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Abstract

The objective of this paper is to classify the approaches
proposed to the evolutionary digital circuit design in the
recent years and to identify the levels of complexity and
innovation that can be obtained by means of these ap-
proaches. In particular, gate-level evolution, circuit evo-
lution in PLAs, functional-level evolution, incremental evo-
lution, evolution utilizing developmental schemes and some
application-specific schemes are analyzed. It is shown that
we are able to effectively explore the search spaces not
much larger than 21°°° points and that the innovative solu-
tions can be produced independently of the utilized method.

1 Introduction

Evolutionary algorithms (EAs) have been utilized to de-
sign digital circuits in the recent decade. Papers [3, 31, 27]
and others survey this field from various points of view.

In the area of evolutionary circuit design, researchers are
primarily looking for innovative solutions. The word “inno-
vative” has various meanings in this context: In some cases
it means that EA is capable of evolving large/complex cir-
cuits. Therefore, it is natural to ask: What is the largest
multiplier that we are able to evolve using computing re-
sources available nowadays? Is any innovation visible in
the evolved circuits in comparison with the conventional de-
signs? Typically, the search space we have to deal with is
very large, rugged and so difficult to search. Researchers
have proposed new problem representations, operators and
fitness functions to make the evolution more efficient.

On the other hand, researchers are also interested in
novel applications. For example, Kasai et al have proposed
an adaptive waveform control circuit for a data transceiver
communication (IEEE 1394/USB) [12] allowing devices
to communicate faster than the current standard or with a
longer USB cable. There is no doubt that this approach is
very useful. However, the problem is relatively simple from
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the point of view of EA as only 100bit-long chromosomes
are utilized. In this category, the main contribution lies in a
novel approach proposed to solving a given problem.

This paper deals with the evolutionary digital circuit de-
sign from the perspective of complexity and innovation that
can be obtained using an evolutionary approach. The ob-
jective of this paper is to classify the approaches proposed
to the evolutionary digital circuit design in the recent years
and to identify the levels of complexity and innovation that
can be obtained by means of these approaches. The follow-
ing methods will be analyzed: gate-level evolution, circuit
evolution in PLAs, functional-level evolution, incremental
evolution, evolution utilizing developmental schemes and
some application-specific schemes.

2 Evolutionary Digital Circuit Design
2.1 The Method

The evolutionary algorithm is utilized to search for a
suitable configuration of a reconfigurable device in order
to achieve the behavior required by a specification [7]. A
chromosome represents either the configuration bitstream
directly or a prescription determining how to create the con-
figuration bitstream. Candidate circuits are evaluated in the
following way: First, a configuration bitstream is extracted
from a chromosome. Then, the bitstream is uploaded into
a (simulator of) reconfigurable device and the circuit cre-
ated is evaluated using the fitness function. In case of dig-
ital circuits, some training vectors are applied at the pri-
mary inputs, corresponding output responses are collected
and compared against the desired vectors. The objectives
are various, typically to minimize the difference between
the output signal values and target signal values, delay, area
on the chip etc.

Extrinsic evolution means that candidate circuits are
evaluated using a circuit simulator, i.e. in software. In-
trinsic evolution means that every candidate circuit in ev-
ery population is evaluated in a physical reconfigurable cir-
cuit. In the second approach, the evolution can also exploit
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physical properties of a chip and other environmental char-
acteristics (such as temperature, electromagnetic field etc.).
The evolved circuits operate differently in different environ-
ments [25].

2.2 Evolutionary Circuit Design vs
Evolvable Hardware

It is important to distinguish between two approaches:
evolutionary circuit design and evolvable hardware. In case
of the evolutionary circuit design, the objective is to evolve
(i.e. to design) a single circuit. The aim is typically to
design novel implementations that are better (in terms of
area, speed, power consumption) than conventional designs
and/or to design circuits with additional features such as
fault-tolerance, testability, polymorphic behavior etc. that
are difficult to design by conventional techniques.

