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Abstract 
 
This paper shows that the evolutionary approach can 
discover the concept of the discrete state in a physical 
hardware which can be reconfigured at the transistor level. 
Evolution is able to recognize that the required output 
values are not pure combinations of the input values and to 
build internal structures to store the state. In particular, the 
Reset-Set circuit and the D-latch circuit are investigated 
using the field programmable transistor array FPTA-2.  

1. Introduction 
Reconfigurable analog devices, such as Field 

Programmable Analog Arrays (FPAA) or Field 
Programmable Transistor Arrays (FPTA), are usually 
utilized for the evolutionary design of analog or mixed 
circuits in the field of evolvable hardware [1]. Only in a few 
cases digital circuits were successfully evolved in an analog 
reconfigurable device so far. In particular, papers [2, 3, 4] 
describe the evolution of simple logic gates at the transistor 
level. The evolution of molecular logic gates in the so-
called NanoCell was introduced in [9]. The approach is 
referred to as intrinsic evolution because candidate circuits 
are evaluated directly in the reconfigurable hardware. 
Thompson evolved a single-electron NOR gate using a 
circuit simulator, i.e. extrinsically [10].  

In general, most research in the area of the digital circuit 
evolution deals with combinational circuits. The 
evolutionary algorithm composes the combinational circuits 
either of elementary gates or high-level functional blocks 
such as adders, multiplexers or comparators. The 
evolutionary design of sequential circuits is considerably 
less mature (see discussion in [5]). However, sequential 
circuits are crucial for implementation of digital 
computational devices because they represent the circuit 
implementation of an abstract concept of the discrete state. 

The behavior of a computational system is usually defined 
as a sequence of values of discrete states which the 
computational system undergoes in order to transform the 
input data onto the output data. In general, the output data 
does not depend only on the current input data (as in the 
case of combinational circuits), but also on the internal state 
of the system. The internal state is stored in memory 
elements implemented using flip-flops or latches, i.e. as 
digital sequential circuits [6]. Only in some cases the 
sequential circuits were evolved. As a typical example, 
reference [5] describes the evolutionary circuit design for 
finite state machines (FSM) and counters. Flip-flops, 
registers, and elementary gates are used as building blocks. 
Various approaches were proposed to synthesize finite state 
machines from partial input/output sequences [7]. The 
evolution is typically performed using a circuit simulator, 
i.e. in the process of extrinsic evolution.  

According to the knowledge of the authors of this paper, 
it is unknown whether the evolutionary approach can 
discover an implementation of a sequential circuit (for 
instance, a flip-flop) at the level of transistors or molecules, 
i.e. the levels different from the gate level. Sequential 
circuit evolution at the transistor level will be considered in 
this paper. Note that in order to conventionally implement 
the simplest sequential circuit in the most straightforward 
way, two digital gates (e.g. two NANDs) are needed. At the 
transistor level, a CMOS NAND (or NOR) gate can be 
implemented using four transistors, AND (or OR) using six 
transistors and XOR using 10 transistors. In another 
conventional imple-mentation, a static CMOS memory cell 
requires six transistors to be implemented [6]. 

The main objective of this paper is to explore whether 
the evolutionary approach can discover the concept of the 
discrete state in a physical hardware, which can be 
reconfigured at the transistor level. No information will be 
given about the state into the system a priori. The evolution 
must be able to recognize that the required outputs are not 



pure combinations of the input values and to build internal 
structures to store the state. One possible application is that 
this technology may open the door to building sequential 
circuits with a rich/non-linear dynamics in a more compact 
way than traditional combinatorial-memory way. One of the 
first steps in this direction is to show that we are able to 
evolve a novel memory implementation. The field 
programmable transistor array FPTA-2 [2] will be utilized 
to conduct these experiments. 

The rest of this paper is structured as follows. Section 2 
surveys the sequential circuits designed by means of an 
evolutionary design approach. In Section 3, the 
experimental platform (FPTA) is introduced. Section 4 
deals with the target circuits we are going to evolve and 
with the proposed design method. The obtained results are 
summarized in Section 5 and discussed in Section 6. 
Conclusions are given in Section 7. 

2. A brief survey of relevant research 
Table 1 surveys the sequential circuits evolved in the 

past years. We can observe that only one result dealing with 
the elementary sequential circuit (D-latch) is available. No 
result is available for the evolution at the transistor level. 
Table 1 also demonstrates that researchers are interested in 
more complicated circuits considered at higher levels of 
abstraction. 
 
Circuits Platform Level Ref. 
D-latch Extrinsic Gate [11] 
Freq. divider, 
detectors, serial adder 

Extrinsic PLD [7] 

Seq. Filters Extrinsic Functional [13] 
Quadrature decoder Extrinsic Look-Up Tables [12] 
Counters, detectors Extrinsic Gate, flip-flop [5] 

Table 1. Typical sequential circuits designed using an 
evolutionary approach 
 
The evolution of sequential circuits is usually considered as 
more difficult than the evolution of combinational circuits, 
because: (1) Longer chromosomes are needed in order to 
encode feedbacks. Longer chromosomes usually imply 
larger search spaces that are usually difficult to search. (2) 
The fitness calculation is more complicated, because in 
addition to testing all input/output combinations, it has to 
take into account the internal states. The evaluation time 
doubles by incrementing the number of internal states. 

