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Abstract. This paper deals with the k-way ratio cut hypergraph partitioning 
utilizing the Mixed discrete continuous variant of the Bayesian Optimization 
Algorithm (mBOA). We have tested our algorithm on three partitioning 
taxonomies: recursive minimum ratio cut, multi-way minimum ratio cut and 
recursive minimum cut bisection. We have also derived a new approach for 
modeling of Boolean functions using binary decision diagrams (BDDs) which 
are primarily used as a probabilistic model of the mBOA algorithm. 

1 Introduction 

Partitioning problem is investigated in many research papers. A general survey of 
partitioning methodologies is presented in [1] and a comparison of several partitioning 
approaches was presented in [2] and [3]. Their common conclusion pointed out that the 
ratio cut partitioning gives the best results. The frequently mentioned reference involving 
the ratio cut criterion is that by Wei and Cheng [4]. They used move-based heuristic 
algorithm where graph node movement from one partition to the other is controlled by 
current ratio cut.  
 Recently, a generalization of the ratio cut implementation was published in [5] where 
the pin count estimated by Rent’s rule was used. Problems of recursive balanced bisection 
are solved in [6]. A new enhancement of min-cut partitioning (useful for placement) was 
published in [7]. It validates the multilevel partitioning paradigm for hypergraphs with 
efficient implementation using benchmarks published in [8]. 
 A separate class of optimizers involves genetic algorithms (GAs). An interesting study 
on graph partitioning using hard theoretical benchmarks was published in [9]. The newest 
research based on memetic algorithms and analysis of the fitness landscape was presented 
in [10]. Estimation distribution algorithms (EDAs) represent a new class of efficient 
optimizers. Unlike the standard GAs the crossover and mutation operators are replaced by 
probability estimation and sampling techniques. In other words, statistics about the search 
space is explicitly maintained by creating probabilistic models of the good solutions found. 
We have focused especially on the Bayesian Optimization Algorithm (BOA). Our first 
experience with these techniques was presented in [11] and [12] where minimum-cut 
bisection was tested and the ability to find global optima was presented. The multi-
objective partitioning problem was published in [13] and [14]. The application of recursive 
partitioning for placement problem was presented in [15]. 
 During our research we have implemented and tested a new Mixed discrete continuous 
variant of the Bayesian Optimization Algorithm (mBOA) to test its ability for multi-way 
partitioning. It follows the basic theory and implementation of the BOA initially published 
in [16], [17] and [18]. We used the concept of binary decision diagrams (BDDs) [19] as 



  

graphical probabilistic model approach, including our reformulated standard formulae of 
the Bayes - Dirichlet metric [20]. In addition, we extended the concept of BDDs to be able 
to process discrete and continuous domain, that is necessary for the direct (parallel) multi-
way hypergraph partitioning. 
 The remainder of our paper is organized as follows. The specification of partitioning 
problem is done in the next section. Probabilistic model and mBOA algorithm are described 
in the third and fourth sections. An extra application of binary decision diagram for 
Boolean function modeling is presented in the fifth section. The experimental results for 
hypergraph partitioning are presented in the sixth section. 

2 Problem specification 

Hypergraph partitioning is a well known problem of graph theory. It means dividing 
hypergraph into disjoints subhypergraphs/modules each containing a subset of nodes. The 
partitioning is done using various criterions. Generally, the criterion is to minimize the 
number of hyperedges that have nodes in different partitions or alternatively the 
minimization of pin count is used. 
 The particular bi-partitioning problem can be defined as follows: Let us assume a 
hypergraph H=(V,E), with n=|V| nodes and m=|E| edges. The goal is to find such a 
partition (V1,V2) of  V  that minimizes the number of hyperedges that have nodes in 
different set V1, V2 (see (1)) under the defined constraint of the partition size. It can be also 
expressed  by the balance/unbalance of the partition size (see (2)). The set of external 
hyperedges can be labeled as Ecut (V1,V2) and the following cost function is defined            
(• symbol represents the multiplication operation): 
   C1 (V1,V2 ) = Ecut (V1,V2)  =  {e∈ E  e∩V1 ≠ ∅ , e∩V2 ≠ ∅}               (1) 
with constraint 
   C2(V1,V2  ) = / /V1/-/V2// <= αV,  α∈ <0,1)                   (2)  
Another form of balance used in ratio cut metric is expressed in product form:   
   C3(V1,V2  ) =  /V1/•/V2/ =  /V1/•/V-V1/                         (3) 