In order to “measure” the level of innovation in evolved
designs, J. Koza has proposed criteria to classify evolved
designs. According to his classification, an automatically
created result is “human-competitive” if it satisfies at least
one of the eight criteria defined in [10]: Currently, there are
60 human-competitive results. Most results were evaluated
as human-competitive in the area of analog circuit design
(25 results), quantum circuit design (8 results) and digital
circuit design (5 results).

In case of evolvable hardware, the evolutionary algo-
rithm is responsible for continual adaptation. Evolvable
hardware was applied to high-performance and adaptive
systems in which the problem specification is unknown be-
forehand and can vary in time [6, 23, 20, 8]. Its main ob-
jective is the development of a new generation of hardware,
self-configurable and evolvable, environment-aware, which
can adaptively reconfigure to achieve optimal signal pro-
cessing, survive and recover from faults and degradation,
and improve its performance over lifetime of operation [23].

2.3 Issues in the Evolutionary Circuit
Design

2.3.1 Bias in the Design Method

The resulting circuits are built according to the genetic in-
formation coming from EA and by means of the bias in-
cluded into the design method by designer. The complexity
of evolved circuits cannot be evaluated without considering
this bias. We can illustrate this issue on a 4bit adder design
problem. In case that this circuit is evolved at the gate level,
the chromosome defines which gates are used and how they
are interconnected. The bias is seen in terms of the initial
set of gates that can be utilized and in the options in con-
nectivity of these gates (e.g. only two-input gates allowed,
no feedback allowed, etc.). Typically, the chromosome con-
sists of a few hundred of bits in this case. On the other hand,

when the evolutionary design is carried out at the functional
level, the 4bit adder could be composed of 1bit full adders.
In comparison with the gate-level, the chromosome is much
shorter (les than 100 bits) because the resulting circuits con-
sist of fewer components and interconnections. It is much
easier to evolve the 4bit adder at functional level than at
gate level because the search space is much smaller. While
the bias allowed the designer to reduce the search space
and to make evolution easier its disadvantage could be that
the evolved solutions do not exhibit any innovation in their
structure.

2.3.2 Chromosome Size vs Complexity of Circuits

It is important to explore the relation between the size of
chromosome and the complexity of evolved circuits. Usu-
ally, a complex solution (circuit) is represented using a
long chromosome. Long chromosomes imply large search
spaces that are typically difficult to search. Computing re-
sources that are currently available determine the size of the
search space that can be explored. Consequently, a limit in
the complexity of evolved circuits exits which designers are
not able to overcome using available computing resources.
This is known as the problem of scalability of representa-
tion. If a non-trivial genotype-phenotype mapping is in-
troduced, the search space can sometimes be compressed
and so the limit in the complexity of evolved circuits can be
overcome.

2.3.3 Fitness Calculation as a Bottleneck

In case of combinational circuits evolution the evaluation
time of a candidate circuit grows exponentially with the in-
creasing number of inputs (assuming that all possible input
combinations are tested in the fitness function). Hence, the
evaluation time becomes the main bottleneck of the evolu-
tionary approach even if the circuit consists of a few com-
ponents. This problem is known as the problem of scalabil-
ity of evaluation. In order to reduce the time of evaluation,
only a subset of all possible input vectors can be utilized. In
these applications (for example, in signal processing [26]),
the evolutionary design is performed using a training set
and the solution is validated using a test set. In some other
cases it is sufficient to evaluate only some structural prop-
erties of candidate circuits which can be done with linear
or quadratic time complexity (with respect to the number
of circuits elements) even for complex circuits [18]. Then,
relatively complex circuits can be evolved.

