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Abstract

This paper represents the first attempt to formulate a
concept of the evolvable embedded system as a specialized
kind of evolvable (hardware) systems. The paper defines the
class of evolvable embedded systems, describes a general
framework for their modeling, introduces theoretical mod-
els, and reviews possible implementations and applications.
As a typical example, evolutionary functional recovery of
damaged median circuits is considered and simulated.

1. Introduction

Embedded systems—in addition to their expected higher
performance, lower cost and better dependability—will
have to exhibit various new features in future, including
adaptability at the first place. We can imagine that forth-
coming embedded systems will be able to autonomously
modify the function (at the level of hardware) that they per-
form, repair themselves in case of a faulty event or reduce
energy consumption if needed. As genetic programming
and evolvable hardware have shown in the recent years,
the evolutionary approach is probably the most competitive
method to perform this task [13].

For the sake of clarity we have to mention two concep-
tual points. First, this paper primarily deals with evolvabil-
ity and adaptation conducted directly at the hardware level.
Second, evolvability is not considered as the ability to make
system upgrades easily and consistently (as it is usual in the
software domain in order to achieve code or service reuse
[16]). Here the evolvability is considered as the ability of a
system to produce totally new solutions to a changing envi-
ronment (specification) autonomously.

This paper represents the first attempt to formulate a con-
cept of the evolvable embedded system as a specialized kind
of evolvable (hardware) systems. We will define the class
of evolvable embedded systems, introduce a general frame-
work for their modeling, introduce theoretical models, and
review possible implementations and applications.

Evolutionary algorithms enabled us designing adaptive
computational machines [22]. In our case the evolutionary
algorithm will be an inherent part of a target (i.e. embedded)
system and will autonomously produce computational ma-
chines according to requirements represented via a dynamic
fitness function, which reflects a changing environment. We
will also be interested in applications in which the problem
specification remains formally unchanged but properties of
a physical platform can be changed over time, for example,
because of the changes in temperature or radiation. We will
classify all these situations as a dynamic environment.

The primary focus of the paper will be on the field of
evolvable hardware (EHW) [10]. This emerging field ex-
ists at the intersection of electronic engineering, computer
science and biology. The benefits of evolvable hardware
are particularly suited to a number of applications, includ-
ing the design of low cost hardware, creation of adaptive
systems, fault tolerant systems and innovations.

As an example, we will propose a case study in which
close-to-perfect median circuits will be evolved on a plat-
form that is partially damaged by an environment.

The paper is organized as follows. Section 2 determines
the class of evolvable embedded systems. In Section 3 ge-
netic programming and evolvable hardware are introduced
and considered as techniques to ensure adaptation. Sec-
tion 4 describes the general architecture of evolvable em-
bedded systems. Some comments on theory will be given
in Section 5. While Section 6 deals with the integration of
evolvable subsystems into target applications, Section 7 de-
fines four basic classes of these applications. As a typical
example, functional recovery of damaged median circuits
is described in Section 8. Discussion and conclusions are
given in Sections 9 and 10, respectively.

2. Towards Evolvable Embedded Systems

Current typical embedded systems are based on micro-
controllers [34] or combine processors (DSP) with pro-
grammable logic (such as FPGAs—field programmable
gate arrays).
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The most important areas of application are commu-
nications and networking, computationally intensive algo-
rithms, signal processing, control, multimedia and enter-
tainment. These systems can be characterized as: reactive,
real-time and autonomous.

Specialized Systems on a Chip (SoC) have been devel-
oped to integrate the most important components on a single
chip (see, e.g. [20]). They usually represent either cheaper
alternatives to universal personal computers in many indus-
trial applications or high-performance systems unrealizable
by means of personal computers.

The next improvent was done by using reconfigurable
computing in which various hardware modules can be
stored as configurations in a library and dynamically up-
loaded/removed to/from an FPGA. Optimal combinations
of these modules are sought for any moment [14]. This ap-
proach leads to the effective usage of hardware resources
(because more computation can be performed in hardware
than physical hardware resources enable) and so to a higher
performance. The usage of FPGAs has allowed designers to
reconfigure physical hardware of embedded systems during
the operational time.

