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Abstract

The paper deals with a new approach to the design
of adaptive hardware using common Field Programmable
Gate Arrays (FPGA). The ultimate aim is to develop evolv-
able IP (Intellectual Property) cores. The cores should be
reused in the same way as ordinary IP cores are reused. In
contrast to the conventional cores, the evolvable cores are
able to perform autonomous evolution of their internal cir-
cuits. The cores should be available in the form of HDL
source code, i.e. they should be synthesizable into any re-
configurable device of a sufficient capacity. The approach
is based on implementation of a virtual reconfigurable cir-
cuit and a genetic unit in an ordinary FPGA. In the pre-
sented case study an adaptive image filter is designed, im-
plemented and synthesized. The proposed idea of evolvable
IP core could open the way towards defining a business
model for evolvable hardware.

1. Introduction

We can observe that FPGAs have made amazing ad-
vances in performance and capacity. Moreover, the com-
ponent approach plays the dominant role not only in the
hardware market. Some real-world applications of evolv-
able hardware have appeared in recent years. We do believe
that it is the right time for integration and exploitation of
these observations together.

Stoica et al. mentioned three years ago that “the path
leads to the IP level and evolvable hardware solutions will
become an integrated component in a variety of systems that
will thus have an evolvable feature” [23]. No other (imple-
mentation) details were given there. However, there is a
way how to implement such a component on FPGA. Hence
we have developed the idea of evolvable IP core for FPGAs.
The idea can be realized right now, however, it could be a
promising approach especially for future days.

1.1. Component Technology

Nowadays software as well as hardware industry mainly
benefits from component technology. Applications are com-
posed of components that provide required behaviors via
their interfaces. As examples we can mention TWAINPro
component (allowing to acquire images from scanner de-
vices) in the software domain [30] or processor Xilinx Mi-
croBlaze in the hardware domain [31]. Designers have the
access to various software and hardware components avail-
able in the market. They utilize the components as a “con-
struction kit”. The designer is to choose right components
for a given application and to assemble the application from
the components. Sometimes specialized components have
to developed for a given application domain in order to meet
uncommon constraints, such as the requirements for time,
space, reliability, energy consumption or safety.

We can identify several reasons for the usage of the com-
ponent approach. Primarily it is reduction of time to market
(because of reusability) and increase in reliability (because
target systems are built from verified and tested elements).
Generally, the component approach leads to effective prob-
lem solving, especially in the case of complex systems. Fur-
thermore, a reasonable design methodology can be estab-
lished by means of reusable components. The component
approach in fact determines the business model for produc-
ers.

In this paper we are interested in reconfigurable hard-
ware, for instance, that devices based on FPGAs. The de-
vices consist of a set of programmable blocks which pro-
vide some elementary functions and whose configurations
and interconnection are defined by content of a configura-
tion memory. It is usually possible to reprogram the chip
(i.e. to modify some of the circuits realized in the device)
even the chip performs computation.

Because the number of programmable blocks in FPGAs
increases every year and the design methodology for de-
signing complex systems is needed the component approach
has been applied to the reconfigurable hardware in recent

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware 
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE 



genetic unit
controller

reconfigurable
circuit

cntrl

fitness

I/O

Reconfigurable Device

Core Library

Processor

configuration port

IP core

configurable element

evolvable IP core

Figure 1. Common IP cores and an evolvable
IP core in an FPGA

years.
As shown in Fig. 1 various circuits (components) are

available in the component library as configuration bit-
streams. Any such a circuit can be uploaded into the re-
configurable device on a position which has to be specified
beforehand. Every circuit occupies some area in the recon-
figurable device. The area is measured in programmable
blocks or equivalent gates. A number of vendors offer the
circuits that are usually referred to as IP cores to customers.
The need for third party IP cores in FPGA designs is driven
by increased size and performance of FPGA devices. De-
signers of these complex FPGA designs require proven IP
cores as building blocks to accelerate systems development
[10].

