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Abstract. We investigate techniques for acoustic modeling in automatic
recognition of context-independent phoneme strings from the TIMIT
database. The baseline phoneme recognizer is based on TempoRAl Pat-
terns (TRAP). This recognizer is simplified to shorten processing times
and reduce computational requirements. More states per phoneme and
bi-gram language models are incorporated into the system and evaluated.
The question of insufficient amount of training data is discussed and the
system is improved. All modifications lead to a faster system with about
23.6 % relative improvement over the baseline in phoneme error rate.

1 Introduction

Our goal is to develop a module which would be able to transcribe speech sig-
nals into strings of unconstrained acoustic units like phonemes and deliver these
strings together with temporal labels. The system should work in tasks like key-
word spotting, language/speaker identification or as a module in LVCSR. This
article investigates mainly techniques for acoustic modeling. The TRAP based
phoneme recognizer has shown good results [1], therefore this system was taken
as a baseline. The TRAP-based system was simplified with the goal of increasing
processing speed and reducing complexity. The influence of wider frequency band
(16000 Hz instead of 8000 Hz) was evaluated to keep track with previous exper-
iments [1]. Then two classical approaches for better modeling – HMM (Hidden
Markov Model) with more states and bi-gram language model – were incorpo-
rated into the system and evaluated. The main part of the work addresses the
problem of insufficient amount of training data for acoustic modeling in systems
with long temporal context, and tries to solve it. Two methods are introduced –
weighting of importance of values in the temporal context and temporal context
splitting.

2 Experimental systems

2.1 TRAP based system

Our experimental system is an HMM - Neural Network (HMM/NN) hybrid.
Critical bands energies are obtained in the conventional way. Speech signal is



divided into 25 ms long frames with 10 ms shift. The Mel filter-bank is emulated
by triangular weighting of FFT-derived short-term spectrum to obtain short-
term critical-band logarithmic spectral densities. TRAP feature vector describes
a segment of temporal evolution of critical band spectral densities within a single
critical band. The central point is actual frame and there is equal number of
frames in past and in future. That length can differ. Experiments showed that
the optimal length for phoneme recognition is about 310 ms [1]. This vector forms
an input to a classifier. Outputs of the classifier are posterior probabilities of sub-
word classes which we want to distinguish among. In our case, such classes are
context-independent phonemes or their parts (states). Such classifier is applied
in each critical band. The merger is another classifier and its function is to
combine band classifier outputs into one. Both band classifiers and merger are
neural nets. The described techniques yield phoneme probabilities for the center
frame. These phoneme probabilities are then fed into a Viterbi decoder which
produces phoneme strings. The system without the decoder is shown in figure 1.

One possible way to improve the TRAP based system is to add temporal
vectors from neighboring bands at the input of band classifier [1, 6]. If the band
classifier has input vector consisting of three temporal vectors, the system is
called 3-band TRAP system.
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Fig. 1. TRAP system

2.2 Simplified system

The disadvantage of the system described above is its quite huge complexity.
Usual two requests for real applications are shortest delay (or short processing
time) and low computational requirements. Therefore we introduced a simplified
version of the phoneme recognition system.

The system is shown in figure 2. As can be seen, band classifiers were re-
placed by a linear transform with dimensionality reduction. The PCA (Principal
Component Analysis) was the first choice. During visual check of the PCA base
components, these components were found to be very close to DCT (Discrete Co-
sine Transform), therefore the DCT is used further. The effect of simplification
from PCA to DCT was evaluated and does not increase errors rates reported in
this article by more than 0.5 %. It is necessary to note that PCA allows greater



reduction of feature vector dimensionality – from 31 to approximately 10 instead
of 15 in case of DCT. Another modification is a window applied before DCT. Its
purpose will be discussed later.

Fig. 2. Simplified system – band classifiers were replaced by linear projections.

3 Experimental setup

Software – a Quicknet tool from the SPRACHcore package [7], employing three
layer perceptron with the softmax nonlinearity at the output, was used in all
experiments. The decoder was written in our lab and implements classical Viterbi
algorithm without any pruning.
Phoneme set – The phoneme set consists of 39 phonemes. It is very similar to
the CMU/MIT phoneme set [2], but closures were merged with burst instead of
with silence (bcl b → b). We believe it is more appropriate for features which
use a longer temporal context such as TRAPs.
Databases – The TIMIT database was used in our experiment. All SA* records
were removed as we felt that the phonetically identical sentences over all speakers
in the database could bias the results. The database was divided into three parts
– training (412 speakers), cross-validation (50 speakers), both form the original
TIMIT training part, and test (168 speakers). The database was down-sampled
from 16000 Hz to 8000 Hz for some experiments.
Evaluation criteria – Classifiers were trained on the training part of the
database. In case of NN, the increase in classification error on the cross-validation
part during training was used as a stopping criteria to avoid over-training. There
is one ad hoc parameter in the system, the word (phoneme) insertion penalty,
which has to be set. This constant was tuned to the equal number of inserted
and deleted phonemes on the cross-validation part of the database. Results were
evaluated on the test part of database. Sum of substitution, deletion and in-
sertion errors – the phoneme error rate (PER) is reported. An optimal size of
the neural net hidden layer was found for each experiment separately. Simple
criteria – minimal phoneme error rate or negligible improvement in PER after
the addition of new parameters – were used for this purpose.