3. Evolvable platform: FPTA-2 and SABLES  
 A complete stand-alone board-level evolvable system 
(SABLES) is built by integrating the FPTA and a DSP 
implementing the Evolutionary design algorithm [2]. The 
system is connected to the PC only for the purpose of 
receiving specifications and communicating back the result 

of evolution for analysis. The system fits in a box 8” x 8” x 
3”. Communication between DSP and FPTA is very fast 
with a 32-bit bus operating at 7.5MHz. The evaluation time 
depends on the tests performed on the circuit. Many of the 
tests attempted here require less than two milliseconds per 
individual, and runs of populations of 100 individuals from 
100 to 200 generations require only 20 seconds.  

 
Figure 1: FPTA-2 architecture (top) and schematic of cell 
transistor array (down). The cell contains additional 
capacitors and programmable resistors (not shown). 

 The FPTA is an evolution-oriented reconfigurable 
architecture (EORA).  It has a configurable granularity at 
the transistor level. It can map analog, digital and mixed 
signal circuits.  The architecture of the FPTA consists of an 
8x8 array of re-configurable cells. Each cell has a transistor 
array as well as a set of programmable resources, including 
programmable resistors and static capacitors. Figure 1 
provides a broad view of the chip architecture together with 
a detailed view of the reconfigurable transistor array cell. 
The reconfigurable circuitry consists of 14 transistors 
connected through 44 switches.   A total of ~5000 bits is 
used to program the whole chip. The pattern of 
interconnection between cells is similar to the one used in 
commercial FPGAs: each cell interconnects with its north, 



south, east and west neighbors.  The reader can refer to [2] 
for more information on the FPTA-2.  

 

4. Target circuits and the design method used  
 
This section defines the objectives and describes a strategy 
used to achieve the objectives. The objective is to evolve 
Reset-Set circuit (RS) and D (data) latch circuit in the 
FPTA. The RS circuit is the simplest sequential circuit 
which is able to hold a logic value. The D-latch is a 
sequential circuit typically utilized in registers and counters. 
Figure 2 shows the specification and conventional 
implementation of these circuits at the gate level. CMOS-
level implementations of their basic components, i.e. 
NAND and NOR gates, are shown in Fig. 3. 
 

 
(a) RS circuit  
If R=1 then Q=0 
If S=1 then Q=1 
If (S=0 and R=0) then hold the previous state 

 
(b) D-latch circuit 
If E=1 then Q=D 
If E=0 then hold previous state 
 
Figure 2: Specification and conventional implementation 
of (a) the RS circuit and (b) D-latch circuit. 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
  
(a)   (b) 

Figure 3: A conventional CMOS implementation of (a) 
NAND gate and (b) NOR gate. 
 
The RS and D-latch circuits will be designed using a 
standard genetic algorithm operating directly with 
configurations of FPTA-2 as chromosomes. Only a few 
cells of the FPTA will be utilized for the experiments. The 
genetic algorithm running in a DSP uses the roulette-wheel 
selection, crossover and mutation. Candidate solutions are 
evaluated directly in FPTA-2. In this process a sequence of 
input signals consisting of 12 combinations of logic values 
(a training set) is applied at the circuit inputs. The Genetic 
algorithm must minimize the differences between the 
produced and required output values. In particular K=240 
values are sampled, digitized and utilized during the 
evaluation of a candidate circuit. The input values can be 
seen in figures of Section 5. In contrast to combinational 
circuits, the evolved sequential circuits must be able to 
produce different output values for the identical input 
values, depending on the state of the circuit. It represents 
the main difficulty. The evolved circuits are also verified 
using various test input sequences. In general, the fitness 
function is as follows: 
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where P(i) is the i-th circuit output value and T(i) is the i-th 
target output value.  
 

5. Experimental results 
The following subsections describe the experimental setup 
and the results we obtained. All the circuits were evolved 
from scratch. 
 
 
 
 

E 



5.1 RS circuit 
 
Fig. 4a shows the experimental setup used to evolve the RS 
circuit from scratch. Only the configuration bits of cells 0 
and 1 (i.e. 2x77 bits) are stored in a chromosome. In order 
to establish a candidate circuit consisting of four cells the 
configuration bits of cells 0 and 1 are copied into cells 2 
and 3. The solid lines in Fig. 4 denote external physical 
connections (wires) used to connect the cells. These 
connections were utilized to promote a specific design 
pattern which is typical for elementary sequential circuits 
(see Fig. 2). In addition to these connections, the evolution 
could interconnect the cells using the internal switches of 
the FPTA. Parameters of GA are as follows: the population 
size = 100, the crossover probability = 70%, and the 
mutation probability = 10%. Depending on experiment 300-
1000 generations were produced. 
Figure 5 shows the behavior of two of the best RS circuits 
we evolved. When both input values are at logic 0 and the 
previous output value is at logic 1, the circuit is still able to 
hold the logic 1. This value is not as strong as if S=1; 
however, it is still possible to consider the output value as 
correct. As Fig. 5 shows it is easy to improve the output 
value using an additional standard inverter gate. The 
evolved circuits were tested with various input sequences 
generated for the same time domain. We found very 
difficult to evolve a correct RS circuit (approximately one 
successful run out of 30 runs). 
 

