Evolvable Computational Machines:
Formal Approach

Lukéas Sekanina,

Faculty of Information Technology at Brno University of Technology
Address: Bozetéchova 2, 612 66 Brno, Czech Republic; sekanina@fit.vutbr.cz

Abstract. The paper introduces an original formal definition of the evolvable com-
putational machine. Mathematical properties as well as impact to application de-
sign are investigated. The proposed approach is demonstrated on an evolvable non-
uniform cellular automaton for generation of sequences.

1 Introduction

Evolutionary algorithms (EA) are traditionally used for optimization, but
many works were devoted to evolutionary design [1] in recent years. The paper
deals with evolutionary design of computational machines (CM). There are
some typical examples of CM evolved successfully in past years: cellular au-
tomata [2], Turing machines [3], Boolean circuits [4], finite state machines [5],
or artificial neural networks [6]. Also specialized types of EA suitable for a
given computational model have been developed: cartesian genetic program-
ming for digital circuits [7], cellular programming for cellular automata [2] or
genetic programming for evolution of computer programs [8].

Theoretical computer science operates with formally defined objects. Var-
ious CM were formally defined in history of the field (there is large overview
in [9]). Some formalisms have been also introduced in the field of EA [10,11].
The reasons for formal approaches are straightforward since: (i) problem spec-
ification is rigorous, (ii) a mathematical apparatus can be applied to investi-
gate properties, and (iii) tools for automatic analysis, verification and design
can be developed.

Taking in account all the reasons of the previous paragraph, we have tried
to determine a minimal collection of mathematical objects to establish for-
mal definition of an evolvable computational machine (ECM). The definition
should allow us to investigate basic properties of ECM formally. Then we
were interested to back-impact of such definition to the fields of theoretical
computer science, evolutionary algorithms and practical implementations.

2 Formal definitions

2.1 Computational Machine: Non-Uniform Cellular Automaton

Every CM holds its formal definition and definition of its computation. As
an example, the following definition (designed with inspiration in [2,9]) of a

2 Luka$ Sekanina

non-uniform cellular automaton is introduced.

Definition 1: One-dimensional binary non-uniform cellular automaton
with the finite number of cells is 8-tuple A = (d, Q, N, R, z,b1, b2, ¢g), where:
d = 1 is a dimension, @ = {0,1} is a binary set of states, N denotes a
neighbourhood, z denotes the number of cells, by and by are boundary values,
co is an initial configuration, and a mapping R : C — (Q~ — Q) assigns to
each cell in C = {1,2,...,2} a local transition function &,...,d,, where

6 : QN = Q. O

If only a single neighborhood N = {-1, 0, 1} is considered, then global
transition function G : Q¢ — QC is defined as:

8i(c(i —1),c(3),c(i + 1)) fori=2...2—1,
G(c(i) = 51(51, c(1),c(2)) fori =1,
((Z—].),C()7b2) fOI'?:ZZ,

where §; denotes the local transition function (rule) of the i-th cell defined
by R. Cells are indexed from 1 to z.

G is used to define a sequence of configurations ¢y, c1, ¢, ...such that
¢;j = G(cj_1), for j > 1. This sequence represents a computation of A.

2.2 General Evolutionary Algorithm

Definition 2: (see [10]) A general evolutionary algorithm is defined as
an 8-tuple E = (1,8, 2,¥,s,1, u, \) where:

(i) I is the space of individuals (a set of chromosomes),

(if) @ : I — R denotes a fitness function assigning real values to individuals.
(iii) p is the number of parent individuals, while A denotes the number of
offspring individuals.

(iv) 2 = {wey,--.,wer | we; : I* = I’} U {weg : I — I*} is a set of
probabilistic genetic operators wg; each of which is controlled by specific
parameters summarized in the sets ©; C R.

(v) s@s : (I*UT**#) — I* denotes the selection operator, which may change
the number of individuals from A or A+ p to p, where y, A € Nand g = A is
permitted. An additional set @, of parameters may be used by the selection
operator.

(vi) @ : I* — I* is the generation transition function which describes the
complete process of transforming a population P into subsequent one by
applying genetic operators and selection:

¥ =so0we, °...0we,; °We,
¥(P) = s0,(Q Uwe,, (.- (way; (we, (P))) --)
(vii) The termination criterion is ¢ : I* — {true, false} . O

! Here {i1,...,4;} C{1,...,k}, and Q € {0, P}.