2.3.4 Level of Innovation

It is impossible to measure the level of innovation in an
evolved circuit. Only a qualified expert in the particular
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field is able to recognize the result of evolution as an inno-
vative solution. The Hummies competition organized by J.
Koza shows a way to do that in the area of evolutionary de-
sign. As this paper will clearly illustrate, it is reasonable to
believe that the level of innovation does not depend on the
approach utilized to evolve the circuit and on the complex-
ity of the evolved circuits.

3 A Brief Survey of Approaches for the
Evolutionary Circuit Design

As it is impossible to include all existing techniques (and
applications), we have chosen those that have attracted most
attention in the recent years.

3.1 Gate-Level Evolution

Thompson has pioneered the intrinsic gate-level evo-
lution in FPGAs [25]. For extrinsic evolution, Miller
and Thomson introduced Cartesian Genetic Programming
(CGP) that has recently been applied by several researchers
especially for the evolutionary design of combinational cir-
cuits [16]. In CGP, the reconfigurable circuit is modeled
as an array of u (columns) x v (rows) of programmable
elements (PEs) whose functionality is task-dependent. EA
is used to find interconnections of PEs and functions per-
formed by PEs.

A number of combinational circuits were evolved at the
gate level, including small multipliers, parity circuits, ma-
jority (i.e. median) circuits, sorting networks and adders
[16, 30, 19]. Novel implementations, unknown in the area
of conventional electronics, were proposed for small mul-
tipliers (the best conventional solutions were improved in
20% in terms of area [30]) and edge-triggered D-latches
equipped with full on-line built-in self test [2].

3.1.1 Evolution in PLAs

When a PLA is utilized then the chromosome determines
status of switches in AND and OR planes defining thus
a logic function in the disjunctive normal form. An LSI
evolvable hardware chip was developed for real-world ap-
plications of evolvable hardware [6]. The chip consists of
GA hardware, two reconfigurable PLA circuits, chromo-
some memory, training data memory and a 16-bit processor
core. The maximum input width is 28 bits and the maxi-
mum output width is 8 bits. The maximum length of chro-
mosome is 2048 bits. Among others, the chip was utilized
to implement an EMG signal classificatory unit for a pros-
thetic hand controller and a robot controller unit. In these
applications, the evolution is performed using a training set
and the evolved solutions are verified using a test set.
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Figure 1. A 3-input sorting network encoded
as (0,1)(1,2)(0,1) and its alternative symbol

3.2 Special Representations

Specialized representations are utilized to include more
domain knowledge to EA and so to evolve more complex
circuits than by using, for example, CGP.

Sorting networks (SN) and median networks can be con-
sidered as /N-input digital circuits composed of AND and
OR gates. However, a very efficient representation based
on compare&swap components was developed to improve
the efficiency of the search algorithm. A compare&swap
of two elements (a, b) compares and exchanges a and b so
that @ < b is obtained after the operation (see Fig. 1). A
sorting network is defined as a sequence of compare&swap
operations.

A specialized architecture was developed to evolve sort-
ing networks (with N < 28) in Xilinx FPGA Virtex II [13].
The interconnection of compare&swap components were
determined by EA implemented on the same chip. Sort-
ing networks were optimized neither for the speed nor size.
For example, the evaluation of a candidate network requires
1.3 ms for N = 16 and 5.4 s for N = 28 (at 50 MHz).
The evaluation time of a single candidate sorting network
for N = 28 was compared against a highly optimized SW
implementation running in Xeon 3 GHz. The FPGA eval-
uation running at 100 MHz is 40 faster than the software
approach. In this application, outputs for all possible input
combinations are evaluated in the fitness function.

Also median circuits were represented as sequences of
compare&swap components. For example, the median net-
work shown in Fig. 1 can be encoded as (0, 1)(1, 2)(0, 1).
The results reported in [19] show that median circuits were
evolved up to N = 25; however, they are area-optimal only
for N =3 —11.