In addition to the reconfiguration strategy, emerging
hardware/software co-design problem has to be solved by
designers. Reconfigurable computing in fact provides a
limited sort of adaptability—it is possible to change the
system function by means of reconfiguration if a require-
ment emerges. “All chips will be reconfigurable” (Mike
Butts’ Keynote Speech at the Field Programmable Logic
2003 conference) is becoming a generally accepted idea, as
a way to tackle the complexity of system design.

Having the basic knowledge of embedded systems we
can formulate our definition of evolvable embedded sys-
tems: An evolvable embedded system is such a reconfig-
urable embedded system in which an evolutionary algo-
rithm is utilized to dynamically modify some of system
(software and/or hardware) components in order to adapt
the behavior of the system to a changing environment.

3. Adaptation Through Genetic Learning

The majority of the research in the field of evolution-
ary algorithms is devoted to problems with a single (static)
fitness function. However, real-world applications (like
robotics, evolvable hardware, scheduling, etc.) operate in
a dynamic environment (i.e. with a time-varying specifica-
tion of the fitness function) [3, 18]. The two basic methods
are used to deal with the changing environment:

• The designer tries to speed up a single evolution as
much as possible (e.g. through the hardware im-
plementation). The evolution is restarted completely
when a change is detected.

• The evolution is not usually restarted in a new envi-
ronment. Rather, information gathered during the past
generations is employed under a new environment,
since it is supposed that the change is not substantial.
Then the system could exhibit a prompt adaptation to
the time-varying environment.

Instead of evolutionary optimization, we are interested
in creative evolutionary design in this paper [1]. Among
others, evolvable hardware and genetic programming fall
into this category.

Genetic programming was developed to allow automatic
programming and program induction [13]. It may be
viewed as a specialized form of genetic algorithm, which
manipulates with variable length chromosomes (i.e. with
a specialized representation) using modified genetic opera-
tors.

Evolvable hardware is a computer-based system that au-
tonomously changes its physical electronic circuits (and so
its function) according to requirements of the environment
[10]. Nowadays, it is not difficult to modify electronic cir-
cuits, even of a running computer, since these circuits are
often implemented using reconfigurable devices. In case
of evolvable hardware, configurations are designed auto-
matically by an evolutionary algorithm. Up to now, evolv-
able hardware was successfully applied to design a number
of unique digital as well as analog circuits. The evolved
circuits exhibit the properties that we have never reached
by means of traditional engineering methods [17, 22, 31].
Furthermore, online evolution has allowed us to implement
high-performance and adaptive systems for the applications
in which the problem specification is unknown beforehand
and can vary in time [9, 18].

Because of inherent redundancy in reconfigurable de-
vices, the evolvable hardware is inherently fault tolerant.
It means that in case of a failure of a circuit element, the
evolutionary algorithm is usually able to recover the func-
tionality using the remaining elements. If a critical num-
ber of elements are damaged, the functionality cannot be
recovered and the chip “dies”. Hence evolvable hardware
is a method for automatic designing of adaptive as well as
fault-tolerant (e.g. self-repairing) systems [31].

The following list gives examples of reconfigurable plat-
forms for evolvable hardware: PAL (Programmable Ana-
log Array), FPGA (Field Programmable Gate Array), FPAA
(Field Programmable Analog Array), massively parallel
processor array (e.g. picoChip PC102 [19]), FPTA (Field
Programmable Transistor Array), specialized ASIC (Ap-
plication Specific Integrated Circuits), nanodevices (e.g.
NanoCell [33]), reconfigurable antennas, MEMS (micro-
electromechanical systems), reconfigurable optics and some
other.
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Figure 1. Evolvable component placed in
evolvable embedded system. Components 1–
4 represent the environment for the evolvable
component in this example.

4. General Architecture of the Evolvable Em-
bedded System

Embedded systems belong to modern computational sys-
tems. The computational scenario of these systems dif-
fers from traditional computational models such as Turing
machines: instead of an algorithm which processes pre-
prepared data, performs computations, and reports the re-
sult, modern computation is based on permanent and po-
tentially endless interactions of a number of components
[8, 35]. Furthermore, these components can change their
functions as a consequence of permanent reconfigurations.

Stoica et al. mentioned four years ago that “the path
leads to the IP (Intellectual Property) level and evolvable
hardware solutions will become an integrated component in
a variety of systems that will thus have an evolvable feature”
[28]. Evolvable components were introduced in [22] as the
components that can autonomously change their function-
ality according to requirements of an environment.