1.2. From Reconfigurable Computing and Evolv-
able Hardware to Evolvable IP Cores

Reconfigurable computing deals with dynamic reconfig-
uration of a device during the run [11, 2]. When several dif-
ferent IP cores are prepared beforehand then an ingenious
mechanism can switch between them during execution in

order to perform more computation in hardware than phys-
ical hardware resources enable. Higher performance is then
achieved by (dynamically) building custom computational
operators, pathways, and pipelines suited to specific prop-
erties of the task at hand. Designer has to divide the ap-
plication to cores and to schedule the optimal sequence of
configurations if timing is known beforehand. On the other
hand when a request for a given type of operation (i.e. for
an IP core which provides the operation) emerges during
execution (the flow of program is not known in advance),
online reconfiguration is done on the fly. Reconfigurable
computing in fact provides a sort of adaptability—it is pos-
sible to change system function by means of reconfiguration
if a requirement emerges. However, the repertoire of possi-
ble behaviors is not too wide. It is mainly determined by a
set of components provided in the component library.

Adaptive hardware can be realized using evolvable hard-
ware that combines reconfigurable devices with evolution-
ary algorithms [7, 16, 32]. Evolutionary algorithm is em-
ployed to assemble a target circuit according to the require-
ments formulated via fitness function. Furthermore, if the
fitness function varies in time (i.e. the specification varies in
time) and the application is suitable for evolvable hardware
then the system should be able to adapt itself autonomously
to a dynamic environment. New trends in evolvable hard-
ware was summarized in [24]. It is evident from successful
real-world applications of evolvable hardware that only a
part of a system should be adaptive (evolvable). The other
parts can be implemented by means of traditional “invari-
able” circuits. For instance, only pixel predictor is evolved
in the image compression task; the remaining circuits (such
as controllers, image reading and storage) are invariable
[25]. It seems natural to reflect the situation within com-
ponent context—some components should be adaptive and
other should be classical (invariable).

In the context of components, we will call the evolvable
part as evolvable component or evolvable IP core. Evolv-
able IP cores can be stored in the component library in
the same way as ordinary IP cores are stored. However,
after being uploaded and placed onto a reconfigurable de-
vice they will be able to evolve their internal circuits au-
tonomously. When the adaptive behavior is not required
then the evolvable IP core can be removed from the recon-
figurable device.

Evolvable IP cores can be reused in the same way as or-
dinary IP cores can be. For instance, a vendor could sell
an evolvable digital filter IP core instead of an “invariable”
digital filter IP core. Evolvable IP cores could also open
the way towards implementations of the adaptive reconfig-
urable computing and real-world applications of evolvable
hardware in ordinary FPGAs—which is nowadays a prob-
lem to deal with. Let us note that the reusability has not
been introduced for evolvable hardware yet.
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1.3. Goals and Structure of the Paper

The objective of this study is to show how evolvable IP
cores can be defined and realized using common reconfig-
urable platforms. In particular their internal architecture
will be derived from the concept of evolvable component.
The results we obtained during design, implementation,
simulation and synthesis of a case application—adaptive
image filter IP core—will be reported and analysed.

The rest of this paper is organized as follows. The gen-
eral architecture of evolvable IP cores and requirements on
evolvable IP cores will be introduced in Section 2. Sec-
tion 3 describes an original approach to implementation of
evolvable IP cores by means of ordinary FPGAs. In par-
ticular the concept of virtual reconfigurable circuit will be
proposed. Section 4 discusses an example of evolvable IP
core—adaptive image filter. The section deals with moti-
vation, design, implementation and results of synthesis. Fi-
nally, conclusions and comments to the future research are
given in Section 5.

2. Towards Evolvable IP Cores

2.1. System Decomposition

Evolvable IP cores are based on the theory of evolvable
components that was introduced in [22] and developed in
[18]. As shown in Fig. 1, the evolvable component consists
of reconfigurable circuit, genetic unit and controller. (In
this paper reconfigurable circuit denotes an internal part of
the evolvable component; on the other hand reconfigurable
device denotes the whole reconfigurable platform, for in-
stance, an FPGA.) It is important that the genetic unit does
not contain fitness calculation. It only implements genetic
operators, chromosome memory and fitness memory. Fit-
ness values are provided by an environment. The environ-
ment is to evaluate any configuration that was generated by
the genetic unit and uploaded into the reconfigurable circuit.
Evolvable component is in fact a generator of circuits that
is controlled from the environment. The proposed approach
represents a sort of system decomposition that enables us to
reuse various parts of an originally coherent system.

