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Abstract: This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) 
for multiobjective optimization of hypergraph partitioning. The main attention is focused on 
the incorporation of the Pareto optimality concept. We have modified the standard 
algorithm BOA for one criterion optimization according to well known niching techniques 
to find the Pareto optimal set. This approach was compared with standard weighting 
techniques and the single optimization approach with the constraint. The experiments are 
focused mainly on the bi-objective optimization because of the visualization simplicity. 
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1 Introduction 
Many real-world problems have multiple often competing objectives. While in the case of 
single-objective optimization the optimal solution is simply distinguishable, this is not true for 
multiobjective optimization. Historically, multiple objectives have been combined to form a 
scalar objective function through weighted sum of individual objectives or by turning 
objectives into constraints. But setting of weights and specification of penalty functions is not 
a simple task and these values can be found only experimentally. The better approach lies  in 
finding  all possible trade-offs  among the multiple, competing objectives. These solutions are 
optimal, nondominated, in that there are no other solutions superior in all objectives. These so 
called Pareto optimal solutions lie on the Pareto optimal front. There are many papers that 
present various approaches to find of Pareto optimal front almost based on the evolutionary 
algorithms. Let us mention  here the well known niched Pareto genetic algorithm NPGA [1]. 
A wide review of basic approaches and the specification of original Pareto evolutionary 
algorithms includes the dissertation [2], [3], [4] where the last one describes the original 
strength Pareto optimization algorithm SPEA. From the last period let us mention an 
interesting Pareto-Envelope based Selection Algorithm PESA [5] which might outperform the 
very good algorithm SPEA. 
All of these capable algorithms based on evolutionary algorithms (EA) have the common 
disadvantage - the necessity of ad hoc setting of  parameters  like crossover, mutation and 
selection rate. That is why we have analyzed and used one of the Estimation of Distribution 
Algorithms (EDAs). These algorithms also called probabilistic model-building genetic 
algorithms have attached a growing interest during the last few years because crossover and 
mutation operators used in standard GA are replaced by probability estimation and sampling 
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techniques to avoid the necessity to specify the set of  GA parameters. We will focus on one 
of them - the Bayesian optimization algorithm [6], [7]. Recently we have published our 
experience with this algorithm in [8] where single criterion optimization of hypergraph 
bisectioning was described. In this paper we have focused on the bi-objective optimization of 
hypergraph bisectioning. 

2   Problem specification  
Hypergraph partitioning  is a well known problem of graph theory. We have investigated a 
special case of k-way partitioning for k=2 called bisectioning. If necessary the k-way partition 
can be found by recursive 2-way bisectioning. The hypergraph model can be used for many 
application problems e.g. for  system segmentation, network partitioning and VLSI layout. 
The particular bisectioning problem is defined as follows: Let us assume a  hypergraph 
H=(V,E), with n =|V| nodes and m = |E| edges. The goal is to find such a bisection (V1,V2) of  
V  that minimizes the number of hyperedges that have nodes in different set V1, V2 (1) and 
the difference/balance of the partition sizes (2). The set of external hyperedges can be labelled 
as Ecut (V1,V2) and the following cost functions are defined: 

 C1 (V1,V2 )=  Ecut (V1,V2)  =   {e∈ E  e∩V1 ≠ ∅ , e∩V2 ≠ ∅}                                (1) 
      C2(V1,V2  ]=  / /V1/-/V2//          (2) 

For  more  formal specification of the problem, the following notation is used: 

P   = (X1, X2,..,XN)    with Xj  ∈ P,  is the  population of the solutions/string/individuals  
X   is a string/individual of the population P the  length of which is n 
X   = (x0, x1,..,xn-1)    is a string/individual with  xi ∈{0,1}  
C(X)  is the  cost function of the string X 

Each solution of the bisection is represented by a binary string X=(x0, x1, …, xn-1 ). The 
variable xi represents the partition number, the index specifies the node in the hypergraph. For 
the case of simple graph G(V,E,R) bisectioning we have derived the following two cost 
functions on the binary string X=(x0 , x1 ,.., xn-1) to be minimized: 
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where the coefficient rij∈R equals to one in case the net/edge of the graph G exists between 
node i and j, else rij=0. The cost C1 represents the cut value of the bisection and the cost C2 
expresses the  balance/difference of the partition sizes. There are three approaches how to 
solve this 2-objective optimization problem that will be described in the next chapters. 