According to [22], the evolvable component consists of
a reconfigurable device and a genetic unit. The genetic unit
implements evolutionary algorithm; however, fitness calcu-
lation is performed outside the component, by environment,
because only the environment “knows” the specification and
thus only the environment can assign the fitness value to
any circuit/program realized in the programmable device.
Hence, with respect to definition of the evolvable embed-
ded system proposed in Section 2, we can easily define the
evolvable embedded system as an embedded system that
contains at least one evolvable component.

Figure 1 shows a general architecture of an evolvable

embedded system. Communication between the environ-
ment (that is represented by components 1–4 in our exam-
ple) and the evolvable component is as follows: First the
evolvable component is initialized (initial population is gen-
erated). Then the following sequence of operations is re-
peated endlessly. The environment requires a new circuit
to be uploaded into the reconfigurable circuit. The com-
ponent is to generate a new configuration and to configure
the reconfigurable circuit. If there is no configuration (chro-
mosome) in the chromosome memory available then a new
population has to be generated autonomously. When the
evaluation of the circuit behavior is finished, then a fitness
value is sent to the evolvable component. The component is
to store the fitness value and to wait for another request from
the environment. The environment can also require upload-
ing of the best circuit that has been evolved so far. Hence
the component has to continually store the best configura-
tion that has been evolved so far and to provide it when
requested. In all cases the evolvable component encapsu-
lates the reconfiguration process that is invisible from the
external environment.

5. Theoretical Issues

As soon as we have introduced the component approach
to evolvable embedded systems, we should start to think of
a suitable formal description and a mathematical theory that
could make understanding and designing these systems eas-
ier. Some standard formal models for (non-adaptive) em-
bedded systems were summarized in [23].

In case of evolvable embedded systems it is possible to
combine a theory of evolutionary algorithms (e.g. [25]), a
theory of reconfigurable systems (e.g. [2]) and a theory of
evolvable systems (e.g. [22]). However, all these theories
have one point in common: they are weak for real-world
applications. No results are available for these issues for
practical problems.

5.1. Reconfigurable Computing

No general theoretical approach exists for modeling re-
configurable computing. However, various area-specific
models have been proposed [4]. These models are utilized
for developing the actual mapping and scheduling of algo-
rithms onto the reconfigurable platform. The representation
of the complete application is a task graph with functions
as nodes and edges representing the precedence constraints.
This sequence of tasks is mapped onto a sequence of config-
urations. The optimal sequence of configurations is sought.

The configurations required for executing a specific
function have to be generated either at compile time or
on-the-fly at runtime. Compile time configurations can be
generated by using schematic techniques or CAD mapping
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tools. Runtime configurations can be generated by using
run-time parameterized circuits or by dynamic modification
of the configuration information before loading the config-
uration.

For instance, Bondalapati and Prasanna have developed
HySAM model which is a general model consisting of
a von-Neumann style processor with additional reconfig-
urable device [2]. The model is able to calculate cost of
changing the configuration. New configurations are gen-
erated using generators. These generators are defined for-
mally and allow designers to derive next configurations and
their delays. There are defined three basic generators: par-
allel, serial and pipelined. Recursive applications of these
generators can be utilized to generate a large class of con-
figurations from the basic configuration.

5.2. Evolvable Systems

Section 4 shows that in the case of evolvable computa-
tional machines, a machine which fulfils the objectives (for-
mulated via the fitness function) is sought in a given set of
machines by means of an evolutionary algorithm in which
representation, genotype–phenotype mapping and genetic
operators remain unchanged during the run (see Fig. 1).
Similarly to Eberbach’s results [7], it was proven that evolv-
able computational machines operating in a dynamic envi-
ronment exhibit a super-Turing computational power [22].

We can observe that evolvable computational machines
operating in a dynamic environment show simultaneous
non-uniformity of computation, interaction with an environ-
ment, and infinity of operations. Furthermore, the point at
time in which the fitness function (specification) is changed
is in general uncomputable. For example, see the case study
in Section 8.

This viewpoint corresponds with the recent results in an
emerging field—hypercomputation (or super-Turing com-
putation) [5, 8, 36, 35]—that some theoretical models and
modern computational systems do not share the computa-
tional scenario of a standard Turing machine and hence they
can not be simulated on Turing machines. For instance, see
the Driving Home from Work problem presented in [8] that
is uncomputable on a standard Turing machine, but com-
putable in reality.