Communication between the environment (that is repre-
sented by other components) and the evolvable component
is as follows: First the component is initialized (initial pop-
ulation is generated). Then the following sequence of op-
erations is repeated endlessly. The environment requires a
new circuit to be uploaded into the reconfigurable circuit.
The component is to generate a new configuration and to
configure the reconfigurable circuit. If there is no configu-
ration (chromosome) in the chromosome memory available
then a new population has to be generated autonomously.
When the evaluation of the circuit behavior is finished the

fitness value is sent to the component. The component is to
store the fitness value and to wait for another request from
the environment. The environment can also require upload-
ing of the best circuit that has been evolved so far. Hence
the component has to continually store the best configura-
tion that has been evolved so far and to provide it when
requested. In all cases the evolvable component encapsu-
lates the reconfiguration process that is invisible from the
external environment.

It is supposed that a specialized evolvable IP core is de-
veloped for any specialized problem domain because ge-
netic unit and the architecture of the reconfigurable circuit
have to reflect the problem domain in order to outperform
a random search. Because the fitness calculation is carried
out outside the component, the component in principle sup-
ports dynamic fitness functions and open-ended evolution.
The evolvable component can be implemented in software,
as a single chip or as an evolvable IP core.

2.2. Implementation Issues

IP cores are available in the market as soft cores, firm
cores and hard cores. We are interested in soft cores in this
paper. It means that our objective is to design and imple-
ment evolvable IP cores at the level of HDL (Hardware De-
scription Language) source code (e.g. in VHDL [1]). The
advantage of this approach is that these evolvable IP cores
will be represented in a platform independent format and
thus they will work at various target architectures. However,
any evolvable core must be able to reconfigure its internal
reconfigurable circuit by itself (because it is evolvable)—
and it is the main problem.

Let us consider the situation introduced in the previous
paragraph more carefully. An evolvable IP core is down-
loaded from a component library and it has to be placed at a
given position in the reconfigurable device. Then its inter-
nal reconfigurable circuit has to be reconfigured. It means
that any internal programmable block of the reconfigurable
device must be able to configure any other internal pro-
grammable block of the reconfigurable device because the
evolvable IP core (its genetic unit) can be located anywhere
in the array of programmable blocks. We assume that the
reconfigurable device is homogenous. In other words, the
internal reconfiguration must be supported in a given recon-
figurable device (platform). However, common platforms
(like FPGAs) do not support the internal reconfiguration—
only the external reconfiguration is permitted via a special-
ized configuration interface (see Fig. 2).

According to our knowledge there exists only one plat-
form that supports internal reconfiguration and all the fea-
tures we require—Cell Matrix [12]. Except to Cell Matrix
simulator, only a small chip containing several Cell Matrix
cells has been developed. In order to accomplish our ob-
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jectives and to utilize an evolvable IP core in a common
FPGA and in a real-world application we have to employ
another approach. Hence internal reconfigurable circuit in
the evolvable IP core will be realized by means of the tech-
nique referred to as virtual reconfigurable circuits [20]. Let
us note that the hardware virtualization is a common de-
sign technique for FPGA-based systems [4, 17]. We have
extended the concept for designing virtual reconfigurable
circuits.

3. Evolvable IP Cores in Ordinary FPGAs

3.1. Ordinary FPGAs

Some ordinary FPGAs support the partial reconfigura-
tion which allows us to reconfigure only a portion of the
array of programmable blocks while the remaining blocks
can operate without being affected. For instance, the chips
of Xilinx Virtex family can be partially reconfigured us-
ing JBits interface [8]. However, the format of configura-
tion bitstream is not available to the public, the approach
is not straightforward, and it is difficult to use it for our
purposes. Atmel AT6000 is a SRAM-based device with dy-
namic partial reconfiguration and features very similar to
Xilinx XC6200 family [28]. Under some conditions, it is
possible to obtain description of the format of configuration
bitstream and thus to build dynamically reconfigurable de-
vices. Full reconfiguration takes about a millisecond; partial
configuration is even faster. These Atmel FPGAs are rela-
tively small devices if being compared to, as for instance,
Virtex chips. All the devices are reconfigured via external
pins.