Evolvable Computational Machines: Formal Approach 3

Definition 2 is based on high-level description where the population of in-
dividuals is manipulated by genetic operators and undergoes a fitness-based
selection process. This is captured in the generation transition function ¥,
iterated application of which generates a population sequence and leads to
definitions of the running time and the result of EA (see appropriate defi-
nitions in [10]). Once the definition of the general EA and its computation
is available, we can immediately establish formal definitions of genetic algo-
rithm, evolutionary strategy or evolutionary programming (as seen in [10]).
Because the space of individuals I can be arbitrarily complex, e.g. genetic
programming may be defined in terms of Definition 2, too.

Definition 2 deals with the space of individuals only. In many cases it is
helpful to define search algorithms (i.e. also evolutionary algorithms) with
respect to an abstract representation of the search space. Then the repre-
sentation space defines a set of chromosomes which will be manipulated (by
genetic operators) during search, and the the growth function defines a map-
ping between chromosomes and solutions [11].

3 Evolvable Computational Machines

To evolve a CM, we have to define which part of the CM will be under evolu-
tion because some parts of CM are usually required to be invariable (static).
For instance, the number of inputs and outputs as well as required logical
function of a combinational circuit is given by specification (i.e. is invariable),
but its internal structure (i.e. a connection that implements the required func-
tion) has to be designed and so it can be the subject of evolution. Therefore,
the subject of evolution has to be understood as knowledge available a priory.

We introduce two basic construction steps of formal definition of ECM.
Let us consider non-uniform cellular automaton (CA) according to Definition
1 for demonstration of the concept:

(i) The subject of evolution (i.e. what is encoded in the chromosome) has
to be chosen. Suppose that CA rules have to be evolved and the rest of CA is
invariable. Then the growth function g : I — A’ defines how to create a CA
(i.e. a machine) from its genetic information (a chromosome). A’ denotes a
subset of all CA and determines which CA may be constructed using g.

(ii) A machine fitness function f : A" — R has to be defined since behavior
of a given CA must be evaluated in the process of fitness calculation. And
because the fitness function is defined as ¢ : I — R, the fitness function is
just the composition f o g.

The previous steps can be generalized for any CM. Let M denote a set of
all CM. Then g will take the form g : I — M', where M' C M. And finally,
general evolvable computational machine can be defined as follows:

Definition 3: An evolvable computational machine EM is a quadru-
ple EM = (M',E, g, f), where M’ denotes a set of computational machines,

4 Luka$ Sekanina

whose part is the subject of evolution, performed by an evolutionary algo-
rithm E. The growth function g : I — M’ assigns to each individual z (z € I)
in E a machine in M'. Function f : M’ — R is a machine fitness function.
Fitness function @ in the F is a composition ¢ = f o g. O

Computation of ECM is determined by definitions of computation of a
given EA and CM.

Definition 3 deals with a single fitness function. However, EA working in
time-dependent environments were also investigated [12]. In many applica-
tions of ECM (e.g. in the field of evolvable hardware [13]), the fitness function
is changed dynamically to reflect environmental changes. To provide simple
formal framework for the machine evolution in dynamic environments, the
following definition, which is based on definition of a set of fitness functions
(called environmental functions) and on a mechanism of transition between
them is given. (The set of all mappings from M’ to R will be denoted RM").

Definition 4: Machine environment is a triplet = = (I',¢g,&) where
I' C RM' denotes the set of environmental functions specifying quality of a
machine in a given environment. g € I is an initial environmental function.
€ : I' = I denotes a relation on the set of environmental functions that
determines successive environmental function. O

4 Consequences of the proposed approach

(i) Binding the concepts of the ECM and the machine environment together,
one can formally describe really evolvable system with dynamically changing
requirements for evolutionary design.

Definition 5: Evolvable machine based application is a pair (EM, =)
where EM denotes an evolvable machine and = is a machine environment.
An initial environmental function g in the = is matched with the machine
fitness function f, i.e. f = pg. O

(ii) From a practical viewpoint, Definition 5 implies the architecture of
evolvable components [14]. The idea of the evolvable component is based on
the following schema: If E, M’ and g are designed in EM properly, then their
definition (and mainly implementation) may be encapsulated and so reused
in some class of applications. For instance, it was shown in [15] that various
image filters can be successfully evolved at hardware level only by re-using a
single component and redefinition of the fitness function.

