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ABSTRACT

This paper describes experiments conducted to estimate how
the use of (area-demanding) virtual reconfigurable circuits
(VRC) influences the dependability of FPGA-based evolv-
able systems. It is shown that these systems are not so
sensitive to faults as their area-demanding implementations
could evoke. Evolutionary techniques are utilized to design
fault tolerant circuits in a virtual reconfigurable circuit and
to perform their automatic functional recovery in case of oc-
curence of faults in a configuration memory of FPGA. All
the experiments are performed on models of reconfigurable
devices. This paper does not claim that the use of the VRC
improves the dependability; it shows how the use of VRCs
could influence the dependability.

Categories and Subject Descriptors

B.6.3 [Hardware]: Logic Design—Design Aids; B.8.1 [Ha-
rdware]: Performance and Reliability— Reliability, Testing,
and Fault-Tolerance

General Terms
Design

Keywords

evolutionary algorithms, evolvable hardware, FPGA, depend-
ability

1. INTRODUCTION

It is a well-known problem that the reconfiguration sub-
system of current field programmable gate arrays (FPGAs)
is not suitable for evolvable hardware [17]. In evolvable
hardware, we often require the possibility of a fast par-
tial reconfiguration, including the controllable granularity
of configurable elements and a transparent structure of the
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configuration data. Ideally, a specialized reconfigurable de-
vice should be constructed for a given application in order
to meet its particular requirements. However, developing an
application specific integrated circuit (ASIC) is sometimes
impossible for many (mainly economic) reasons.

In order to utilize relatively inexpensive FPGAs, the idea
of wvirtual reconfigurable circuits was introduced [16]. A vir-
tual reconfigurable circuit (VRC) is, in fact, an implemen-
tation of a domain-specific reconfigurable circuit on top of
an ordinary FPGA. Because the designer can construct the
VRC so that it exactly fits the needs of a given evolvable
hardware-based application, a perfect reconfigurable device
can be obtained for a given problem. Examples include
VRCs for evolution of logic circuits [18], image filters [10],
sorting networks [7] and some other circuits. As the evolu-
tionary algorithm (EA) can be implemented in the same
FPGA in case of these applications, a fast configuration
interface can be established connecting the configuration
memory of VRC with chromosomes of EA.

On the other hand, implementations of VRCs are rela-
tively expensive in terms of gates used because interconnec-
tion circuits of VRCs are based on area-expensive multiplex-
ers.

Since VRCs are available at the level of HDL source code,
i.e. totally independent of a target platform, they can be
utilized (in connection with a hardware implementation of
the evolutionary algorithm) to implement soft evolvable IP
cores. It is supposed that evolvable hardware at the level of
IP cores will become an integrated component in a variety
of systems in future [21]. These evolvable systems will be
responsible for completing tasks that are difficult for conven-
tional hardware solutions, for instance, adaptation of func-
tionality, adaptation of sensing, autonomous self-repairing
and learning. There is an increasing interest in the use of
evolvable hardware in space applications, i.e. in extreme en-
vironments exhibiting radiation and temperature levels dif-
ferent from Earth surface [22].

In particular, in this paper, we will be interested in faults
in the configuration memory of FPGAs. The objective of
this research is to perform experiments showing how the use
of (area-demanding) VRCs could influence the dependability
of evolvable systems. Because VRCs require more resources
than other common approaches used to implement a given
function in an FPGA, it is realistic to suppose that their
use will yield less reliable solutions. For instance, consider
a 1bit full adder. Its implementation costs a few equivalent
gates in an FPGA. However, several hundred gates have to



be activated if a VRC is utilized. The pessimistic scenario
says that the reliability will be decreased one hundred times
in the case of the use of the VRC. On the other hand, we can
operate with the optimistic scenario, in which an inherent
redundancy of the VRC implementation is sometimes useful
and can protect the circuits from faults. We will show on
simplified models of an FPGA and VRC that the optimistic
scenario can partially be taken into account. Evolutionary
techniques will be utilized for the design of fault tolerant cir-
cuits in the VRC and for automatic repairing of the circuits
in the VRC.