At each time point these evolvable devices have a finite
description. However, when one observes their computation
in time, they represent infinite sequences of reactive devices
computing non-uniformly. The “evolution” of machine’s
behavior is supposed to be endless. In fact it means that they
offer an example of real devices (physical implementations)
that can perform computation that no single Turing machine
(without oracle) can.

We can conclude that the unpredictable behavior and in-
herent complexity get designers into troubles and hence the

design process is more intuitive than rigorous.

6. System Integration

A problem is how to integrate an “evolvable” feature into
contemporary and forthcoming embedded systems. For ex-
ample: Mobile phones belong to classical examples of em-
bedded systems. It is typically impossible to change their
software/hardware during the operational time. However,
it is assumed that new generations of mobile phones will
integrate this feature [37].

In case of adaptive evolvable embedded systems, the
evolutionary algorithm has to be integrated in the system
during the operational time. We have to specify the object
of evolution—to choose a subsystem (a circuit or a sub-
program) that will continually be evolved in order to en-
sure high-performance data processing, adaptation to un-
predictable events, fault-tolerance, etc. Finally, we have to
specify the platform where genetic operations and fitness
calculation will be carried out. Note that fitness calculation
is usually the most time consuming part of the evolutionary
design process.

We have introduced the following classes to characterize
(adaptive) embedded systems.

• Class 0 (fixed software and hardware): Software as
well as hardware are defined at the design time. Nei-
ther reconfiguration nor adaptation is performed. This
class also contains the systems with reconfigurable FP-
GAs that are only configured during reset. A coffee
machine could be a good example.

• Class 1 (reconfigurable SW/HW): Software or hard-
ware (a configuration of an FPGA) is changed during
the run in order to improve performance and the uti-
lization of resources (e.g. in reconfigurable comput-
ing). Evolutionary algorithm can be used to schedule
the sequence of configurations at the compile time, but
not at the operational time.

• Class 2 (evolutionary optimization): Evolutionary al-
gorithm is a part of the system. Only some coefficients
in SW (some constants) or HW (e.g. register values)
are evolved, i.e. limited adaptability is available. Fit-
ness calculation and genetic operations are performed
in software. Example: an adaptive filter—changing
coefficients for a fixed structure of an FIR filter.

• Class 3a (evolution of programs): Entire programs are
constructed using genetic programming in order to en-
sure adaptation or high-performance computation. Ev-
erything is performed in software [15].

• Class 3b (evolution of hardware modules): Entire
hardware modules are evolved in order to ensure adap-
tation, high-performance computation, fault-tolerance
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or low-energy consumption. Fitness calculation and
genetic operations are carried out in software or us-
ing a specialized hardware. Reconfigurable hardware
is configured using evolved configurations. The sys-
tem typically consists of a DSP and a reconfigurable
device. Example: NASA JPL SABLES [29].

• Class 4 (evolvable SoC): All components of class 3b
are implemented on a single chip. It means that the
SoC contains a reconfigurable device. Some of such
devices have been commercialized up to now, for ex-
ample, a data compression chip [30].

• Class 5 (evolvable IP cores): All components of class
3b are implemented as IP cores, i.e. at the level of HDL
source code (Hardware Description Language). It re-
quires describing the reconfigurable device at the HDL
level as well. An approach—called the virtual recon-
figurable circuit—has been introduced to deal with this
problem [21]. Then the entire evolvable subsystem can
be realized in a single FPGA.

• Class 6 (co-evolving components): The embedded
system contains two or more co-evolving hardware
or software devices. These co-evolving components
could be implemented as multiprocessors on a SoC or
as evolvable IP cores on an FPGA. No examples rep-
resenting this class are available nowadays.

While classes 0 and 1 do not represent adaptive embed-
ded systems, class 2 shows a certain kind of adaptation.
Class 3 includes fully adaptive software (3a) and hardware
(3b) systems realized using a common PC and/or stand-
alone boards. SoC solutions (class 4) are typical for real-
world industrial applications. Class 5 offers the reusability
concept for evolvable embedded systems because the evolv-
able IP core is derived from the idea of reusable evolvable
component. Class 6 represents rather directions for the fu-
ture research than a contemporary paradigm.

7. Application Classes

In this section, potential applications of evolvable em-
bedded systems will be reviewed. These applications in-
clude adaptive solutions for mobile systems, space systems,
signal processing, energy management, sensors, controllers,
scheduling and many others.