Therefore the ratio cut partitioning that can be specified by the criterion (4) was introduced: 

   RC = C1 / (/V1/•/V2/) = C1/C3                                   (4) 
 
The ratio cut formulation allows the tradeoff between nets cut and the balance value during 
the partitioning. The numerator represents the minimum-cut criterion while denominator 
favours near-bisection.  Our goal is to test the performance of the newly designed 
advanced mBOA algorithm for three main partition taxonomies: recursive minimum ratio 
cut, multi-way (parallel) minimum ratio cut and recursive minimum cut bisection. We used 
mainly hard artificial benchmarks with known global optimum and high 
nonlinearity/epistasis of instances. 

3 Solution encoding in evolutionary algorithms 

Using the population based evolution algorithm the solution of bi-partitioning is 
represented by binary string:  
 
X =(X0, X1,..,Xn-1)  is a string/solution of length n with Xi  as a variable,  
x =(x0, x1,…,xn-1) is a string/solution with xi∈{0,1} as a possible instantiation of variable Xi. 



  

In case of direct k-way partitioning the encoding of solution uses an alphabetic string. Each 
variable can acquire k distinct alleles. For the simplest case of 2 - way partitioning/bisection 
of a simple graph G(V,E,W) we derived on the binary string X=(x0 , x1 ,.., xn-1) the following 
quadratic cost function: 
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where the coefficient wij=1 in case that net/edge exists between node i and j, else wij=0. 
The balance C3 can be expressed by term: 
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4 Standard Bayesian optimization algorithm (BOA) 

The principle of BOA algorithms that work on the basis of probabilistic models can be 
specified on the following framework:  
 
Generate initial population of individuals of size M (randomly); 
While termination criteria is false do 
begin 
   Select parent population of N individuals according to a selection method; 
   Estimate the probability distribution of the selected parents; 
   Generate new offspring according to the estimated probabilistic model; 
   Replace some individuals in current population with generated offspring; 
end 

4.1 Bayesian network (BN) 

The original Bayesian Optimization Algorithm [17] operates on the population of 
strings/chromozomes of n binary variables/genes. The Bayesian Network is learned in each 
generation how to encode the structure of promising solutions. The following step includes 
a sampling process to discover the promising areas of the search space. In BN for each 
variable Xi a set of parent variables 

iXΠ  is defined which it depends on, so the distribution 
of individuals is expressed by the conditional probabilities: 
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Generally, the existence of a directed edge from Xj to Xi in the network implies the 
belonging of the variable Xj to the set 

iXΠ . 
 
 

Figure 1: Example of BN with 3 nodes, where X0 and X2 are independent and X1 depends on X0 and X2 

x1 
x2 x0 



  

4.2 Binary decision diagram (BDD) 

Additional accuracy and efficiency can be achieved by utilizing decision trees or diagrams 
in Bayesian network, see [19]. For the BN in  Fig. 1, the corresponding contingency table 
for X1 would have 4 rows, one row for each possible instance of the substring (X0,X2). Now 
let us suppose that in some case p(X1|10) = p(X1|11) and p(X1|00) ≠ p(X1|01). It is evident, 
that if X0=1 the value of X1 does not depend on X2. This allows to reduce the number of 
table rows (* is a don’t-care symbol). 

Table 1. Simplified contingency table by don’t-care symbols. 

X0   X2 consequent p(X1) 
0     0 p(X1|00) 
0     1 p(X1|01) 
1     * p(X1|1*) 

 
This situation can be expressed by a decision tree (see Fig. 2). Each variable, which 
determines the X1 value corresponds to one or more split nodes in the tree. Each row in the 
Tab.1 corresponds to one leaf of the tree and each leaf determines p(X1) among the 
individuals fulfilling the split conditions on the path from the root: 
 
 
 
 

 
 

Figure 2: Binary decision tree for the determination of X1 

Next advantage of decision trees lies in low complexity of their building – the step of 
adding new split node is easy to evaluate by the metric (9) – it splits only one row in the 
contingency table. From the Bayes-Dirichlet metrics (BD) we derived the incremental 
equation for adding one new binary split: 
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where Xi is the child variable, Xj is the parent variable - possible split, and  mr,s is the 
number of individuals having Xj=r and Xi=s. Note that the splitting is performed 
recursively, so mr,s is determined only from the subpopulation being split. 