In order to perform the experimental analysis of these
behaviors, the FPGA, the VRC implemented in the FPGA
and a special environment testbed are needed. However, this
equipment is relatively expensive. Hence we have decided
to perform all experiments using simulators before physical
devices will be utilized. We do believe that the obtained
results will give us at least a partial image of the problem.

In order to perform the experiments, we have to imple-
ment the following programs: a simulator of a simple SRAM-
based reconfigurable device, an implementation of VRC us-
ing the simulator of the SRAM-based device, a fault gen-
erator and an evolutionary algorithm for repairing the cir-
cuits and designing fault tolerant circuits. The approach
will be validated on two circuits—one-bit full adder (1bFA)
and two-bit multiplier (2bMU)—that are popular in evolv-
able hardware community (for example, see [5, 12]). The
following list introduces the proposed experiments:

1. Analysis of fault tolerance for conventional implemen-
tations of test circuits.

2. Evolutionary design of test circuits in the VRC.

3. Evolutionary design of fault tolerant circuits in the
VRC.

4. Evolutionary functional recovery in the VRC.

The rest of this paper is organized as follows. Section 2 re-
capitulates previous relevant research. The proposed models
are introduced in Section 3. Section 4 describes performed
experiments and obtained results. Conclusions are given in
Section 5.

2. PREVIOUS RELEVANT RESEARCH

2.1 Virtual Reconfigurable Circuits and Their
Applications in Evolvable Hardware

Virtual reconfigurable circuits were introduced for digital
evolvable hardware as a new kind of reconfigurable plat-
form utilizing conventional FPGAs [17, 16]. When a VRC
is uploaded into the FPGA then its configuration bitstream
has to cause that there will be created the following units
at specified positions: an array of programmable elements
(PE), a programmable interconnection network, a config-
uration memory (implemented as a register array) and a
configuration port.

Fig. 1 shows that the VRC is, in fact, a new reconfigurable
circuit (consisting of 8 programmable elements in our exam-
ple) implemented on top of an ordinary FPGA. “Virtual”
PE2 depicted in detail in Fig. 1 is controlled using 6 bits
that determine selection of its operands (242 bits) and its
internal function (2 bits). This architecture is very similar
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Figure 1: Basic idea of the VRC. The VRC is de-
scribed in HDL, synthesized and uploaded as a con-
figuration bitstream to the FPGA.

to the representation employed in Cartesian Genetic Pro-
gramming (CGP) that has been developed for circuit evolu-
tion [12]. Routing circuits are implemented using multiplex-
ers. All bits of the configuration memory are connected to
multiplexers that control routing and selection of functions
implemented in PEs.

The main advantage of the proposed method is that the
array of PEs, routing circuits and the configuration memory
can be designed exactly according to the requirements of a
given application. Furthermore, the style of reconfiguration
and granularity of the new VRC can exactly fit the needs of a
given application. Because VRCs can be described in HDLs,
they can be synthesized using common synthesis tools, i.e.
with various constraints and for various target platforms.

The following evolvable systems were implemented using
the idea of the VRC in an FPGA:

e Evolvable image filter for the evolution of 3x3 image
operators (EA is implemented either in PC [26] or on
the same FPGA [10]).

e Evolvable sorting network for up to 28 inputs (EA is
implemented on the same FPGA) [7].

e Evolvable combinational circuits (EA is implemented
on the same FPGA as a special circuit [18] or in the
PowerPC processor on the same FPGA [6]).

e Intrinsic evolution of polymorphic combinational mod-
ules (EA is implemented on the same FPGA) [19].



2.2 Fault Tolerance

There is an increasing interest in the use of SRAM-based
FPGAs in space applications that operate in extreme en-
vironments. Challenges for evolvable hardware are to (1)
provide fault tolerant designs automatically and to (2) en-
sure autonomous functional recovery for these devices after
an occurrence of unavoidable damages caused by extreme ra-
diation, temperature or simple malfunctions (e.g. in a pres-
ence of stuck-at-zero faults, severe electric transients, etc.).
Because the probability of faults in a system increases with
the number of components involved, an increasing complex-
ity of the circuits implemented in FPGAs evokes a question
of how to make them fault tolerant.