3.2. Virtual Reconfigurable Circuit

Assume that our reconfigurable device (platform) is re-
alized using Xilinx Virtex FPGA. IP cores are dynamically
uploaded and removed into/from the FPGA. All the opera-
tions are performed by means of Virtex configuration port
and JBits. When an evolvable IP core is uploaded then its
configuration bitstream has to cause that there will be built
following units at the specified position: virtual reconfig-
urable circuit, genetic unit, and controller. Fig. 2 shows that
the virtual reconfigurable circuit is in fact a new reconfig-
urable circuit (consisting of eight programmable elements
in our case) realized on top of an ordinary FPGA (using
Virtex slices in our case). Virtex slices have to implement a
new array of programmable elements, new routing circuits
and new configuration memory. The virtual circuit can be
configured internally or from FPGA’s I/O pins if new con-
figuration memory is connected to them.

The main advantage of the proposed method is that the
array, the routing circuits and the configuration memory
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Figure 2. Virtual reconfigurable circuit real-
ized using Virtex slices

can be designed exactly according to the requirements of
a given application. Furthermore, style of reconfiguration
and granularity of new virtual reconfigurable circuit can ex-
actly reflect the needs of a given application. For instance,
a pipelined partial one-clock reconfiguration operating with
coarse-grained programmable elements supporting k func-
tions (that we identified as crucial for purpose of our ap-
plication) can be designed if required. By means of virtual
reconfigurable circuits it is easy to insert domain knowledge
not only to the genetic unit but also to the architecture of the
reconfigurable circuit and thus to benefit from accurate im-
plementation of circuit software model. Note that software
simulations are usually performed in order to estimate the
potential speeding up we could obtain in case of hardware
implementation of a given application.

As an example, Fig. 3 shows one of “virtual” pro-
grammable elements of a virtual reconfigurable circuit con-
sisting of eight of these elements and utilizing four inputs
and two outputs. We will call the elements as Configurable
Functional Blocks (CFB). Two configuration bits determine
CFB’s function; other four bits define the places where its
inputs are connected to. This architecture is very similar
to the representation employed in Cartesian Genetic Pro-
gramming (CGP) that has been developed for circuit evolu-
tion [14]. The routing circuits are implemented using mul-
tiplexers. The configuration memory is composed of Virtex
slices—a slice containing two flip-flops is utilized to store
two bits of the memory. All bits of the configuration mem-
ory are connected to multiplexers that control routing and
selection of functions in CFBs (see Fig. 3).

The number of CFBs utilized in the virtual reconfig-
urable circuit depends on a given application. Virtual recon-
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figurable circuits can be described in HDLs and synthesized
with various constraints for various target platforms. Note
that a partial reconfiguration is not required for a target plat-
form at all. For instance, Xilinx XC4000 chips can be used
for this purpose as well.

3.3. Genetic Unit and Controller

After a virtual reconfigurable circuit is prepared we have
to implement a genetic unit and a controller. Generally, we
have two options—either to employ a general processor or
to design a specialized circuit. The specialized circuit is a
sort of evolutionary algorithm implementation in hardware.
A number of such implementations have been developed in
evolvable hardware field, for instance see [9, 13, 26].

A number of soft IP cores that implement processors are
available in the market or they are provided for free. For
instance, Xilinx offers us MicroBlaze and PicoBlaze micro-
controller IP cores [31] and Altera produces Nios core [27]
etc. Another option is to utilize on-chip processors if they
are available on a given target reconfigurable device. Xilinx
Virtex II Pro XC2VP50 chip contains four PowerPC pro-
cessors. The processor has to be programmed to execute the
programme, which can communicate with the environment
surrounding the core and to perform genetic operations over
chromosomes. Furthermore, the processor is responsible
for reconfiguration of the internal virtual reconfigurable cir-
cuit.