Table 2. Notation of symbols mr,s 

 Xi = 0 Xi = 1 
Xj = 0 m0,0 m0,1 
Xj = 1 m1,0 m1,1 

 
Moreover, the gain of each split operation can be penalized by the model complexity (e.g. 
the depth of the tree), which removes the need of the  limitation of the  number of parents. 

x2 

x0 
0         1 

0         1 p(X1|1*) 

p(X1|00) p(X1|01) 



  

The algorithm for building the binary decision tree from the population can be illustrated in 
the following figure: 

 Population:   
 x0 x1 x2 x3 
0  0  0  0
0  0  0  0
0  1  0  1
0  1  0  1
1  0  0  1
1  1  0  1
1  1  0  1
1  1  1  0

Split on x0 : 
         x3=0  x3=1 
x0 = 0    2       2 
x0 = 1    1       3 

 

gain = 1.40 

Split on x1 : 
          x3=0  x3=1 
x1 = 0    2       1 
x1 = 1    1       4 

 

gain = 1.92 

Split on x2 : 
         x3=0  x3=1 
x2 = 0    2       5 
x2 = 1    1       0 

 

gain = 1.65 

Sub-population x1=0: 
        x0 x1 x2 x3 

0  *  0  0
0  *  0  0
1  *  0  1

Sub-population x1=1: 
        x0 x1 x2 x3 

0  *  0  1
0  *  0  1
1  *  1  0
1  *  0  1
1  *  0  1

Split on x0 : 
          x3=0  x3=1 
x0 = 0    2       0 
x0 = 1    0       1 

 

gain = 1.54 

Split on x2 : 
         x3=0  x3=1 
x2 = 0    0       3 
x2 = 1    0       0 

 

gain = 1.07 

Split on x0 : 
         x3=0  x3=1 
x0 = 0    0       2 
x0 = 1    1       2 

 

gain = 1.07 

Split on x2 : 
          x3=0  x3=1 
x2 = 0    4       0 
x2 = 1    0       1 

 

gain = 2.22 
 

Figure 3: Building binary decision tree for x3 
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Figure 4: Final binary decision tree for x3 

4.3 BDD for mixed continuous discrete  mBOA algorithm  

The idea of the utilizing BDD in BOA algorithm was mentioned for the first time in [19]. In 
our Mixed Bayesian Optimization Algorithm (mBOA) we extended the idea of decision 
diagram to continuous and integer domains. Our mBOA is the only one EDA which is able 
to solve problems with mixed real-discrete parameters (alleles) without conversion to 
binary representation. In Fig. 5 an example with continuous child variable Xi and 
continuous parent variable Xj is shown. Our algorithm tries to find a Xj and Xi boundaries 
such that the numbers of individuals in each quadrant maximize (9). In the case of integer 
domain (see Fig. 6) we use hill-climbing algorithm to split the set of possible Xj values into 
left and right subset. The variable s in (9) goes through all possible Xi values instead of only 
two values {0,1}. 
 



  

 

 

 

 

 

Figure 5: An example of real domain split      Figure 6: An example of integer domain split 

4.4 Probabilistic model sampling 

As a result of probabilistic model construction we obtain a set of decision trees, one tree for 
each variable. This set of trees is used for generation of the offspring (new population) 
during the Probabilistic Logic Sampling (PLS). During this PLS process the variables 
(whose parents are already determined) are generated by traversing their decision trees. 
This is repeated for each offspring until all its variables are generated.  
 In our example in Fig. 1 the variables X0 and X2 are generated as first. Then the concrete 
value of p(X1) is determined according to concrete values of  X0 and X2 - using decision tree 
from Fig. 2.  