4 Evaluation of classical modeling techniques

4.1 Baseline system, simplified system and 3-band system

Phoneme error rates are compared for all here mentioned system in Table 3.
Our baseline is the one band TRAP system which works with speech records
sampled at 16000 Hz. This system was simplified. The simplified version contains
weighting of values in temporal context by Hamming window and dimensionality
reduction after DCT to 15 coefficients for each band. 3 band TRAP system gave
us better result than simplified system every time. The system models relations
between three neighboring frequency bands, that in the simplified system is
omitted.

4.2 16000 Hz vs. 8000 Hz

In all experiments previously done with the TRAP based phoneme recognizer
[1], the TIMIT database was down-sampled from 16000 Hz to 8000 Hz because
of evaluating the system in mismatched condition where the target data was
from a telephone channel. Now we are working with the wide band but wanted
to evaluate the effect of down-sampling to 8000 Hz. The simplified system was
trained at first using original records and then using down-sampled records. By
the down-sampling, we loose 2.79 % of PER.

4.3 Hidden Markov Models with more states

Using more than one state in HMM per acoustic unit (phoneme) is one of the
classical approaches to improve PER in automatic speech recognition systems. A
speech segment corresponding to the acoustic unit is divided into more stationary
parts that ensure better modeling. In our case, a phoneme recognition system
based on Gaussian Mixture HMM and MFCC features was trained using the
HTK toolkit [8]. Then, state transcriptions were generated using this system
and neural nets were trained with classes corresponding to states. Coming up
from one state to three states improved PER every time. Improvements are not
equal and therefore this results are presented for each system separately. The
improvement lies between 1.2 and 3.8 %.

4.4 Bi-gram Language Model

Our goal is to recognize unconstrained phoneme string, but many published
results have the language model effect already included in and we wanted eval-
uate its influence. The language model was estimated from the training part
of database. PER improvements seen from its utilization are almost consistent
among all experiments and lie between 1 and 2 %.



5 Dealing with insufficient amount of training data

This experiment shows us how much data we need and whether it has sense to
look for other resources or not. The training data was split into chunks half an
hour long. The simplified recognizer was trained using one chunk, evaluated and
then next chunk was added. The process was repeated for all chunks. The table 1
shows results. We are not so far in area of saturation with 2.5 hours of training
data so we can conclude that adding more data would be beneficial.

amount of training (hours) 0.5 1.0 1.5 2.0 2.5

PER (%) 46.13 42.26 39.86 39.23 37.92

Table 1. Influence of number of training data on PER

5.1 Motivations for new approaches

Many common techniques of speech parameterization like MFCC (Mel Fre-
quency Cepstral Coefficients) and PLP (Perceptual Linear Prediction) use short
time analysis. Our parameterization starts with this short term analysis but does
not stop there – the information is extracted from adjacent frames. We have a
block of subsequent mel-bank density vectors. Each vector represents one point
in n-dimensional space, where n is the length of the vector. All these points can
be concatenated in time order, which represents a trajectory. Now let suppose
each acoustic unit (phoneme) to be a part of this trajectory. The boundaries
tell us places where we can start finding information about the phoneme in the
trajectory and where to find the last information. Trajectory parts for two dif-
ferent acoustic units can overlap. This comes from the co-articulation effect. The
phoneme may even be affected by a phoneme occurred much sooner or later than
the first neighbors. Therefore, a longer trajectory part associated to an acoustic
unit should be better for its classification.

We attempt to study the amounts of data available for training classifiers
of trajectory parts as a function of the length of those parts. As simplification,
consider the trajectory parts to have lengths in multiples of phonemes. Then the
amounts are given by the numbers of n-grams1. Table 2 shows coverage of n-
grams in the TIMIT test part. The most important column is the third, numbers
in brackets – percentage of n-grams occurring in the test part but not in the
training part. If we extract information from a trajectory part approximately as
long as one phoneme, we are sure that we have seen all trajectory parts for all
phonemes during training (first row). If the trajectory part is approximately as
two phonemes long (second row), we have not seen 2.26 % of trajectory parts
during training. This is still quite OK because even if each of those unseen
trajectory parts generated an error, the PER would increases only by about

1 Note that we never use those n-grams in phoneme recognition, it is just a tool to
show amounts of sequences of different lengths!