4. Case Study: Adaptive Image Filter as Evolv-
able IP Core

We have got very good experience with the evolutionary
design of image operators. Hence we decided to realize an
adaptive filter as an evolvable IP core. The research was
motivated by real-world industrial applications in the do-
main of image recognition.

The objective is twofold. First, the proposed evolvable
IP core should assist (or “replace”) the designer in the fil-
ter design phase. In this phase the designer has to find
a structure and coefficients of the filter that suppresses a
given type of noise. And it is a very time-consuming ex-
perimental job even for experts. Second, the evolvable IP
core should operate in an image recognition FPGA-based
embedded system. The core should be responsible for the
real-time autonomous hardware adaptation to the changing
type of noise. In the first case the proposed IP core should
reduce the design time. In the second case an implemen-
tation in an FPGA-based embedded system (avoiding the
usage of expensive personal computer) should exhibit high-
performance computing at reasonable cost.

4.1. Software Simulations

We evolved a number of unique image operators and
filters using a software simulator. The results reported in
[19, 21] confirmed that the evolved filters are competitive
with conventional filters in terms of quality and implemen-
tation costs. Furthermore, if more time is provided the evo-
lution is able to adapt the filters to a time-varying type of
noise (i.e. to a dynamic environment).

We also reported that the evolution can be accelerated
more than 70 times if the fitness calculation is carried out
in a physical circuit [20]. Then the adaptation time (which
depends on the size of training images) should be sufficient
for some real-time systems. In order to achieve this perfor-
mance we had to implement a virtual reconfigurable circuit
[20] supposing that the evolutionary algorithm is performed
on a common personal computer. Note that conventional
FPGAs such as Virtex devices cannot be applied directly
because of problems with reconfiguration.

The following subsection describes how the virtual re-
configurable circuit is realized on top of a common Virtex
FPGA. As far as our objective is to develop the adaptive
filter as an evolvable IP core then the genetic unit and con-
troller must be implemented together with the virtual recon-
figurable circuit in hardware. Subsection 4.3 will introduce
this implementation.
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4.2. Virtual Reconfigurable Circuit for Evolution of
Image Filters

The virtual reconfigurable circuit will be considered as
a digital circuit of nine 8bit inputs I0 – I8 and a single
8bit output which processes gray-scaled (8bits/pixel) im-
ages. As seen in Fig. 4 every pixel value of the filtered
image is calculated using a corresponding pixel and its eight
neighbors of the processed image.

Fig. 4 shows that the circuit consists of 29 CFBs. Four
CFBs are considered as a single stage of the pipeline. Each
of CFBs has two 8bit inputs, a single 8bit output and can be
configured to perform one of 16 relatively simple functions
depicted in Fig. 5. The outputs of CFBs are equipped with
registers. The circuit inputs are connected to CFBs via a set
of registers R0 – R6. According to the configuration infor-
mation, any CFB input can be connected either to one of the
outputs of CFBs placed in the previous two columns or to
one of circuit inputs (via appropriate register). It means that
only combinational circuits with relatively short inter-block
connections can be evolved.

The representation of a circuit in chromosome is very
similar to the representation utilized in CGP at the func-
tional level [15, 19]. It is necessary to operate at the func-
tional level because of scaling problems. We have not been
able to evolve an efficient image operator at the gate level
yet. Note that functional level representation is usually re-
ferred to as coarse grained system in reconfigurable com-
puting [6].

The configuration bitstream consists of three integers for
each CFB. First two integers determine the places where
CFB’s inputs will be connected to. One of 16 functions is
selected using the third integer. Typical length of configura-
tion data of a single CFB is 12 bits. Note that the connection
of circuit output is fixed (it is taken from the last CFB) and
thus it is not evolved.

The configuration memory is implemented in the way
depicted in Fig. 3. It is organized to 8 banks—each of them
for a single stage (i.e. for four CFBs). In order to config-
ure a single bank the required bank is selected using addr,
48 bit configuration is supplied to gb and WR signal is ac-
tivated. While every bank contains 48 bits, 48

2
� 29 = 696

Virtex slices are needed to implement the banks. The rout-
ing circuits are constructed by means of multiplexers that
are controlled via bits of the configuration memory. Sixteen
16-input multiplexers are needed in order to select CFB’s
inputs.