Real-world applications of evolvable hardware were
classified in a number of papers, e.g. [32]. In this paper,
we will classify the embedded systems evolving in a dy-
namic environment according to the four following sections
([22]).

7.1. Embedded Evolutionary Design

Although the fitness function (i.e. problem specification)
is changed rarely, it is not (economically, physically, etc.)
possible to remove the evolutionary algorithm from the sys-
tem, perform the evolutionary design in a design laboratory
and then upload the resulting configuration into the recon-
figurable circuit. As an example, one can imagine a con-
troller inside a prosthetic hand. An approach in which the
controller is uniquely evolved (and so adapted) for any dis-
abled person was developed to make the rehabilitation time
shorter [11]. The usage of a traditional fixed controller leads
to almost a one month rehabilitation time, while the evolv-
able controller is able to solve the problem in 10 minutes
[9].

The aircraft recovery problem is a typical application
from the software domain that belongs into this category.
The problem involves decisions concerning aircraft to flight
assignments in situations where unforeseen events have dis-
rupted the existing flight schedule, e.g. bad weather causing
flight delays [15].

Common features of the systems which belong to this
category are as follows: (1) the evolution is terminated
when a sufficient solution is found, (2) the evolution is trig-
gered manually or remotely (for instance, through the Inter-
net), (3) a system function can usually be interrupted when
training is needed.

7.2. Self-adaptive Systems

In contrast to the previous category, the problem speci-
fication is often changed here. It means that there is stim-
ulus providing information about a change, for instance, a
system performance measure. Because the system has to
operate continuously, a strategy with two physical recon-
figurable circuits RC1 and RC2 can be utilized. The RC1
contains the best design evolved so far. The evolution of the
RC2 configuration is executed forever, because it has to re-
flect the changes of fitness function (problem specification).
When something interesting is evolved in the RC2, the RC2
sends its configuration to RC1. As examples we can men-
tion a real-time adaptive image filtration [22] or a dynamic
hashing function, which could be applied in a cache mem-
ory [6].

In another application, a microphone acquires a voice
signal coming from radio in real-time (it is the reference
signal) which is mixed with a noise signal and conditioned
for the FPTA. FPTA is evolved to separate the two signals
and hence it operates as an adaptive noise filter [26].

7.3. Self-triggered Evolution

In this category a data stream (which is processed us-
ing evolvable system in order to increase performance) typ-
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ically represents the environment. Every new fitness func-
tion (specification) can be taken into account only if the pro-
cessing of the previous one is finished. For instance, the
image compression domain offers a challenging task. Evo-
lution has to find such a predictor that is optimal for a given
block of an image. An image compression system based on
this idea was implemented and commercialized [30].

7.4. Online Evolution

Evolution of a robot controller could be understood as
online evolution, since the robot finds its way by using in-
teractions with the environment only (i.e. in a kind of unsu-
pervised learning). Thus different controllers (“robots”) in
a population may experience different environmental condi-
tions. It means that the data needed for the fitness calcula-
tion are collected from a real environment during the fitness
calculation [18].

8. Case Study: Functional Recovery

This section presents an example of evolvable embedded
system that is able to recover its function after a faulty event.
Assume that the system consists of many components and
one of them—an evolvable reconfigurable circuit—is re-
sponsible for calculation the median values from nine 8bit
inputs, e.g. it operates as a filter. As Fig. 2 shows, the
circuit is implemented using 24 MinMax elements (com-
pare&swap units); the configuration bits determine their in-
terconnection. The objective is to design as good median
circuit as possible using resources available. It is assumed
that the system operates in the environment that damages
the elements. The reconfigurable circuit is configured us-
ing an evolutionary algorithm, which tries to put elements
together to fulfill the objectives.

Thanks to the zero-one principle discovered for sorting
networks [12], every candidate median circuit can be evalu-
ated in 29 = 512 steps representing the application of train-
ing vectors 000000000 – 111111111. We can imagine that
such the test is not performed in fitness calculation only, but
it is regularly performed to diagnose hardware. If the cur-
rent circuit is not competent, the evolution is restarted to
find a better solution. We simulated faulty events and tried
to recover functionality of the circuit.