3.3 Functional Level Evolution

The idea of functional level evolution was introduced in
[14]. In contrast to the gate level evolution, circuits are
composed of high-level functional blocks such as adders
and multipliers. An important property of this approach is
that the size of chromosome remains similar to CGP while
the complexity of circuits can grow arbitrarily. Functional-
level evolution was applied to many real-world problems,
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for example, to the design of multiplier-less filters [8], im-
age filters [15], multipliers [1] etc. In order to illustrate the
method, this section describes evolution of image filters and
benchmark circuits.

3.3.1 Evolutionary Design of Image Filters

A special filter is evolved for a given type of noise. Ev-
ery image operator is considered as a digital circuit of nine
8bit inputs and a single 8bit output, which processes gray-
scaled (8bits/pixel) images. As Fig. 2 shows, every pixel
value of the filtered image is calculated using a correspond-
ing pixel and its eight neighbors in the processed image.
The design objective is to minimize the mean difference per
pixel (mdpp) between the filtered image and the original
image. The evolvable system was simulated [20] and then
completely implemented in an FPGA [15].

Virtual Reconfigurable Circuit

Filtered
Image

Figure 2. Functional-level evolution of 3 x 3
image operators

From [15] it can be derived that 30k generations (i.e. 20
seconds in FPGA operating at 100 MHz) are needed in av-
erage to find a filter. The design time is very reasonable if
the proposed system should operate “instead” of a designer
in the image filter design task. Note that the speedup is 50
against the software approach (Pentium III/§00MHz) if the
FPGA operates at 100 MHz. The system can be used either
to adapt image filters in situ or to assist the designer in the
design process of a particular filter. In the second case, the
resulting filter is also available at the level of synthesizable
VHDL code. When implemented in an FPGA, the filters
consist of 1000-5000 equivalent gates [20].

3.3.2 Evolution of Benchmark Circuits

If we were able to completely evaluate a candidate solu-
tion in a linear or quadratic time (with respect to the num-
ber of circuit inputs/components) the evolutionary design
process will be more effective and scalable. Fortunately,
some methods exist to predict testability of a digital circuit
in a quadratic time [18]. Hence, EA was utilized to design
benchmark circuits with the required testability properties
[18].
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Figure 3. Designing larger sorting networks
from smaller sorting networks by means of a
constructor K

The objective was to produce register transfer level
benchmark circuits automatically. The user is supposed to
specify the number of primary inputs and outputs of the cir-
cuit, the number and type of components, the requirements
on testability (average controllability and observability) and
parameters of the evolutionary algorithm. The fitness func-
tion analyzes three features of candidate circuits: structure,
component interconnections and (3) circuit testability.

There are two interesting features of this approach: (1)
Relatively complex circuits were evolved with the required
testability properties. According to our knowledge, no sim-
ilar approach exists to accomplish this task. (2) The evolved
circuits are the largest circuits evolved so far. The website
of the FITTest BENCHO06 Benchmarks project [17] shows
that the most complicated benchmark circuit (s20) consists
of 310,610 gates (700 components, 180 primary inputs).

3.4 Development in EAs

Various approaches have been proposed to introduce the
development to EAs. In order to implement nontrivial
genotype-phenotype mappings and so to allow the evolu-
tion of large (or fault-tolerant, polymorphic etc.) circuits
they have utilized L-systems, cellular automata [5], inter-
actions of genes and proteins [4] or specialized instruction
sets [9].

Evolution of arbitrarily large sorting networks will be
presented to illustrate the idea of development [21]. A
genetic algorithm is used to design a program — construc-
tor (consisting of application-specific instructions) — that is
able to create a larger sorting network from a smaller one
(the smallest one is called the embryo). Then the construc-
tor is applied on its results in order to create a larger sorting
network and so on (see Fig. 3).