(iii) The function g may be viewed as employing of a genotype-phenotype
mapping. For example, in case of genetic algorithm and CA, a binary string
represents a genotype while CA represents a phenotype. It is evident that
different phenotypes may obtain the same fitness value. In general, the growth
function has to be surjective. Moreover, if g is a bijective function then the
representation is faithful and Lemma 1 holds:

Evolvable Computational Machines: Formal Approach 5

Lemma 1: & is an equivalence relation on the set I, and its equivalence
classes consist of genotypes whose fenotypes share the same fitness values.O

In a very natural way, this result can be exploited for study of landscape
neutrality [4] or in Surry’s approach which demonstrates how to start from
precise statements of beliefs about the relationship of problem structure to
fitness and then mathematically derive representation along with appropriate
operators in order to construct a problem-specific EA [11].

(iv) Assume that some Turing machine (TM) is evolved. So called halting
problem of TM is undecidable [9]. It implies that an implementation of ECM
must contains a mechanism to halt a candidate TM. It is also impossible to
obtain a fitness value by an algorithm that analyses a candidate solution.
Therefore, all candidate solutions must be executed to be evaluated.

(v) From a purely theoretical viewpoint, Definition 2 determines the fit-
ness function as @ : I — R. But the requirement for R as an infinite uncount-
able set is strong since a set of all TM is infinite but countable [9].

(vi) The proof of the following Lemma 2 is evident:

Lemma 2: If an environmental function ¢; is used to define the machine
fitness function f at least two times, then the graph of the relation e contains
a loop. O

Open problems: (i) Does exist some principal limitation (like No Free
Lunch theorems [11]) determining the number of environmental functions
which evolution is efficient for in the context of a given ECM? (ii) Can be
the relation € in Definition 4 replaced by a function? Is it case of real world
applications of ECM? (iii) Are all the ECM isomorph in some sense? If so,
software tool could be developed to support (semi)automatic design of ECM.
(iv) Is it possible to consider evolvable component as a part of system theory?

5 An example: Evolvable Non-Uniform Cellular
Automaton as a Generator of Sequences

This section demonstrates proposed approach on the formal definition of an
evolvable non-uniform CA with periodic boundary values (i.e. extreme cells
are adjacent to each other), which is evolved to operate as a generator of the
sequence: seq = 5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4. The CA is considered
in the style of Definition 1. Simple genetic algorithm is derived from Defini-
tion 2 according to [10].

Evolvable non-uniform cellular automaton: ECA = (A',GA, g, f)

(i) Cellular automaton A = (d,Q, N, R, z, b1, bs, ¢g)

Al = {(d7Q7N7R7z7blab27C0) | d= 17 Q = {07 1}7N = {_1707 1}7

z=4,b; = ¢(4),bs = ¢(1),co = 0101}

R is the subject of evolution and R is represented as an 8bit table for each
cell. The cardinality of A’ is 232.

6 Luka$ Sekanina

(ii) Genetic algorithm GA = (I, ®,2,9,s,1, 14, \)

I={0,1}*? (i.e. an individual is a 32bit string — 8bits per cell)

P=foyg

{2 contains two operators: mutation my, —o.18 per b} and one-point crossover
Tip.=0.7} (see definition in [10])

s: 2-tournament selection with elitism (see definition in [10])

L2 tmaz = 10% (i.e. finish when the generation t,,,, is reached)

¥ =somor

A=p=32

(iii) Growth function g:{0,1}?2 - A’ e(a) =A=(d=1,Q ={0,1},
N={-1,0,1},R=a,z2=4,b1 = c¢(4),b2 = ¢(1),co =0101) for a € I

(iv) Machine fitness function f : A’ & Rand f(e(a)) = Zzlil cemp(ci, seq;),
where

C; = seq;,

¢; # seq;.

The parameters chosen in the example were set up after exhaustive ex-
perimental analysis (more than 25000 runs) where it was tested: popula-
tion size (8-256), crossover probability (0-100%), mutation probability (1-
10bits/chromosome) and selection mechanism (roulette wheel, 2-tournament,
deterministic). Every run was repeated 100 times. The best solution (fitness
= 10) appeared in 100 cases of 100 runs in generation 25505 in average. The
evolution is very sensitive to change of parameters.