0.13 % (the non-seen trajectory parts occur less often in the test data). However,
for trajectory parts of lengths 3 phonemes, non-seen trajectory parts can cause
7.6 % of recognition errors and so forth.

This gave us a basic feeling how the parameterization with long temporal
context works, showed that a longer temporal context is better for modeling of
the co-articulation effect but also depicted the problem with insufficient amount
of training data. Simply, we can trust the classification less if the trajectory part
is longer because we probably did not see this trajectory part during training.
Next two paragraphs suggest how to deal with this problem.

N-gram # different # not seen in Error
order N-grams the train part (%)

1 39 0 (0.00%) 0.00
2 1104 25 (2.26%) 0.13
3 8952 1686 (18.83%) 7.60
4 20681 11282 (54.55%) 44.10

Table 2. Numbers of occurrence of different N-grams in the test part of the TIMIT
database, number of different N-grams which were not seen in the training part, error
that would be caused by omitting not-seen N-grams in the decoder.

5.2 Weighting values in the temporal context

We have shown that longer temporal trajectories are better for classification but
that the boundaries of these trajectories might be less reliable. A simple way
of delivering information about importance of values in the temporal context to
the classifier (in our case neural net) is weighting. This can be done by a window
applied on the temporal vectors before linear projection and dimension reduction
(DCT) – figure 2. A few windows were examined and evaluated for minimal PER.
The best window seems to be an exponential one where the first half is given
by function w(n) = 1.1x and the second half is mirrored. For simplicity, the
triangular window was used in all the following experiments. Note that it is not
possible to apply the window without any post-processing (DCT) because the
neural net would compensate for it.

5.3 Splitting the temporal context

In this approach, an assumption of independence of some values in the tem-
poral context was done. Intuitively two values at the edges of trajectory part,
which represent the investigated acoustic unit, are less dependent than two values
closed to each other. In our case, the trajectory part was split into two smaller
parts – left context part and right context part. A special classifier (again neural
net) was trained for each part separately, the target units being again phonemes
or states. An output of these classifiers was merged together by another neu-
ral net (figure 3). Now we can look at table 2 to imagine what has happened.



Let us suppose the original trajectory part (before split) was approximately as
three phonemes long (3rd row). We did not see 18.83% of patterns from the test
part of database during training. After splitting we moved one row up and just
2.26% patterns for each classifier was not seen. An evaluation of such system
and comparison with others can be seen in table 3.

Fig. 3. System with split left and right context parts.

5.4 Summary of results

The system with split temporal context showed better results against baseline
but its primary benefit comes in link with more than one state. For three states
the improvement in PER is even 3.76 % against the one state system. Our
best system includes weighting of values in temporal context, temporal context
splitting, three states per acoustic unit and bi-gram language model. The best
PER is 25.54 %. Till now the phoneme insertion penalty in the decoder was
tuned to the minimum number of wrongly inserted an deleted phonemes on
the cross-validation part of database. To fully gain from the PER measure, the
optimization criteria for tuning the penalty was changed to minimal PER too.
This reduces the PER about 1 % and leads to the final PER of 24.50 %.

6 Conclusion

The TRAP and 3-band TRAP based systems were evaluated on recognition of
phoneme strings from the TIMIT database. Then the TRAP base system was
simplified with the goal of shorting recognition time and reducing complexity.
Classical approaches, which reduce phoneme error rates, like recognition from
wider frequency band, HMM with more states or bi-gram language model were
incorporated into the system and evaluated. Finally the problem of insufficient
number of training data for long temporal contexts was addressed and two ap-
proaches to solve this problem were proposed. In the first one, the values in
the temporal context are weighted prior to the linear transform. In the second



1 band TRAP system - baseline 33.44
+ bi-gram LM

Simplified system 31.64
+ 3 states 30.74
+ bi-gram LM 29.39

3 band TRAP system, 3 states 28.44
+ bi-gram LM 27.37

Split left and right context

left context only 37.30
right context only 39.56
merged left and right contexts 30.36

+ 3 states 26.60
+ bi-gram LM 25.54
+ max. accuracy 24.50

Table 3. Comparison of phoneme error rates. ”max. accuracy” means that the criteria
for tuning a phoneme insertion penalty (in decoder) was changed from equal number of
wrongly inserted and deleted phonemes to the maximum accuracy.

one, the temporal context is split into two parts and an independent classifier
is trained for each of them. All these changes result in a faster system which
improves the phoneme error rate of the baseline by more than 23.6 % relative.
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