EA have produced sorting networks with better imple-
mentation cost (the number of comparators) and delay than
the conventional method for even-input as well as odd-input
sorting networks [21]. The main feature of this develop-
mental system is that a lot of problem-domain knowledge
(such as the definition and use of copy and modify instruc-
tions) has been presented in its inductive bias. It seems that
the design of an efficient developmental system is as dif-
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ficult as the design of an efficient genetic algorithm for a
given problem. This example represents the rare case in
which a new scalable principle was discovered by an evolu-
tionary algorithm.

3.5 Transistor Level

Small digital circuits were evolved at the transistor level
using elementary components such as transistors, capacitors
and resistors [22]. For purposes of our comparison, a two-
input NAND gate evolved using two cells of JPL’s FPTA
and the Set-Reset a D-Latch circuits evolved using 4-5 cells
of FPTA are considered.

3.6 Incremental Evolution

In order to evolve more complex circuits, Torresen has
introduced a divide-and-conquer approach for the evolution
of evolvable hardware systems (also named increased com-
plexity evolution) [26]. The evolution is first applied indi-
vidually to a set of basic units. The evolved units are build-
ing blocks for the evolution of a complex system.

The problem is how to define the fitness functions for
the subcircuits. The approach can be twofold in the case
of combinational circuits. Either training vectors (i.e. each
separate output is evolved separately) or the training set
(i.e. some subsets are identified and corresponding circuits
evolved separately) are partitioned and corresponding cir-
cuits are evolved. The objective is usually to evolve larger
systems rather than to optimize the amount of resources.

A specialized architecture has been proposed by Torre-
sen to evolve prosthetic hand controller [26] and sign num-
ber recognizer [28]. The idea of incremental evolution has
been applied to find configurations of subsystems of that
architecture. In both cases very good results have been re-
ported.

Kalganova applied the incremental evolution in two di-
rections [11]. The principle is to semi-automatically di-
vide a complex task into simpler subtasks in order to evolve
each of these subtasks and then to incrementally merge the
evolved subsystems, reassembling a new evolved complex
system. The approach has been successfully evaluated us-
ing circuits from MCNC library (for example, the circuits
of 16 inputs and 1 output, 10 inputs and 16 outputs etc.)
and multiplier circuits of 6bit operands [24].

4 Analysis of Evolved Circuits

4.1 Size of Chromosome vs Complexity of
Evolved Circuits

For purposes of this paper, we will measure the complex-
ity of an evolved circuit as the number of gates utilized in the

evolved circuit. This is not a perfect measure because the
complexity of evolved circuits was not optimized in some
applications (for example, for sorting networks evolved in
FPGA). Furthermore, the gates were not used as building
blocks in some experiments (e.g. for the evolution at the
transistor and functional levels). Therefore, in order to ex-
press the complexity of circuits evolved at these levels some
conversions have been performed. Nevertheless, this mea-
sure is accurate enough to distinguish between complexities
produced by different classes of circuits that were evolved
using different approaches.

Domain knowledge (bias in the method) is the second pa-
rameter considered to characterize the quality of presented
methods. Most domain knowledge is included into the
problem representation in which a designer defines the ele-
mentary blocks the circuits are built from and the possibil-
ities for interconnecting these blocks. Note that the size of
chromosome is not usually directly related to the amount of
domain knowledge included. A short chromosome means
that we assume a lot about the target system (i.e. we know
how it should “look like”). A long chromosome means that
we do not assume a lot about the target system and more
freedom is given to the evolution to build the target system.
Again, the proposed measure is not perfect; however, it is
sufficient for our purposes.

Figure 4 shows the relation between the size of chromo-
some and the complexity of circuits presented in the previ-
ous section. The curves in Fig. 4 can easily be extrapolated
toward circuits of lower complexity (and shorter chromo-
somes). In particular, the following classes are considered.

The CGP class contains the circuits evolved using CGP
that have more than one output (2-4bit multipliers, 7-input
sorting network etc.) [30].

CGP-median class consists of median circuits that have
from 3 to 11 inputs and a single output [19].