Candidate solutions are represented as sequences of pairs
(a, b) indicating that a is compared/swapped with b. The
evolved sequences are transformed onto configuration bit-
streams of the reconfigurable circuit. The setting of the evo-
lutionary algorithm is as follows. Initial population of 200
individuals is seeded randomly using alleles 0− 8. New in-
dividuals are generated using mutation (1 integer per chro-
mosome). Four best individuals are considered as parents
and every newly formed population consists of their clones.

min

max

a

b

reconfigurable device

configuration port

genetic unit

temperature/radiation/etc

Figure 2. Reconfigurable device consisting of
MinMax elements placed in an embedded sys-
tem.
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Figure 3. Reducing the number of uncor-
rupted MinMax elements and its impact on
calculation of correct output values for 9-
median circuits.

The evolutionary algorithm is left running until a fully cor-
rect individual is found or 3000 generations are exhausted.
We also increase mutation rate if no improvement is observ-
able during the last 30 generations.

Figure 3 shows how many output (median) values remain
correct if the number of uncorrupted elements decreases.
We can see that 19 elements still ensure the correct behav-
ior. However, with decreasing resources the quality of the
circuits gets down. It is interesting that mere two elements
yield 346 correct output values, i.e. more than 50%!

For instance, the following sequence utilizing 19 ele-
ments was evolved as the perfect 9-median circuit: (7, 2),
(5, 8), (4, 0), (6, 0), (6, 7), (7, 3), (5, 4), (5, 6), (7, 8), (1, 4),
(7, 6), (2, 1), (2, 6), (8, 1), (4, 3), (0, 8), (6, 0), (4, 0), (6, 4).
Here is an example of a 2-element circuit: (8, 6), (8,4).

The well-known conventional hardware implementation
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of 9-median circuit has confirmed that we need at least 19
elements to perform the 9-median task [24]. As far as we
know, no technique has been proposed in literature how
to realize close-to-perfect median circuits if sufficient re-
sources are not available. Our experiment has confirmed
again that evolutionary techniques are able to produce novel
designs in the situations in which conventional approaches
fail. The evolution requires a few seconds on a common PC
and hence it is suitable for real-time applications.

From the system integration viewpoint, the proposed ap-
plication belongs to the class 3b at least. It could also be
characterized as “Embedded evolutionary design” accord-
ing to Section 7.1.

9. Discussion

It is hard to achieve online (real-time) adaptation. The
difficulty is not caused by the evolvable system, but by the
online requirement [38]. Most current approaches can only
be considered as offline adaptations, where the adaptation
happens during the learning phase. For instance, Stoica et
al. have claimed that current lack of validation for online
evolutionary systems means that critical spacecraft control
systems cannot realistically be evolved online [27]. How-
ever, sensors and sensory information control systems are
not critical. Hence systems utilized to capture, process and
transmit such data are suitable for evolutionary design.

We argue that a sufficient mean-long-time-performance
(quality) of the evolved solutions is required in adaptive
embedded systems. These systems must outperform con-
ventional (nonadaptive) approaches. If not, there is not any
reason to apply them. This viewpoint determines the class
of applications in which evolvable embedded systems can
be applied.

Stoica has noted that the challenge of conventional de-
sign is replaced with that of designing an evolutionary pro-
cess that automatically performs the design in our place.
This may be harder than doing the design directly, but
makes autonomy possible [26]. Nowadays it is difficult
to evolve complex systems mainly because it is difficult to
reduce the evaluation time of candidate circuits. Only be-
haviors required during conditions of fitness calculation are
guaranteed. It is hard to predict behavior of a solution out-
side the domain in which it was evolved.

Although some evolvable SoCs have been presented
[9, 11, 30], a typical evolvable system is implemented using
a stand-alone board equipped with a reconfigurable circuit
and a powerful personal computer where an evolutionary al-
gorithm is carried out. If evolvable IP cores were dominated
in future, the design process of evolvable hardware will be
transformed to the software design process at the level of
HDLs.

10. Conclusions

In this paper we surveyed a promising area of evolvable
embedded systems. We focused our attention on theory, ap-
plications and hardware implementations of these systems
using evolvable hardware. A classification for system in-
tegration has been developed that consists of six classes.
In another classification, evolvable embedded systems have
been divided into four groups according to the environment
where they operate. An example of autonomous functional
recovery has been implemented.

Because a general concept for modeling of evolvable
embedded systems has been formulated by means evolvable
components, our future research will be devoted to creating
tools for the semi-automatic design of these systems on the
basis of evolvable components.
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