3   The BOA algorithm 
The BOA algorithm is a population based evolutionary algorithm but the reproduction process 
of individuals is replaced by probability estimation and sampling techniques. It uses statistical 
information contained in the current population to detect multivariate parameter 
dependencies. The learned Bayesian network BN encodes a joint probability distribution 
based on the conditional probabilities; the BN quality is estimated by Bayesian-Dirichlet 
metrics. The estimated probability model is then used to generate new promising solutions 
according to this distribution using the sampling process. The BOA algorithm can be 
described as follows [7]: 



 

Generate initial population of size N (randomly); 
While termination criteria is false do 
begin 
   Select parent population of M individuals according to fitness function f(X)  (M<N); 
   Estimate the distribution of the selected parents and construct the Bayesian network BN; 
   Generate new offspring according to the estimated model and BN network; 
   Replace some individuals in current population by generated offspring; 
end  
 

4 Multiobjective  BOA algorithm 
A general multiobjective optimization/maximization problem MOP can be described as a 
vector function f  that maps a tuple of n parameters to a tuple of m objectives [4]: 

max  y = f(x)=(f1(x), f2(x),…, fm(x))                    (5) 
subject to x  = (x0 , x1,…..,xn-1) ∈ X 

     y  = (y1, y2,…,ym)  ∈ Y, 
where x is called decision vector, X is the parameter space, y is the objective vector, and Y is 
the objective space. 
The set of solution of MOP includes all decision vectors for which the corresponding 
objective vectors cannot be improved in any dimension without degradation in another - these 
vectors are called Pareto optimal set. The idea of Pareto optimality is based on the Pareto 
dominance. A decision vector a dominates decision vector b  iff  fi(a )≥ fi(b)  for i=1,2,.., m 
with fi(a )> fi(b)  for at least one i.  The vector a is called Pareto optimal if there is no vector b 
which dominates vector a in parameter space X. 
 In objective space the set of nondominated solutions lie on a surface known as Pareto optimal 
front. The goal of the optimization is to find a representative sampling of solutions along the 
Pareto optimal front. From the theory of Pareto optimal set it is evident that the optimization 
algorithms should be able to find  as many Pareto optimal  solutions as possible. The 
techniques how to do it lies in keeping the diversity using some of the niching techniques. 
Standard BOA is able to find mostly one optimal solution at the end of the optimization 
process, when the whole population is saturated by phenotype-identical individuals. 
We have implemented one variant of Pareto BOA algorithms (Pareto BOA), one variant of 
non-Pareto weighted sum BOA (WSO) and non-Pareto single BOA (SOP).  

4.1   Single BOA with the normalization (SOP) 
In this approach only one objective function f1(X)=1/(C1(X)+1) is used and the second 
objective function f2(X)=1/(C2(X)+1 is replaced by normalization operator which modifies 
each individual to keep its balance in the considered bound. This operation can naturally 
change a partly the objective function f1 of each individual. This effect may cause an extra 
genetic drift of the population.  

4.2   Weighted-sum BOA (WSO) 

In this approach the original vector-valued objective function is replaced by a scalar-valued 
objective function. The objective function of the individual X is computed as a weighted sum 
of all objective functions: 

           
 f(X) = w1 f1(X)+ w2 f2(X),        (6) 

where w1, w2  are weight coefficients. It is well known the sensitivity of the optimization 
process to these values. We have tested two sets of these coefficients. In WSO1 variant we 



 

have chosen w1=0.5, w2=0.5, in WSO2 couple of w1=0.005, w2=0.995 was used. These 
algorithms do not preserve Pareto-optimal solutions but provide mostly solutions from 
extremes of the Pareto front. 

4.3   Pareto optimal BOA 
The multiobjective optimization represents the difficult multimodal optimization problem 
which is mostly solved with niching methods that allow to preserve the diversity in the 
population of individuals/solutions. Our Pareto BOA algorithm is a modification of single 
BOA where we applied a promising niching techniques published in [4].  
Although we solved bi-objective optimization, our algorithm is able to solve m-objective 
optimization problems. Our Pareto BOA algorithm can be described by the following steps: 
Step 1: Initialization: Generate an initial population P0 of size N randomly. 

Step 2: Fitness assignment: Evaluate the initial population. 
Step 3: Selection: Select the parent population as  the best part of current population by 50% 

truncation selection. 
Step 4: Model construction: Estimate the distribution of the selected parents using Bayesian 

network construction. 
Step 5: Offspring  generation:  Generate  new  offspring  (according to the distribution  

associated to the Bayesian network). 
Step 6: Nondominated  set  detection and fitness assignment:  Current  population  and 

offspring are joined, nondominated solutions are found, evaluated and stored at the top 
of the new population. Then dominated offspring and parents are evaluated separately.  