After an analysis of the whole state space of the problem (232 states) using
another program, it was recognized that the best fitness value 10 is shared by
two solutions (CA rules 4E7A6633 and 4A7A6633y). It means there is not
any CA that is able to approximate more than 10 numbers of the sequence
seq. Thus all CA can be divided into 11 equivalence classes for this task.

For instance, if the sequence is seq0 = 0...15 then there are 9 equiv-
alence classes or for the sequence seq2 = 2,3, ... there are 10 equivalence
classes. However, new machine fitness functions have to be designed for these
sequences. All these machine fitness functions can be captured in I" and pro-
vide machine environment according to Definition 4. Then ECA tries to adapt
to changing requirements on production of sequences that are specified using
the relation e.

1
emp(ci, seq;) = {0

6 Conclusions

We have established formal definitions of ECM and machine environment to
investigate basic theoretical properties of ECM formally. Definition 3 shows
that general ECM can be defined independently of a given CM, EA and
application and thus all ECM operates exactly in the same way.

The ideas of reusability and evolvable component are important from
implementation viewpoint. Many problems have been introduced and the se
open problems will be the subject of future research.

Evolvable Computational Machines: Formal Approach 7

Acknowledgment

The research was performed with the Grant Agency of the Czech Republic un-
der No. 102/01/1531 Formal approach in digital circuit diagnostic — testable
design wverification. The author would like to thank Alexander Meduna for
his fruitful comments.

References

10.

11.

12.

13.

14.

15.

. Bentley, P. J. (1999) Evolutionary Design by Computers. Morgan Kaufmann

Publisher

. Sipper, M. (1997) Evolution of Parallel Cellular Machines: The Cellular Pro-

gramming Approach. Springer-Verlag, Berlin

Vallejo, E., Ramos, F. (2001) Evolving Turing Machines for Biosequence Recog-
nition and Analysis. In: Proc. of Genetic Programming European Conference
EuroGP 2001, Springer-Verlag, 36-50

Miller J., Job, D., Vassilev, V. K. (2000) Principles in the evolutionary design of
digital circuits — Part I and II. Journal of Genetic Programming and Evolvable
Machines, Vol. 1(1-2,3), 8-35, 259288

Sanchez, E., Pérez-Uribe, A., Mesot, B. (2001) Solving Partially Observable
Problems by Evolution and Learning of Finite State Machines. In: Evolvable
Systems: From Biology to Hardware ICES 2001, Springer-Verlag, 267-278
Yao, X. (1999) Evolving Artificial Neural Networks. Proceedings of IEEE, Vol.
87 (9), 1432-1447

Miller, J., Thomson, P. (2000) Cartesian Genetic Programming. In: Proc. of
the Genetic Programming European Conference EuroGP 2000, LNCS 1802,
Springer-Verlag, Berlin, 121-132

Koza, J. et al. (1999) Genetic Programming III : Darwinian Invention and
Problem Solving. Morgan Kaufmann Publishers

Gruska, J. (1997) Foundations of Computing. International Thomson Publish-
ing Computer Press

Bick, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press

Surry, P. D. (1998) A Prescriptive Formalism for Constructing Domain-specific
Evolutionary Algorithms. PhD thesis, University of Edinburgh

Branke, J. (2001) Evolutionary Approaches to Dynamic Optimization Prob-
lems — Update Survey. In Proc. of the GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization Problems, 27-30

Sanchez, E. et al. (1997) Phylogeny, Ontogeny, and Epigenesis: Three Sources
of Biological Inspiration for Softening Hardware. In proc. of Evolvable Systems:
From Biology to Hardware ICES96, Springer-Verlag, 35-54

Sekanina, L., Sllame, A. (2000) Toward Uniform Approach to Design of Evolv-
able Hardware Based Systems. In Proc. of Field Programmable Logic and Ap-
plications FPL2000, Springer-Verlag, 814-817

Sekanina, L. (2002) Image Filter Design with Evolvable Hardware. To appear
in Proc. of the 4th European Workshop on Evolutionary Computation in Image
Analysis and Signal Processing EvolASP2002, Springer-Verlag, p. 12