 
 
 
(a)   (b) 
Figure 4: Experimental setup for the evolution of (a) the 
RS circuit using 4 cells and (b) D-latch using 5 cells of the 
FPTA-2 (from scratch). 
 
5.2 D latch 
 
We used a similar experimental setup as for the previous 
problem. The differences are summarized in this paragraph: 
Figure 4b shows five cells and their physical 
interconnection by means of external wires. Evolution could 
also interconnect the cells using the internal switches. The 

chromosome contains configuration bits of the cells 2, 4 
and 5. The configuration bits for the cell 7 (6, respectively) 
are copied from the cell 4 (5, respectively).   
Although we performed more than 100 experiments, we 
obtained only one close-to-perfect D latch. Figure 6 shows 
its behavior for the training input sequence. The output 
values are not perfect; however they can be improved by 
means of two conventional inverters connected to the output 
(see the upper signal in Fig 6). Figure 7a illustrates that the 
circuit also works for a test input sequence. However, we 
were able to find a specific case for which the circuit does 
not work (see Fig. 7b). Hence the circuit can not be 
considered as a perfect D-latch.  
 
 

 
Figure 5: Behavior of two different RS circuits evolved 
form scratch. nQ is obtained from a conventional inverter 
connected to Q. 
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Figure 6: Behavior of an imperfect D-latch evolved form 
scratch. Q1 is obtained from two conventional inverters 
serially connected to Q. 
  

Q 
 
D 
 
E 

 
(a)   (b) 

Figure 7: Analysis of an imperfect D-latch evolved form 
scratch: (a) test - OK, (b) test – failed (the output should be 
at logic 0). 
 
Fig. 8 shows two typical imperfect behaviors corresponding 
to two different “D-latch” circuits we evolved very often. In 
the case (a), logic 1 is weak, which means that the circuit 
has problems to hold logic 1 when the both inputs are set at 
logic 0. There are no problems to hold logic 0. On the other 
hand, in the case (b), logic 0 is weak and there are no 
problems to hold logic 1. The evolution very often 
converges to one of these results. It seems very difficult for 
our GA and FPTA (perhaps impossible using the 
considered cells) to obtain something “between” which 
corresponds to a perfect D-latch. 
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(a)   (b) 
Figure 8: Typical behaviors which the evolution of a D-
latch often converges to: (a) weak logic 1, (b) weak logic 0. 
 
6. Discussion  
 
The presented work has addressed the fundamental question 
whether the evolutionary approach is able to discover the 
concept of the discrete state at the transistor level. Although 
the resulting circuits do not work perfectly, the answer is 
positive, i.e. the transistors available for the evolutionary 
design can be composed together by means of an automated 
evolutionary process in order to establish a simple 
sequential circuit. No surprise that it was easier to evolve 
the RS circuit than D-latch. The resulting circuits are not 
area-optimal, they do not probably operate correctly for 
various time domains and they can not easily be connected 
to some other circuits. However, those features were not 
required. We supplied sufficient resources and the evolution 
was able to discover the crucial concept – the internal state 
– directly in the reconfigurable transistor array. 
In case of combinational circuits there are usually many 
options how to put the available components together to 
obtain the required behavior. It seems that only several 
options exist for the sequential circuits. Their connection is 
very tricky and difficult to discover. This is why we were 
not able to evolve these circuits routinely. Although we 
consider the method used in Section 5 as the evolution from 
scratch, we had in fact to supply some little domain 
knowledge in the form of “promoted design pattern” (i.e. 
the connection of external wires etc.). No sequential circuits 
were evolved without this domain knowledge. 
In usual CMOS logic gates, upper PMOS circuits and lower 
NMOS circuit have dual relationship (see Fig. 3). This 
relationship prevents shorting of power supply to ground 
and resulted in lower power consumption and saturated 
output voltage.  On the other hand, evolved circuits seem to 
have turned-on PMOS and NMOS that short power supply 
and ground in somewhere because output voltage 
sometimes does not fully saturate to VDD or ground level. 
Introducing such dual restriction to the transistor level 
circuits would effectively narrow the search space and 
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might results in successful synthesis. This is one of possible 
directions for future research. 
  
7. Conclusions 
 
Simple sequential circuits were evolved at the transistor 
level directly in FPTA. That means that the concept of 
discrete state was discovered automatically by means of an 
evolutionary design process. Unfortunately, we were not 
able to connect the evolved circuits together in order to 
create more complicated sequential circuits. Further 
research is needed to find reliable sequential modules at the 
transistor level. 
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