The execution as well as the reconfiguration of the circuit
is pipelined. The circuit can be configured in 8 clocks at
the beginning of the computation. The first output value is
valid by ninth clock (see the first arrow in Fig. 4). Circuit
reconfiguration practically takes only a single extra clock
because of pipelining as seen in Fig. 4 (second arrow).
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cuit is configured to send I0 to fout. Its first
configuration takes 8 clocks; the other recon-
figurations take only one clock
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8

CFB
0000  FF
0001  X
0010  X
0011  X or Y
0100  X or Y
0101  X and Y
0110  X and Y
0111  X xor Y
1000  X >> 1
1001  X >> 2
1010  X xchg Y
1011  X +  Y
1100  (X+Y) >> 1
1101  (X+Y+1) >> 1
1110  Max(X,Y)
1111  Min(X,Y)

CLK
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Y

X

s
8

8
sel   function

4
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Figure 5. Any CFB supports 16 functions op-
erating over 8 bits (>> denotes a shifter and
+s is adder with saturation)

In order to find out how many Virtex slices are needed
for implementation of this virtual reconfigurable circuit we
modeled the circuit by means of VHDL and synthesized
the circuit into various FPGAs (XCV2000E, XC2V1000,
and XCV1000). The best performance was obtained for
XC2V1000 where the design costs 4879 slices (74357
equivalent gates) and it can operate at 134.8 MHz. For in-
stance, the implementation using XCV1000 requires 4489
slices (68744 equivalent gates) and can operate at 86.7
MHz.

The maximum of operational frequency is valid only in
the case that only neighboring columns in the array can be
interconnected by evolution. Otherwise, every pixel must
be sent to the circuit two times to ensure synchronization
of CFBs. Note that CFB inputs could be connected to reg-
isters in two different stages (i.e. to the values registered
at two different moments) but any CFB must operate with
the inputs registered at the same moment to produce a cor-
rect output. This leads to decreasing of the maximum of
frequency to a half.

For comparison, consider that a “fixed” conventional or
evolved filter occupies approximately from 1000 to 5000
equivalent gates when implemented in the same FPGA. A
single CFB occupies 1009 equivalent gates in the virtual
reconfigurable circuit. Although the performance improve-
ment is very positive (speeding up 70 times), implementa-
tion costs of the method are relatively high.

4.3. Implementation of Genetic Unit

Assume that the circuit operates at 134.8 MHz. Then
a single image of 254 � 254 pixels can be filtered in 0.48
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Figure 6. A simple genetic unit and controller

ms and the corresponding fitness value can be obtained at
the same time [20]. Because of pipelining the reconfigura-
tion can be performed in one clock (i.e. 7.4 ns). Hence the
genetic unit must supply every new chromosome and so to
reconfigure the virtual reconfigurable circuit every 0.48 ms.

The genetic unit and the controller can be realized by
means of a general processor, for instance, as Xilinx Mi-
croBlaze IP soft core. It is a 32-bit RISC processor with
Harvard architecture supporting code and data storage from
either on-chip BlockRAM or off-chip RAM. When used
with Virtex-II Pro, MicroBlaze occupies 900 Logic Cells
and can operate at 150 MHz [31]. That is sufficient for
the implementation of our genetic unit and controller. Fur-
thermore, “a part of environment” of the evolvable IP core
(e.g. fitness calculation) could also be represented (and per-
formed) by the processor.

In order to compare various implementations we devel-
oped a simple genetic unit in VHDL. The unit is able to
configure the virtual reconfigurable circuit and to commu-
nicate with the environment (see Fig. 6). The genetic unit
implements a very simple variant of evolutionary algorithm
utilizing only four individuals (very similar to the original
evolutionary algorithm described in CGP [14]).