Since SRAMs are very sensitive to radiation, faults in the
configuration memory of FPGAs are very common in these
environments. Space radiation has both long-term and sin-
gle particle effects on electronic components. Long-term ef-
fects include total ionizing dose. Single-event effects include
single-event latchup and single-event upset [24, 2, 1]. Xilinx
has offered QPRO Virtex FPGA, which is immune to latch-
up, and has an acceptable total-dose tolerance [15]. How-
ever, it is sensitive to single-event upsets, i.e. the changes
in states of a digital memory element caused by an ionizing
particle that can change functionality of the device. These
single-event upsets are soft errors that do not usually cause
any permanent damage of an FPGA. Paper [24] gives an
example, in which memory cells are anticipated to upset
at a rate of 3.2 upsets/day. These upsets can mostly get
away with a readback and fast partial reconfiguration; some
single-event upsets require a total reconfiguration. As dose
increases, FPGA may fail to power-up.

Several techniques have been developed and tested to im-
prove fault tolerance in FPGAs (including restrictions of
single-event upsets, e.g. [4, 2]). All these approaches are
based on time or space redundancy [14]. Tri module redun-
dancy with a voting system is a classical example. In case
of reconfigurable devices, we are looking for effective meth-
ods capable to recover the functionality by means of a smart
reconfiguration strategy. Novel approaches have been devel-
oped in the recent years in the fields of embryonics and im-
munotronics. Embryonics utilizes the principles of cellular
division and differentiation observed in multicellular organ-
isms [9]. In immunotronics, artificial immune systems are
built in order to protect computing devices [3]. Evolvable
hardware offers other options.

2.3 Evolvable Hardware and Fault Tolerance

Various evolutionary approaches to fault tolerance are be-
ing investigated in the evolvable hardware field. In case
of explicit fault tolerance, the requirements for fault toler-
ance are included into the fitness function. For instance, the
quality of a candidate circuit is tested for some of possible
faults. Due to the existence of redundant elements in re-
configurable devices, evolvable hardware is inherently fault
tolerant. It means that in case of a failure of a circuit ele-
ment, the evolutionary algorithm is usually able to recover
the original functionality using the remaining elements or
using another member of the population which might be
insensitive to the failure. If a critical number of elements
are damaged, the functionality cannot be recovered and the
chip “dies”. Another method is to evolve such circuits that
are able to detect malfunctions autonomously or that are
easily testable. These experiments have initially been car-
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ried out by Thompson [23]. The following paragraph briefly
summarizes major achievements.

Self-recovery of analog circuits has been reported in [25].
Fault tolerance is often investigated using simulators but,
for instance, JPL team has performed experiments within a
real extreme environment—functional recovery in high tem-
peratures, low temperatures and radiation [22, 20]. Lohn et
al performed functional recovery of a quadrature decoder af-
ter a stuck-at-zero fault for a model of an FPGA [8]. Garvie
and Thompson have directly evolved simple digital circuits
containing a build-in self-test system [5]. The messy gate
has been introduced as a simplified analog model of a digi-
tal gate in order to investigate fault tolerance [13]. Masner
et al have carried out studies of the effect of representa-
tional bias on the robustness of evolved sorting networks to
a range of faults [11]. In this paper, we are interested in the
functional recovery using EAs and the evolutionary design
of fault tolerant circuits.

3. PROPOSED MODELS

3.1 Hypothetical Reconfigurable Device

The object of our investigations is a simple hypothetical
reconfigurable device (HRD) consisting of 8 PEs, having 4
inputs and 4 outputs and the behavior fully defined using
74 configuration bits of SRAM. Figure 2 shows that each of
PEs can be configured to operate as logic and, nand, or or
zor. The inputs of a PE can be connected to circuit inputs
or to the outputs of preceding PEs. However, only up to 8
combinations are permitted in order to reduce the number
of configuration bits. While the complete behavior of PEO
is defined by 6 configuration bits, the behavior of PE1-PE7
is defined by 8 configuration bits. Each of primary outputs
can be connected to one of PEO-PET7, i.e. 3 configuration
bits are included into the configuration bitstream for each
output. It is evident that only combinational circuits can
be created in HRD.