Step 7: Replacement: The new population is completed by offspring  and the best part of 
current population, so the  worst individuals from current population are canceled to 
keep the size of the population constant. 

Step 8: Termination: If maximum number of generations Ng is reached or stopping criterion 
is satisfied then the last Pareto front is presented, else go to Step 3. 

 
The most important part of our Pareto algorithm is the procedure for detection of 
nondominated solution (current Pareto front) and sophisticated fitness calculation. The 
procedure for current nondominated and dominated set detection is described in following 
steps: 

1. For each individual X in the population P compute vector of the objective functions 
))(,),(),(()( 21 XfXfXfXf mK=        (7) 

2. Detect  subset of nondominated solutions 
 { }{ })()(:1:,| jlklkjj XfXfmlPXPXXP >∈∀∈∃∈= K    (8) 

Note: If two or more individuals have the same fitness vector )(Xf , then only one 
of them is accepted. 

3. For each nondominated solution Xj compute its strength value as 
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The fitness  for nondominated solutions is equal to the reverse of the strength value 
)(1)( jj XsXf =′ . 

 



 

4. For each dominated solution Xi  determine the fitness as 














∑+=′

jX
ji XsXf )(11)( ,       (10) 

where { } )()(:1, iljlj XfXfmlPX >∈∀∈ K . In the original approach [4] all individuals 
dominated by the same nondominated individuals have equal fitness. We proposed an 
extension by adding a term )1()(. +PXrc i  into the denominator (10), where )( iXr  is the 
number of individuals from P (not only from nondominated solutions) which dominate Xi 
and coefficient c is set to  very small number, for example 0.0001. This term is used to 
distinguish the importance of individuals in the same “niche” (being dominated by the 
same nondominated solutions).  
This type of fitness evaluation has the following advantages: 
• For all nondominated individuals 1)( ≥′ iXf , for dominated individuals holds 

1)( <′ iXf . If we use the replace-worst strategy, implicit Pareto elitism is included. 

• Individuals from Pareto front dominated smaller set of individuals receive higher 
fitness, so the evolution is guided towards the less-explored search space. 

• Individuals having more neighbours in their „niche“ are more penalised due to the 
higher )( jXs  value of associated nondominated solution. 

• Individuals dominated by smaller number of nondominated individuals are more 
preferred. 

5   Experimental results 

5.1   Test graphs 
The three types of graph structures are used [8]: 

1. Hypergraphs representing real circuits labelled by ICn. The global optima is not  
known. The structure of circuits can be characterized as a random logic. The 
hypergraph IC67 consists of 67 nodes and 134 edges/nets, the IC116 consists of 116 
nodes and  329 edges/nets. 

2. Random geometric graph Un.d. on n vertices is placed in the unit square and its nodes 
coordinates are chosen uniformly. An edge exists between two vertices if their 
Euclidean distance is l or less, where the expected vertex degree is specified by           
d = nπ l2 . We have chosen n=120, d=5, see Fig.1a. 

3. Caterpillar graphs CATk_n, with k articulations, (n-k)/k legs for each articulation and n 
nodes,  see Fig. 1b with k=3 and n=21.  

 

            
Fig.1a Geometric random graph            Fig.1b Caterpillar graph 

 



 

5.2   Results of experiments 
Let us notice that the objective space is visualized using the original cost function C1, C2 
instead of the objective functions f1, f2 (let us notice the cost functions C1, C2 are minimized). 
Fig.2 shows the dynamics of the IC67 bisection optimization. For the case of weighted sum 
algorithm the result fetched in 17-th generation of one run is shown. Population size is set to 
N=2500, the first population is generated randomly to keep the balance  uniformly distributed 
in the range from 0 to 20% of n, where n is number of hypergraph nodes. The size of each 
point in the graph is proportional to the number of phenotypic equal solutions found in the 
current population. The current Pareto front are enlarged and pointed up. 
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Fig.2a WSO1 algorithm               Fig 2b WSO2 algorithm 