The unit consists of chromosome memory (containing
four 8 � 48bit chromosomes), the best chromosome mem-
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ory, the best fitness register, mutation unit, cellular automa-
ton, two control counters and finite state machine that con-
trols the unit and communicates with the environment. Be-
cause the virtual reconfigurable circuit has to be configured
in 8 clocks per 48 bits (12 bits for each of four CFBs), the
organization of chromosome memory is 32 � 48 bits and
the best chromosome memory is 8 � 48 bits. When signal
RST is activated, the chromosome memory is filled by data
generated using a simple uniform cellular automaton oper-
ating according to rule 150. If the environment is willing to
evaluate a configuration (NC=1) then a non-evaluated chro-
mosome is sent to gb port (8 � 48 bits), addresses 0 –7 are
generated at addr port and wr signal is activated to config-
ure the virtual reconfigurable circuit.

After all chromosomes of the initial population had been
evaluated and the environment had required another one, a
mutated version of the best chromosome was sent to the
configuration port. Only one randomly selected bit is in-
verted per 48 bits—its position is also determined by cellu-
lar automaton. If VF=1 then the fitness input holds a valid
fitness value. This fitness value has to be compared with the
best fitness value stored in the register. If the new fitness
value is greater than the previous one, the previous value is
replaced by the new one, and concurrently, the best chromo-
some memory is updated. Note that every new chromosome
produced by the mutation unit is stored to the chromosome
memory. The environment can set the best fitness value to
zero using IBF signal. It can also request the unit to upload
the best chromosome that has been evolved so far into the
reconfigurable circuit (if BC=1). The controller is realized
by means of the finite state machine that activates control
signals of components depicted in Fig. 6.

The genetic unit was synthesized into various Virtex FP-
GAs. For instance, 2635 slices (38051 equivalent gates) are
required for Virtex XC2V1000 and 2645 (40134 equivalent
gates) for XCV1000.

4.4. Top Level

Fig. 7 shows the whole architecture of the evolvable IP
core for adaptive image filtration. The environment is re-
sponsible for the fitness evaluation. It means that the envi-
ronment (there is represented by conventional “invariable”
circuits) has to provide training image as well as corrupted
image and to add the differences of filtered image and train-
ing image in the fitness function (as it was explained in
more details in [20]). An example of conventional compo-
nents developed for image processing in FPGAs that could
be utilized with the evolvable core is given for instance in
[5]. Remember again that these circuits are not a part of the
core. User is responsible for their implementation. On the
other hand it gives user the opportunity to reuse the core in
various applications.
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Figure 7. Evolvable filter as evolvable IP core

The whole evolvable IP core has not been synthesized
yet. However, it is possible to estimate that it will cost about
100k equivalent gates if a “home-made” genetic unit is im-
plemented as a specialized circuit according to Fig. 6. And
such a core can definitely be realized on an ordinary FPGA.

4.5. Target Platform

Camea DX6 board is considered as a target reconfig-
urable platform [29]. The board has been developed for
research purposes in the evolvable field; primarily focused
on the use of dynamically reconfigurable hardware in real-
world high-performance signal processing.

The DX6 system is a low cost, easy to integrate de-
vice capable of integrating embedded systems using a single
PCB board. The DX6 consists of the following major com-
ponents: DSP processor with VLIW architecture (C6000
family by Texas Instruments, Inc.), a Virtex FPGA, up to
128MB of operational memory, CPLD for inter-component
communications and the FPGA configuration, a Flash ROM
memory which stores both software (for DSP) and hardware
(for FPGA) processing elements, six fast communication
interfaces (more than 600Mb/s per channel) which can be
used for general I/O interfacing and the Ethernet interface
for an easy integration with desktop workstations.

5. Conclusions

We do believe that the proposed approach represents a
step towards designing more adaptive and “soft” hardware.
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It defines a new level of abstraction to the digital design.
Furthermore, it introduces a sort of component approach to
evolvable hardware. Evolvable IP cores are reusable and
tunable easily since they are represented at the level of HDL
source code. And these evolvable IP cores could in fact
determine business model for evolvable hardware.

It was necessary to utilize a virtual reconfigurable cir-
cuit in order to implement the evolvable IP core. The appli-
cation (designing of adaptive image filters) is a real-world
problem and it is interesting for industry. Now we are able
to solve the application using a relatively inexpensive or-
dinary FPGA. The proposed solution is expensive in terms
of equivalent gates; however, it allows us speeding up the
evolutionary design significantly.