3.2 Two Implementations of HRD

We will compare two implementations of the HRD in Sec-
tion 4: (1) the implementation using ASIC (i.e. the HRD is
implemented as a new reconfigurable ASIC) and (2) the im-
plementation using an FPGA (i.e. the HRD is implemented
on the top of an FPGA using the concept of the VRC).

It is evident that the implementation (1) has a lot of ad-
vantages over (2). If the same technology and operation con-
ditions are considered, it will be faster, more area-efficient
and fault tolerant since only a few components are utilized
and, therefore, only 74 configuration bits (flip-flops) can be
corrupted. As mentioned in Section 2.1, the advantage of (2)
is that a relatively inexpensive FPGA (however, containing
thousands of “sensitive” configuration bits) can be utilized
and that the reconfigurable circuit is available as a soft IP
core, i.e. the HRD can easily be removed/modified from/on
FPGA.

3.3 FPGAsim

In order to simulate the implementation of the HRD in
an FPGA, a simulator of the FPGA (called FPGAsim) has
been developed. FPGAsim assumes that the FPGA consists
of 16-bit look-up tables (LUTs). It is also assumed that
its configuration memory consists of 16p configuration bits,
where p denotes the number of PEs. It is important to note



Table 1: Implementation cost of various circuits in

the FPGAsim
Circuit LUTs
4-input log. function | 1
4-MUX 5
8-MUX, PEO 11
PE1 15
PE2 19
PE3 21
PE4, PE5, PE6, PE7 | 23
HRD 202

that configuration bits defining the interconnection of LUTs
and I/0O are not considered in this initial study. They will be
included in the next generation of the FPGAsim. If a proper
configuration is uploaded into FPGAsim, we can obtain an
implementation of the HRD. In our case, 202x16=3232 con-
figuration bits must be set up.

As an example of a part of HRD emulated by the FP-
GAsim, Fig. 3 shows the circuits used to build PE2. All the
circuits are composed of LUTs. For instance, 11 LUTs are
needed to build an 8-input multiplexer. Table 1 lists imple-
mentation costs of various components of the HRD. All cir-
cuits and configurations have been designed manually. Once
the HRD is “uploaded” into FPGAsim, the configuration of
the FPGAsim is not being changed (except experimenting
with fault tolerance).

3.4 Dependability of the Two Implementations

of HRD

The behavior of the HRD is defined using 3232 configura-
tion bits of the FPGAsim. The HRD has 4 primary inputs,
4 primary outputs and 74 inputs serving as its configuration
inputs. It is assumed that these configuration bits are con-
nected to a configuration memory composed of 74 flip-flops
(which has not been modeled yet). Hence, in total 3232 +
74 = 3306 configuration bits can be corrupted in our model.
If we compare this to the implementation (1), we can see
that 3306/74 = 45 times more configuration bits can be cor-
rupted. The question is whether the reliability of the
HRD implemented in the FPGA using the concept
of the VRC (as modeled by FPGAsim) decreases 45
times in comparison to the implementation (1).

4. EXPERIMENTS AND RESULTS

In this study, the fault simulator simply inverts config-
uration bits (bit by bit). We will investigate how an (in-
dependent) inversion of a single configuration bit influences
functionality of a circuit uploaded into the HRD for the im-
plementations (1) and (2). In case of the implementation
(2), we will invert (i.e. damage) the configuration bits of
FPGAsim as well as HRD.