 
In Fig. 2a weighted sum algorithm WSO1 with w1=0.5, w2=0.5 is used, population is 
distributed with slight variability of balance.  In Fig. 2b weighted sum algorithm WSO2 with 
w1=0.995, w2=0.005 is used, high balance of individuals is evident, the algorithm prefers more 
trivial solutions with minimum cut size and large balance. We used such values of w1 and w2, 
because even for w1=0.99 and w2=0.01 the algorithm still provides solution shown in Fig. 2a.  
In Fig. 3 the performance of Pareto, SOP and WSO algorithms for 3 types of graphs is shown. 
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Fig.3a Bisection of IC116, N=4000       Fig.3b Bisection of IC67, N=2500 
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Fig.3c Bisection of U120.5, N=4000     Fig.3d Bisection of CAT7_105, N=3500 

 
The five independent runs of each algorithm were performed and five Pareto fronts from final 
populations are shown. For better visualization of the fronts from each run the points are 
connected by lines. Balance of the individuals in the initial population was uniformly 
distributed between zero and 0.2*n, population size N was set proportional to n,  the limit of 
the balance for normalization in SOP was set to maximum value 20% of n. Maximum number 
of generations is set to Ng = 200. 
From Fig. 3a it is evident that Pareto algorithm usually produces the largest Pareto set with 
good quality solutions, whereas SOP and WSO2 produce only solutions with low cut size but 
high balance and WSO1 produces solutions with low balance and higher cut value. From     
Fig. 3b the difficulty with WSO2 is evident - WSO2 produces trivial solutions with high 
balance. The SOP algorithm provides solution with small cut but high balance only. For 
example, solution with the cut-size=35 and balance=23 was obtained even if solution with 
lower balance for the same cut-size exists.  The geometric graph U120.5 seems to have many 
local optima. It is a hard benchmark as it is seen  in Fig. 3c. Both WSO1 and WSO2 provide 
solutions far from optima in 4 runs from five runs. Only in one run the Pareto optimal solution 
was found.  The SOP algorithm and Pareto BOA provide optimal fronts in most runs. The 
CAT7_105 graph is an artificial graph known as a hard benchmark, the results are shown in 
Fig. 3d. The WSO2 produces mostly a trivial solution with high balance, the WSO1 only one 
solution with minimal balance and maximal cut. The Pareto BOA provides the whole Pareto 
front,  SOP produces only individuals from the upper part of this front. 

6 Parallel Pareto BOA 
The establishment of current Pareto front in each generation for bi-criterial optimization takes 
O(N* log N) comparisons.  The asymptotic time complexity of the proposed Pareto algorithm 
does not exceed the complexity of conventional BOA. The execution time of one generation 
for Pareto algorithm is  nearly the same as for SOP or WSO, but the difference is in the 
number of generations used.  In SOP and WSO algorithm there is an implicit detector of 
population saturation  used to stop the evolution. In Pareto BOA the population is implicitly 
“split” into several niches and each of them converges to different solution which results in 
slower convergence. Because it is not simple to specify the stopping criterion,  we often must 
specify maximum number of generations. The Pareto BOA wasted in our experiments        
five-times more generations than SOP and WSO. To decrease the wasting time, we  suggest a 



 

parallel construction of Bayesian network as described in [9] for single criterion optimization. 
The next approach for the future work is the decomposition of the Pareto front into segments 
which can be constructed in separate but cooperating subpopulations. 

7   Conclusions 
We have implemented multiobjective Pareto BOA algorithm for the hypergraph bisectioning. 
The Pareto BOA performance was compared to single BOA with relaxed balance and 
weighted sum algorithms WSO. The WSO is very sensitive to type of problem see fig. 3a, 3b. 
The SOP algorithm provides mostly an upper part of Pareto front towards higher balance 
values. In the case of real hypergraphs IC67, IC116, the Pareto set is uniformly distributed 
along the Pareto front only in case of Pareto BOA. The main problem which remains to be 
solved is the large computation complexity and large population size. The parallelization of 
the Pareto BOA is necessary. The next possible improvement lies in more sophisticated 
niching technique, modification of replacement phase of the algorithm and  introduction of 
problem knowledge into optimization process. The future work will be mainly directed 
towards the parallelization of BOA algorithm on the platform of SUN workstations, which 
will include the parallelization of Bayesian network construction and  the decomposition of 
the Pareto front detection. Separate but cooperating subpopulations using the migration 
operator will be used. 

This research has been carried out under the financial support of the Czech Ministry of 
Education – FRVŠ No. 0171/2001 “The parallelization of Bayesian Optimization Algorithm” 
and the Research intention No. CEZ: J22/98: 262200012 – ”Research in information and 
control systems”. 
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