We consider the proposed architecture and interface of
the core as a reasonable minimum. For instance, we could
enrich the core with a port for reading configurations which
is necessary e.g. for image compression.

The proposed evolvable filter IP core can be utilized for
the evolutionary design of image operators. Then it means
that the result of the evolution has to be downloaded from
the core and the evolved configuration bit stream can be
reused as an “invariable” IP core in many applications. Be-
cause of hardware implementation we can reduce the de-
sign time (that is needed for evolution) from tens of hours
to a few minutes or seconds. In this way more filters can
be evolved and thus the designer could be “replaced” by a
machine more effectively than by means of a software sim-
ulator.

However, evolvable IP cores are mainly devoted to im-
plement adaptive and high performance real-time systems at
reasonable cost. As examples of potential applications we
can mention image compression [25] or dynamic hashing
[3]. In these cases the evolvable core should contain two
virtual reconfigurable circuits RC1 and RC2. RC1 imple-
ments the best circuit that has been evolved so far. Endless
circuit evolution is performed in RC2. If a “better” circuit is
evolved in RC2, its configuration is sent to RC1. Then RC1
represents the best response to the changing environment as
a sequence of digital circuits.

The future work will be devoted to the synthesis of the
whole evolvable image filter IP core, its implementation on
DX6 board and its integration to an industrial image recog-
nition system. Simultaneously we will develop CAD tools
for the (semi)automatic design of evolvable IP cores.
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In R. Hartenstein and H. Grünbacher, editors, Proc. of
the 10th International Conference on Field-Programmable
Logic and Applications FPL2000, volume 1896 of Lecture
Notes in Computer Science, pages 814–817, Villach, Aus-
tria, 2000. Springer-Verlag.

[23] A. Stoica, D. Keymeulen, A. Thakoor, T. Daud, G. Klimech,
Y. Jin, R. Tawel, and V. Duong. Evolution of Analog Circuits
on Field Programmable Transistor Arrays. In Proc. of the
2000 NASA/DoD Conference on Evolvable Hardware, pages
99–108, Palo Alta, CA, 2002. IEEE Computer Society.

[24] A. Stoica, D. Keymeulen, R. S. Zebulum, M. I. Ferguson,
and X. Guo. On Two New Trends in Evolvable Hard-
ware: Employment of HDL-based Structuring, and De-
sign of Multi-functional Circuits. In Proc. of the 2002
NASA/DoD Conference on Evolvable Hardware, pages 56–
59, Alexandria, USA, 2002. IEEE Computer Society.

[25] M. Tanaka, H. Sakanashi, M. Salami, M. Iwata, T. Ku-
rita, and T. Higuchi. Data Compression for Digital Color
Electrophotographic Printer with Evolvable Hardware. In
M. Sipper, D. Mange, and A. Perez-Uribe, editors, Proc.
of the 2nd International Conference on Evolvable Systems:
From Biology to Hardware ICES’98, volume 1478 of Lec-
ture Notes in Computer Science, pages 106–114, Lausanne,
Switzerland, 1998. Springer-Verlag.

[26] G. Tufte and P. Haddow. Prototyping a GA Pipeline for
Complete Hardware Evolution. In A. Stoica, D. Keymeulen,
and J. Lohn, editors, Proc. of the 1st NASA/DoD Workshop
on Evolvable Hardware, pages 143–150, Pasadena, CA,
USA, 1999. IEEE Computer Society.

[27] Altera home page, 2003. http://www.altera.com.
[28] Atmel home page, 2003. http://www.atmel.com.
[29] Camea home page, 2003. http://www.camea.cz.
[30] Component source homepage, 2003.

http://www.componentsource.com.
[31] Xilinx microblaze ip core, 2003. http://www.xilinx.com.
[32] R. Zebulum, M. Pacheco, and M. Vellasco. Evolutionary

Electronics – Automatic Design of Electronic Circuits and
Systems by Genetic Algorithms. The CRC Press Interna-
tional Series on Computational Intelligence, 2002.

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware 
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE 