For purposes of this paper, let us characterize fault toler-
ance of a circuit uploaded into a reconfigurable device using
the parameter o which indicates the sensitivity of the circuit
to the changes in the configuration bitstream. «; denotes
the number of configuration bits which must not be inverted
to ensure a perfect functionality of the circuit uploaded into
the HRD. For example, for our HRD, if a1 = 74 then an
inversion of any configuration bit will influence the func-
tionality of the circuit uploaded into HRD (i.e. the circuit
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Figure 2: Two implementations of a simple hypo-
thetical reconfigurable device (HRD) used for the
comparative study. The HRD consists of 8 PEs,
four inputs (i0-i3), four outputs (out0O—out3) and a
74-bit configuration memory.
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is extremely sensitive to changes in the configuration bit-
stream). If a; = 0, the functionality of the circuit uploaded
into HRD will remain unchanged although all configuration
bits may be inverted.

Let a2 denote the number of configuration bits of FP-
GAsim which must not be inverted to ensure a perfect func-
tionality of the circuit uploaded into HRD'. If as = 3232
then an inversion of any configuration bit of the FPGAsim
will influence the functionality of the circuit uploaded into
the HRD.

Let a3 denote the number of configuration bits of FP-
GAsim and HRD which must not be inverted to ensure a
perfect functionality of the circuit uploaded into HRD, i.e.

(1)

It is neglected herein that errors in the FPGAsim and HRD
may compensate each other.

Assuming the inversions of configuration bits at a constant
rate R (e.g., memory cells per day) and their independent
occurrence, we can calculate the number of potential errors
in the circuit behavior as a; R cells per day for the imple-
mentation (1). For the implementation (2), it is asR cells
per day. Then, the ratio

a3 = o1 + aa.

Qs
=— (2)
determines how the reliability of the circuit uploaded in the
HRD (which is implemented in FPGAsim) decreases in com-
parison to the implementation (1).

aq

Note that HRD is implemented in FPGAsim
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Figure 4: Conventional implementations of test cir-
cuits: (a) 1-bit full adder, (b) 2-bit multiplier

Table 2: FT analysis of conventional implementa-
tions of test circuits

Circuit PE | a1 | a2 |as | (B

1bFA-conv 5 43 | 209 | 252 | 5.86
2bMU-conv-1 | 7 69 | 354 | 423 | 6.13
2bMU-conv-2 | 8 66 | 334 | 400 | 6.06

4.1 Test Circuits

As suitable for the size of the HRD, we decided to use
one-bit full adder and two-bit multiplier as test circuits.
Their conventional implementations (taken from [12] and
depicted in Fig. 4) will be utilized for the comparison with
the evolved circuits and for the fault tolerance analysis. The
74-bit configurations of conventional 1bFA as well as 2bMU
were created manually, uploaded into the HRD and their
functionalities were verified. Note that the unused config-
uration bits (corresponding to the unused PEs and unused
outputs) were set at logic “0”. There are two implementa-
tions of the multiplier depicted in Fig. 4b: the first utilizes
8PEs and the second only 7 PEs.

4.2 Problem 1: Analysis of Fault Tolerance
for Conventional Implementations of Test
Circuits

Table 2 summarizes the results of fault tolerance analysis
obtained for conventional implementations of test circuits
when implemented according to strategy (1) and (2). For
instance, in case of the conventional 1bFA, 43 (independent)
inversions out of 74 configuration bits and 209 out of 3232
configuration bits of the FPGAsim (i.e. 252 in total) lead
to an unsatisfactory behavior of the adder. The remaining
configuration bits (31 + 3023 = 3054) can be inverted with-
out any changes observable in the behavior of the adder.
Surprisingly, 8 = 252/43 = 5.86 is much less than the pes-
simistic presumption predicting (in Section 3.4) that the re-
liability should decrease 45 times. The reason for this result
is that 3 PEs and 2 outputs of the HRD are not utilized at
all and thus the LUTSs provide a lot of redundancy.

In case of the multiplier 2bMU-conv-1, all resources are
utilized. Hence only 5 out of 74 configuration bits may be
inverted without any changes observable in the behavior of
the multiplier. Because az = 354, the reliability of the im-
plementation (2) decreases 6.13 times in comparison with
the implementation (1).



