described in section 3, the tree encoding consists from different types of
nodes — memory nodes, next pointer nodes, etc. To ensure, that abstraction does not
collaps nodes with different meanings (and degrade the memory encoding), we use an
initial partition of automata states. At the beginning, all states are supposed to have an
undefined type. The types will be assigned during the initial partition.

First, we separate initial, final, and rejecting (no tree is accepted from a rejecting
state) states into separate classes. Now, we separate states accepting undefined pointers
definition — states {x|val(x, initial) — final}, where val is an arbitrary symbol of al-
phabet, initial is an initial state, and final is a final state. The symbol val represents a
program location (number of line in program). The states accepting null pointer defini-
tion are separated after undefined ones — states {x|val(x, initial) — undef}, where val
is a symbol beginning with 00 (in binary encoding) of alphabet, initial is an initial state,
and undef is an undefined state. After undefined states, we distinguish states accepting



top memory nodes — {x|11.%(i, j) — x}, where 11.* is an alphabet symbol beginning
with 11 (in binary representation), and i, j are not-yet-sorted states.

Now, only inner memory nodes, and next pointer nodes are unseparated. The search-
ing for states accepting memory nodes is done in equal way as searching for top mem-
ory nodes. Only symbols from alphabet beginning with 10 are used — {x|10.*(i, j) — X}.
The rest of the states is declared as states accepting next pointer nodes.

This initial partition can be improved by one of the following two possibilities. (1)
The states accepting next pointer nodes are separated into several classes with respect
to the level of next pointer node — next pointer nodes of different levels can not be
collapsed, and the data structure shape is preserved. (2) Each state accepting a next
pointer node can be put into separate class. This exclude collapsing on states accepting
next pointer nodes. Experimental results showed, that best results are obtained when
collapsing on next pointer nodes is forbidden.

4 Experimental Results

This section is a short review of experimental results described in [5]. We have per-
formed several experiments with singly-linked lists (SLL), doubly-linked lists (DLL),
trees, lists of lists, and trees with linked leaves.

Table 1 contains verification times for the experiments mentioned above (the “+
test” in the name of an experiment means that some shape invariants were checked). We
give the best result obtained using the three mentioned abstraction schemas and say for
which abstraction schema the result was obtained. The note “restricted” accompanying
the abstraction method means that the abstraction was applied at the loop points only.
The experiments were performed on a 64bit Xeon 3,2 GHz with 3 GB of memory. The
column |Q| gives information about the size of the biggest encountered automaton, and
Nret gives the number of refinements.

Table 1. Results of experimenting with the prototype implementation of the presented method

[ Example [Time| Abstraction method [[Q][Nret]]
SLL-creation + test 1s | predicates, restricted | 25| 0
SLL-reverse + test 5s predicates 52| 0
DLL-delete + test 6s finite height 100| O

DLL-insert + test 10s | neighbour, restricted [106| 0
DLL-reverse + test 8s predicates 541 0
DLL-insertsort 2s predicates 51| 0

Inserting into trees + test 29s | predicates, restricted | 65| 0
Linking leaves in trees + test 49s predicates 75| 2
Inserting into a list of lists + test 6s | predicates, restricted| 55| 0
Deutsch-Schorr-Waite tree traversal | 57s predicates 126| 0

5 Conclusion

In [5], we have proposed a new, fully automated method for verification of programs
manipulating complex dynamic linked data structures. The method is based on the



framework of ARTMC. This method was fully implemented in the prototype tool, based
on mona GTA library [10]. During the implementation, it was necessary to create a lot
of non-trivial functions to manipulate shape graphs encoded as trees. Some of the im-
plementation details are described in this article.

In the future, we would like to optimise the performance of our Mona-based pro-
totype tool, e.g., by exploiting the concept of guided tree automata that are suggested
as very helpful in many situations by the authors of Mona [2] and that we have not
used yet. Also, there can be introduced more detailed abstraction methods designed
specially for this encoding of shape graphs. This special purpose abstraction methods
can improve the efficiency of the ARTMC.

Our present method is designed for verification of safety properties, but we would
like to introduce also method for verification of liveness properties. One possible way
is to extend a method proposed by Bouajjani et al in [3] to structures with more than
one selector. This extension brings a lot of new problems to be solved.

Acknowledgement. This work was supported in part by the Czech Grant Agency
within projects 102/05/H050, 102/04/0780, 102/03/D211, and by the Czech-French
project Barrande 2-06-27.

References

1. A.Rogalewicz. Towards Applying Mona in Abstract Regular Tree Model Checking. In Proc.
of Sudent EEICT 05. FIT VVUT, 2006.
2. M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for Guided Tree Automata. In Proc. of
WIA' 96, volume 1260 of LNCS Springer, 1997.
3. A. Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Moro, and T. Vojnar. Programs with Lists
are Counter Automata. In Proc. of CAV’ 06, LNCS. Springer, 2006.
4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking. In Proc. of Infi nity’' 05, 2005.
5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In Proc. of SAS 06, LNCS. Springer, 2006.
6. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. In Proc. of
CAV' 00, volume 1855 of LNCS Springer, 2000.
7. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. |EEE Transac-
tions on Computers, C-35(8):677—691, 1986.
8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications, 2005.
URL: http://ww. grappa.univ-lille3.fr/tata.
9. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic Model Checking with
Rich Assertional Languages. Theoretical Computer Science, 256(1-2), 2001.
10. N. Klarlund and A. Mgller. MONA Version 1.4 User Manual, 2001. BRICS, Department of
Computer Science, University of Aarhus, Denmark.
11. N. Klarlund and M.I. Schwartzbach. Graph Types. In Proc. of POPL’93. ACM Press, 1993.
12. A. Mgller and M.I. Schwartzbach. The Pointer Assertion Logic Engine. In Proc. of PLDI’ 01.
ACM Press, 2001. Also in SIGPLAN Notices 36(5), 2001.
13. P. Wolper and B. Boigelot. Verifying Systems with Infinite but Regular State Spaces. In
Proc. of CAV’ 98, volume 1427 of LNCS Springer, 1998.