Median circuits evolved using compare&swap encoding
(C&S-median) [19] have from 3 to 25 inputs. A single
compare&swap component is counted as two gates.

In the image filters class, the image filters evolved in
the FPGA are included. Their implementation cost was de-
termined as a cost of the filter which is extracted from the
FPGA and synthesized as an independent circuit. The aver-
age number of gates is around 2000 [20].

The class of benchmark circuits consists of circuits ac-
cording to [18].

Sorting networks constructed using development are in-
cluded to the development — SN class. Using this ap-
proach, arbitrarily large sorting networks can be constructed
by means of the chromosome of a constant size [21].

Sorting networks evolved in FPGA are included to the
sort_nets in FPGA class [13]. Although some PEs operate
solely as wires (i.e. they do not influence the complexity of
the circuit), we are counting every programmable element
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utilized as the equivalent to two gates.

For purposes of this comparison, we consider that the
two-input gate evolved in the FPTA is equivalent to a single
gate, the RS circuit is equivalent to two gates and the D-
latch is equivalent to 5 gates [22].

The PLA class contains circuits evolved in a PLA. The
complexity of these circuits was estimated on the base of
PLA size utilized in applications [7, 6].

4.2 A Survey of Design Limits

The mentioned techniques have a limitation in the size
of the search space they are able to effectively explore. The
limitation is somewhere around 1000 bits in the chromo-
some. The main reason for this limit is that (1) the corre-
sponding search spaces are extremely rugged and so diffi-
cult to search and (2) the computational power available to
researches is limited.

The gate-level evolution can produce circuits of com-
plexity up to approx. 100 gates. This class is characterized
by the fact that all possible input/output combinations are
considered in the fitness calculation process. As the com-
plexity of the circuits is low and simultaneously the chro-
mosome is long enough, the chromosome may encode many
candidate variants. It means that novel solutions can be dis-
covered easily.

By using an application-specific encoding (as in case of
C&S-medians or sorting networks in FPGA), more com-
plex circuits can be obtained in comparison to the simple
CGP. Similarly to CGP, all possible input/output combina-
tions are evaluated in the fitness function. Hence a very
time-consuming fitness evaluation represents the main ob-
stacle in growing complexity.

The functional-level approaches have produced complex
and innovative solutions. The complexity of circuits is in
fact unlimited and depends on a complexity of components
used as building blocks. However, because the complexity
of evolved circuits is relative high, it is impossible to test all
possible input/output combinations and, therefore, only a
subset of these combinations can be evaluated in the fitness
function (alternatively, some structural properties of candi-
date circuits can be evaluated). That immediately implies
that (1) usually only a suboptimal solution is obtained and
(2) the application class is restricted. The level of novelty
obtained strongly depends on the functional blocks utilized,
i.e. on the amount of domain knowledge introduced.

Developmental approaches are able to produce arbitrar-
ily complex solutions using relatively short chromosomes.
In case that area on a chip should be minimized, the prob-
lem is that the obtained solutions exhibit regularity, which
causes redundancy.

As the transistor-level evolution produces only small
digital circuits, it leaves a space opened for unconventional

implementations of these elementary digital circuits. Sim-
ilarly, molecular level evolution of digital circuits have be-
come very promising in the recent years [29].

Incremental evolution has not been considered in Fig. 4.
because it is not comparable with other approaches in the
proposed way.

We can summarize that the complexity of evolved cir-
cuits only partially depends on the size of chromosome.
It mainly depends on the size of objects encoded in the
chromosome or manipulated by instructions encoded in the
chromosome (in case of development). That is the reason
why one can evolve relatively complex circuits although it
is possible to effectively search only in the search space of
size approx 21000,

4.3 Comparison of Computational Effort

Let us consider those circuits that have similar size of the
configuration bitstream. In other words, we are interested
in circuits designed by EAs operating in the search space of
similar size. Table 1 summarizes properties of circuits de-
scribed by chromosome of the size between 512-868 bits.
The columns have the following meaning: in is the num-
ber of inputs, out is the number of outputs, chrom-size is the
size of chromosome, gates is the number of gates the circuit
is composed of, test-vect is the number of test vectors used
in the fitness function to evaluate the circuit!, pop-size is the
population size and gnrs is the average number of genera-
tions to evolve the circuit.