Table 3: FT analysis of evolved circuits

Circuit PE | a1 | a2 |as | 0
1bFA-ev-a 5 42 | 188 | 230 | 5.47
1bFA-ev-b 5 45 | 217 | 262 | 5.82
1bFA-ev-c 7 54 | 265 | 319 | 5.90
1bFA-ev-d 5 41 | 215 | 256 | 6.24
2bMU-ev-a | 7 65 | 335 | 400 | 6.15
2bMU-ev-b | 7 66 | 331 | 397 | 6.01
2bMU-ev-f | 8 72 | 353 | 425 | 5.90
2bMU-ev-g | 7 66 | 330 | 396 | 6.00
i3 rp
E—= — — —— out2
a 7 cout
B L e
cin jD ‘ \ s
. \
() A |
g
L P/~
= ou
S T
| -~
| — H ) o |
"7—

(b)

Figure 5: Examples of evolved 1b adders: (a) 1bFA-
ev-a, (b) 1bFA-ev-k. Unused elements are given
dashed.

4.3 Problem 2: Evolutionary Design of
Circuits in HRD

The objective of this task is to confirm that 1bFA and
2bMU can be evolved in the HRD (i.e. independently of a
chosen implementation (1) or (2)).

In order to evolve these circuits, we have applied the evo-
lutionary algorithm with the following parameters setting.
The chromosome is a 74-bit binary string directly corre-
sponding to the configuration bitstream of the HRD. The
initial population consisting of 128 chromosomes is gener-
ated randomly; other populations are formed using deter-
ministic selection. The four chromosomes with the highest
fitness values are considered as parents and their clones form
every new population. Mutation inverts a randomly selected
bit. Elitism is ensured. In the fitness calculation, all possi-
ble input combinations are supplied at the inputs of HRD
and the number of correctly calculated output bits repre-
sents the fitness value of a candidate circuit. The evolution
was typically stopped (1) when no improvement of the best
fitness value occurs in the recent 500 generations, or (2) after
3000 generations.

It is not difficult to evolve these circuits. Figure 5 shows
examples of evolved 1bFA. Table 3 gives results of the fault
tolerance analysis for some of the evolved circuits.
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Table 4: FT analysis of evolved fault tolerant cir-

cuits

Circuit scenario | PE | a1 | ao a3 B

1bFA-ev-e 1) 5 35 | 214 | 249 | 7.11
IbFA-ev-f | (i) 5 |38 (202|240 | 6.31
1bFA-ev-h | (i) 5 |39 | 201|240 | 6.15
1bFA-ev-i (1) 5 34 | 196 | 230 | 6.76
1bFA-ev-j (i1) 5 42 | 185 | 227 | 5.40
1bFA-ev-k (iii) 5 39 | 184 | 223 | 5.72
IbFA-ev-i | (i) 5 |42 | 184 | 226 | 5.38
2bMU-ev-h | (i) 7 64 | 333 | 397 | 6.20
2bMU-ev-i 1) 8 71 | 369 | 440 | 6.20
2bMU-ev-j (1) 7 65 | 330 | 395 | 6.08
2bMU-ev-k | (i) 7 65 | 332 | 397 | 6.11
2bMU-ev-1 (i1) 7 66 | 325 | 391 | 5.92
2bMU-ev-m | (iii) 7 66 | 325 | 391 | 5.92

4.4 Problem 3: Evolutionary Design of Fault
Tolerant Circuits in HRD

The objective of this task is to evolve 1bFA and 2bMU
that exhibit better fault tolerance than the circuits pre-
sented in the previous sections. In order to improve fault
tolerance of circuits in the HRD, and in addition to the
functionality evaluation, the evolution is to minimize: (i)
a1, (ii) a2 and (iii) as. The process of the initial popu-
lations generating and fitness functions have been modified
in contrast to the evolutionary algorithm proposed in the
previous section. In scenarios (ii) and (iii), the initial pop-
ulation is created from the best circuits evolved so far. The
fitness functions take the following forms:

(i) f=CBx100+ (74 — a1)
(i1)  f = CB 10000 + (3232 — o)
(t3t) f = CB=%10000 + (3232 4 74 — a3)

where CB is the number of output bits calculated correctly
by a candidate circuit for all possible input combinations.
a; is calculated also for the same candidate circuit.