4.5 Parallel BDD construction 

The probabilistic model construction is the most time consuming task in mBOA. We are 
currently working on the distributed mBOA using Message Passing Interface (MPI). The 
goal is to utilize more processors when searching for a good model. Our consolation is that 
the BD metric is separable and can be written as a product of n factors, where i-th factor 
expresses the quality of decision tree for variable Xi. It is possible to use up to n processors, 
each processor has its own local copy of parent population and it builds tree for different 
variable. The addition of splits/parents to the trees is parallel, so we need an additional 
mechanism to keep the mutual dependencies acyclic. In [21] we proposed the concept of 
restricted set of parents in BN. We are going to extend this concept for BDD in mBOA. In 
each generation,  variables  will be ordered in advance, according to a random permutation 
vector q = (q0, q1,..,qn-1).  Each decision tree of variable Xi may contain only such parental 
splits Xj having qj < qi. This approach ensures linear scalability, because no communication 
overhead is required. In addition, scalable methods for overlapping the communication 
latency during generation, evaluation and broadcasting of new population among the 
processes will be implemented using the farmer-workers architecture. 

5 BDD diagram as a model of Boolean function 

Binary Decision Diagrams are commonly used for representation of Boolean functions 
because of their efficiency in terms of time and space. The BDDs are capable to improve 
many conventional algorithms significantly. Besides Boolean function, BDDs can be also 
used for representation of other types of discrete functions, such as multi-valued functions, 
cube sets and arithmetic formulas [22].  BDDs or oriented BDDs (OBDDs) can be 
constructed from Binary Decision Tree (BDT) using two basic reduction rules: 1) reduction 

 Xi = 0 Xi = 1 Xi = 2 Xi = 3 
Xj ∈{0,2} m0,0 m0,1 m0,2 m0,3 
Xj ∈{1,3} m1,0 m1,1 m1,2 m1,3 

estimated boundary child Xi 

parent Xj 

    split boundary 

m0,0=6 
m0,1=2 

m1,1=5 m1,0=1 



  

of nodes with unique ancestor nodes and 2) sharing all equivalent sub-graphs. The previous 
two-phase approach suffers from the necessity of a specification of the node ordering in the 
first phase. The node ordering is often provided by genetic algorithms [23]. In another 
approaches the ordering is found dynamically during the process of BDD building. We 
suggest a new approach to build BDDs for a Boolean function (see Fig. 7 and Fig. 8). This 
approach using BD metric is similar to the previous one  presented in Fig. 4 in case that we 
interpret the variable x3 as a Boolean function. The function must be represented by truth 
table. But this can be considered as a bottleneck of the method. The advantage of suggested 
approach lies in the implicit ordering of BDD nodes and lower BDT complexity.  
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Figure 7: BDT-model of Boolean function F=x0x1+x2x3  Figure 8: BDD after removing duplicate subgraphs 

6 Experimental results 

6.1 Test benchmarks 

The complexity of the partitioning problem is determined by the type and complexity of the 
instances – benchmark graphs. We used four types of benchmarks - three artificial ones       
(like in the excellent experimental studies [9], [10] and in [11]) with known global optimum 
(see Fig. 9) and one benchmark consisting of two real circuits (random logic) from 
benchmark package [8]: 
 

1. Regular graphs Grid_n with square grid structure, where the notion n specifies the 
number of nodes. Graphs GridH_n have a 2-edge asymmetrical horizontal bottle-
neck and GridHV_n have an extra 2-edge asymmetrical vertical bottle-neck. As an 
example a quadrisection of asymetric graph GridH_100 is represented in Fig. 9. 

2. Random geometric graph U_n.d with n vertices placed in the unit square. The  
coordinates of vertices are chosen randomly with uniform distribution. An edge 
exists between two vertices if their Euclidean distance is l or less, where the 
expected vertex degree is specified by d = nπ l2 . We have chosen n=120, d=5. 

3. Caterpillar graphs CAT_n.k, with k articulations, (n-k)/k legs for each articulation 
and n nodes.  

4. Real circuits labeled by IC_n. The hypergraph IC_67 consists of 67 nodes and 138 
edges/nets, the IC_116 consists of 116 nodes and 329 edges/nets. 