Figure 5 shows some of these values in a graphical form.
The circuits are sorted according their complexity. Let us
assume that the evaluation of a circuit requires a unit time
for a single training vector. We can see that the evaluation
of a 21-input median circuit is the most time-consuming.
It is because the circuit has many inputs and all possible
combinations are considered. Recall that for image filters
and benchmark circuits not all possible input combinations
are considered. The pxg is the product of population size
and the number of generations (pxg = popsize x gnrs). It
informs us how many candidate circuits must be evaluated
in order to find the required solution; in other words how it
is difficult for the evolutionary algorithm to find a solution.
It can be seen that this parameter is maximal for CGP al-
though the complexity of these gate-level circuits is not very
high. We have to mention that in CGP we have optimized
the size of the evolved circuits, i.e. a lot of computational
time was spent to improve an already discovered solution.
Surprisingly, pxg decreases with the complexity of evolved
circuits. If we multiply pxg by the number of test vectors,

IBenchmark circuits are not evaluated using test vectors; instead, the
structural analysis of the circuit is performed. As the analysis has a
quadratic complexity, we can estimate the number of steps required to eval-
uate a benchmark circuits as 2 where K denotes the number of compo-
nents in the circuit.
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Table 1. Properties of circuits whose chromosomes have a similar length

circuit in | out | chrom-size | gates | test-vect | pop-size | gnrs
9-input median (CGP) 9 1 755 36 29 128 | 11k
4x3-bit multiplier 7 700 46 27 5| 10M
21-input median (C&S) 21 1 800 140 221 200 | 270
sorting network in FPGA | 16 | 16 512 | 256 216 4| 20k
image filter 72 8 616 | 2000 2542 4| 30k
benchmark circuit 40 | 40 525 | 7003 502 25 | 200
1000000 - R 3 [ complexity [gate] |
; | # of test vectors M
1.E+10 2 Bpxg —
J O test vectors x pxg M
100000 e []
1.E+06 =l
10000 7
1.E+04 -
1 000 1.E+02 + =
—+—FPTA rEe 9-input median  3x4-bit multiplier 21-input median 16-sorting netin  image filter benchmark B
—m— CGP-median (CGP) (C&s) FPGA circuit
100 —4— TGP
& o e CAS-median Figure 5. Comparison of circuits whose chro-
3 I mosomes have a similar length
@ —e— image filters
-
é 10 —+— benchmarks
H / development - Sh
< o .
“;1 { sort_nets in FPGA 5 ConcluSlons
*og . . ‘ . ‘
1 10 100 1000 10000 100000 In this paper, the state of the art in the area of evolution-

size of chromosome (log. scale)

Figure 4. The complexity of the evolved cir-
cuits vs the size of chromosome

we can obtain the number of test vectors that must be eval-
uated in the design process. This value corresponds to the
“time of evolution”; however, only in case that all the exper-
iments are performed on the same machine. In reality, dif-
ferent machines (different PCs and FPGAs) were utilized.
We can observe that the “time of evolution” is very similar
for almost all circuits. This parameter indicates how much
time/resources we are able/willing to invest to the evolu-
tionary design process.
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ary design of digital circuits was surveyed. In particular,
the level of complexity of evolved circuits with respect to
the size of the search space was investigated. It was demon-
strated that innovative results can be obtained by all men-
tioned approaches, i.e. there is no reason to prefer some ap-
proaches. In order to complete the proposed analysis, dig-
ital circuits evolved with a specific aim (such as with the
requirements on fault-tolerance, testability, polymorphism
etc.) will be included.
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