Table 4 summarizes the results obtained for scenarios (i),
(i1) and (iii). All the circuits are perfectly functional; how-
ever, they differ in reliability. The best circuits evolved for
the implementation (1) are 1bFA-ev-i (a1 = 34) and 2bMU-
ev-h (a1 = 64). The best circuits evolved for the imple-
mentation (2) are 1bFA-ev-k (as = 223) and 2bMU-ev-1
(a3 = 391). These circuits are more reliable than the cir-
cuits from Fig. 4 (see Table 2 and 3).

Figure 6 shows the best evolved 2bMU. The best-evolved
1bFA-ev-k is, in fact, identical with the circuit depicted in
Fig. ba. The difference, which makes this implementation
more robust, lies in the configuration of unused PEs and
outputs (see Fig. 5b).

4.5 Problem 4: Evolutionary Functional
Recovery

The objective of this task is to perform an evolutionary
functional recovery of a circuit placed in the HRD. Faults are
injected in steps, bit by bit. In each step, it is assumed that
one (randomly selected) configuration bit is set at log. “0”
and this corruption is not repairable. In the implementation
(1), 74 bits can be corrupted in total; in the implementation
(2), 7443232 bits can be corrupted in total. When a failure
of a circuit is detected (after 1...n steps), the evolutionary

(3)
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of 1bFA for the implementation (1)

algorithm (taken from Section 4.3) is used to recover the
functionality of the circuit in HRD. EA operates with the
structure of the chromosome defined in Section 4.3; however,
the corrupted configuration bits remain always at log. “0”.
With the growing number of corruptions, it is more difficult
to repair the functionality of the circuit.

The objective was to recover the functionality of the one-
bit full adder. We arranged an experiment, in which the
evolutionary algorithm was executed after detecting a fail-
ure caused by setting a configuration bit at log. “0”. This
experiment (i.e. the sequence of EA runs) was performed
20 times for both implementations. We measured the max-
imum number of faults Fj, for which the functionality can
fully be recovered. Table 5 summarizes the results.

Figures 7 and 8 show development of the best fitness val-
ues of recovered adders for the both implementations (the
maximum fitness value is 16). The data represent a typical
result of this experiment. We can observe that the evolution-
ary algorithm is not able to recover the functionality in all
cases: either the evolution fails or the amount of resources
is not sufficient.

The results can be interpreted in the following way: In
case of the implementation (1) 23.6% of configuration bits
can be corrupted (i.e. set at log. “0”) while the adder re-
mains fully functional. In case of the implementation (2),
only 12.15% of configuration bits can be corrupted (on av-
erage) to maintain functionality of the adder. These values
were obtained using mean value of F, (Fy,-avr).
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Figure 8: Typical evolutionary functional recovery
of 1bFA for the implementation (2)

Table 5: Evolutionary functional recovery of 1bFA
in the HRD for the implementations (1) and (2)

Impl. | enf. bits | Fi.-best | Fy-worst | Fp,-avr
Impl. (1) 74 30 6 17.45
Impl. (2) 3306 584 181 | 401.55

5. CONCLUSIONS

In this research, we have performed an initial study of reli-
ability of virtual reconfigurable circuits. We approached the
problem with a hypothetical reconfigurable device, its sim-
ulator and a simple (incomplete) FPGA simulator. Only
errors were considered in a part of the configuration mem-
ory which defines configuration of LUTs. Under conditions
of our experiments and considering limits of the proposed
models, we can conclude that (1) the implementations of
evolvable systems which are based on the idea of VRC are
not so sensitive to faults in the configuration memory as it
could be assumed if one considers their higher implementa-
tion cost (however, they are more sensitive to faults than a
VRC-less solution), (2) it is possible to improve fault toler-
ance of digital circuits by means of their evolutionary de-
sign directly in the VRC and (3) redundant components
(LUTSs) help to protect the circuit from faults in the con-
figuration bitstream. However, these experimental results
obtained from simulations must be confirmed by real imple-
mentations of VRCs in FPGAs and in real environments.
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