  

          

Figure 9: Graph structure of GridH_100, U_120.5 and  a segment of the CAT_21.3 graph. 

6.2 Summary of experimental results 

Experimental results are summarized in Tab. 3 and partly in Fig. 10. Our algorithm is 
capable to solve the top-down k-way hypergraph partitioning but for the better preview we 
present results for 4-way partitioning only. We have arranged 3 types of experiments: 

• Ratio cut partitioning by recursive bi-partitioning RRC 
• Ratio cut partitioning by non recursive multi-way partitioning MRC 
• Partitioning by recursive bisection RB 

The ratio cut value is presented in the inverse mode, because this mode for fitness 
representation is used. The 1/RC values printed in bold represent the global optimum. 

Table 3. Partitioning results for four types of graphs and three algorithms. The population size was set to 
N=40*n for RRC and RB, N=100*n for MRC, computation time is expressed in seconds. 

 RRC MRC RB 
Benchmark n 1/RC 

optimum 
1/RC 

cut size 
Time  
Eval. 

1/RC 
cut size 

Time 
Eval. 

1/RC 
cut size 

Time 
Eval. 

Grid_64 64 3855.1 3855.1 
16 

179 
35939 

3626.6 
17 

2574 
233600 

3855.1 
16 

479 
80316 

GridH_64 64 5236.4 5236.4 
10 

136 
31864 

5236.4 
10 

2392 
214400 

3640.9 
17 

479 
87819 

GridHV_64 64 10125.0 10125.0 
4 

134 
31830 

10125.0 
4 

1979 
168600 

4369,1 
14 

483 
81253 

Grid_100 100 18601.2 18601.2 
20 

1041 
78000 

17857.1 
20 

15258 
495000 

18601.2 
20 

3406 
219000 

GridH_100 100 27692.3 27692.3 
12 

867 
75400 

26584.6 
12 

12617 
385000 

18601.2 
20 

3405 
221000 

GridHV_100 100 66355.2 66355.2 
4 

850 
67440 

66355.2 
4 

10931 
330000 

22977.9 
16 

3491 
220000 

IC_67 67 - 1006.9 
64 

387 
88521 

1165.9 
65 

2647 
219000 

1091.8 
71 

932 
167232 

IC_116 116 - 7253.33 
62 

1554 
93344 

8250.7 
80 

17977 
435000 

7113.5 
95 

3956 
204477 

U_120.5 120 - 15669.5 
31 

2613 
129047 

14168.0 
44 

30111 
594000 

12272.7 
65 

5771 
247200 

CAT_105.7 107 - 101250.0 
3 

933 
66750 

101250.0 
3 

12358 
336000 

29659.5 
15 

5292 
295679 
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Figure 10: Relation between criterion C1 and C2 during  the RRC minimization  of the IC67  hypergraph. 

7 Conclusions 

We have implemented a new advanced evolutionary algorithm mBOA for multi-way 
partitioning of hypergraphs. Its main advantage against the mostly used move-based 
heuristic methods lies in the ability to discover and determine the amount of epistasis in a 
given problem instance and to find the optimal solution. The Bayesian statistics and BDD 
diagrams used in probabilistic model cause high  performance of mBOA. It is evident  from 
Tab. 3 that the recursive ratio cut algorithm RRC is always able to find the known global 
optimum in  case of artificial graphs. The non recursive multi-way ratio cut algorithm MRC 
provides almost comparable results to the RRC but the time complexity is very high – 
approximately 14 times greater than for the RRC. The recursive bisection algorithm RB is 
worse in more cases in comparison with the previous two algorithms. An example of the 
optimization process for RRC algorithm is shown in Fig. 10. The white nodes on the 
optimization curve represent the best solution in each generation. It can be recognized how 
the algorithm gradually searches for the minimum cut size value resulting in greater balance 
value C2.  The future activity will be focused on the sophisticated RRC algorithm including 
the external pin count, Rent’s rule and the massive parallelization of the mBOA algorithm. 
The research will be also directed towards the enhancement of the suggested approach to 
the modeling of Boolean functions using BDDs with BD metric. 
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