

Evolutionary Discovering of the Concept of the Discrete State at the Transistor
Level

Lukas Sekanina Ricardo S. Zebulum
Faculty of Information Technology Jet Propulsion Laboratory

Brno University of Technology California Institute of Technology
Brno, Czech Republic Pasadena, CA
sekanina@fit.vutbr.cz rzebulum@mail2.jpl.nasa.gov

Abstract

This paper shows that the evolutionary approach can
discover the concept of the discrete state in a physical
hardware which can be reconfigured at the transistor level.
Evolution is able to recognize that the required output
values are not pure combinations of the input values and to
build internal structures to store the state. In particular, the
Reset-Set circuit and the D-latch circuit are investigated
using the field programmable transistor array FPTA-2.

1. Introduction
Reconfigurable analog devices, such as Field

Programmable Analog Arrays (FPAA) or Field
Programmable Transistor Arrays (FPTA), are usually
utilized for the evolutionary design of analog or mixed
circuits in the field of evolvable hardware [1]. Only in a few
cases digital circuits were successfully evolved in an analog
reconfigurable device so far. In particular, papers [2, 3, 4]
describe the evolution of simple logic gates at the transistor
level. The evolution of molecular logic gates in the so-
called NanoCell was introduced in [9]. The approach is
referred to as intrinsic evolution because candidate circuits
are evaluated directly in the reconfigurable hardware.
Thompson evolved a single-electron NOR gate using a
circuit simulator, i.e. extrinsically [10].

In general, most research in the area of the digital circuit
evolution deals with combinational circuits. The
evolutionary algorithm composes the combinational circuits
either of elementary gates or high-level functional blocks
such as adders, multiplexers or comparators. The
evolutionary design of sequential circuits is considerably
less mature (see discussion in [5]). However, sequential
circuits are crucial for implementation of digital
computational devices because they represent the circuit
implementation of an abstract concept of the discrete state.

The behavior of a computational system is usually defined
as a sequence of values of discrete states which the
computational system undergoes in order to transform the
input data onto the output data. In general, the output data
does not depend only on the current input data (as in the
case of combinational circuits), but also on the internal state
of the system. The internal state is stored in memory
elements implemented using flip-flops or latches, i.e. as
digital sequential circuits [6]. Only in some cases the
sequential circuits were evolved. As a typical example,
reference [5] describes the evolutionary circuit design for
finite state machines (FSM) and counters. Flip-flops,
registers, and elementary gates are used as building blocks.
Various approaches were proposed to synthesize finite state
machines from partial input/output sequences [7]. The
evolution is typically performed using a circuit simulator,
i.e. in the process of extrinsic evolution.

According to the knowledge of the authors of this paper,
it is unknown whether the evolutionary approach can
discover an implementation of a sequential circuit (for
instance, a flip-flop) at the level of transistors or molecules,
i.e. the levels different from the gate level. Sequential
circuit evolution at the transistor level will be considered in
this paper. Note that in order to conventionally implement
the simplest sequential circuit in the most straightforward
way, two digital gates (e.g. two NANDs) are needed. At the
transistor level, a CMOS NAND (or NOR) gate can be
implemented using four transistors, AND (or OR) using six
transistors and XOR using 10 transistors. In another
conventional imple-mentation, a static CMOS memory cell
requires six transistors to be implemented [6].

The main objective of this paper is to explore whether
the evolutionary approach can discover the concept of the
discrete state in a physical hardware, which can be
reconfigured at the transistor level. No information will be
given about the state into the system a priori. The evolution
must be able to recognize that the required outputs are not

pure combinations of the input values and to build internal
structures to store the state. One possible application is that
this technology may open the door to building sequential
circuits with a rich/non-linear dynamics in a more compact
way than traditional combinatorial-memory way. One of the
first steps in this direction is to show that we are able to
evolve a novel memory implementation. The field
programmable transistor array FPTA-2 [2] will be utilized
to conduct these experiments.

The rest of this paper is structured as follows. Section 2
surveys the sequential circuits designed by means of an
evolutionary design approach. In Section 3, the
experimental platform (FPTA) is introduced. Section 4
deals with the target circuits we are going to evolve and
with the proposed design method. The obtained results are
summarized in Section 5 and discussed in Section 6.
Conclusions are given in Section 7.

2. A brief survey of relevant research
Table 1 surveys the sequential circuits evolved in the

past years. We can observe that only one result dealing with
the elementary sequential circuit (D-latch) is available. No
result is available for the evolution at the transistor level.
Table 1 also demonstrates that researchers are interested in
more complicated circuits considered at higher levels of
abstraction.

Circuits Platform Level Ref.
D-latch Extrinsic Gate [11]
Freq. divider,
detectors, serial adder

Extrinsic PLD [7]

Seq. Filters Extrinsic Functional [13]
Quadrature decoder Extrinsic Look-Up Tables [12]
Counters, detectors Extrinsic Gate, flip-flop [5]

Table 1. Typical sequential circuits designed using an
evolutionary approach

The evolution of sequential circuits is usually considered as
more difficult than the evolution of combinational circuits,
because: (1) Longer chromosomes are needed in order to
encode feedbacks. Longer chromosomes usually imply
larger search spaces that are usually difficult to search. (2)
The fitness calculation is more complicated, because in
addition to testing all input/output combinations, it has to
take into account the internal states. The evaluation time
doubles by incrementing the number of internal states.

3. Evolvable platform: FPTA-2 and SABLES
 A complete stand-alone board-level evolvable system
(SABLES) is built by integrating the FPTA and a DSP
implementing the Evolutionary design algorithm [2]. The
system is connected to the PC only for the purpose of
receiving specifications and communicating back the result

of evolution for analysis. The system fits in a box 8” x 8” x
3”. Communication between DSP and FPTA is very fast
with a 32-bit bus operating at 7.5MHz. The evaluation time
depends on the tests performed on the circuit. Many of the
tests attempted here require less than two milliseconds per
individual, and runs of populations of 100 individuals from
100 to 200 generations require only 20 seconds.

Figure 1: FPTA-2 architecture (top) and schematic of cell
transistor array (down). The cell contains additional
capacitors and programmable resistors (not shown).

 The FPTA is an evolution-oriented reconfigurable
architecture (EORA). It has a configurable granularity at
the transistor level. It can map analog, digital and mixed
signal circuits. The architecture of the FPTA consists of an
8x8 array of re-configurable cells. Each cell has a transistor
array as well as a set of programmable resources, including
programmable resistors and static capacitors. Figure 1
provides a broad view of the chip architecture together with
a detailed view of the reconfigurable transistor array cell.
The reconfigurable circuitry consists of 14 transistors
connected through 44 switches. A total of ~5000 bits is
used to program the whole chip. The pattern of
interconnection between cells is similar to the one used in
commercial FPGAs: each cell interconnects with its north,

south, east and west neighbors. The reader can refer to [2]
for more information on the FPTA-2.

4. Target circuits and the design method used

This section defines the objectives and describes a strategy
used to achieve the objectives. The objective is to evolve
Reset-Set circuit (RS) and D (data) latch circuit in the
FPTA. The RS circuit is the simplest sequential circuit
which is able to hold a logic value. The D-latch is a
sequential circuit typically utilized in registers and counters.
Figure 2 shows the specification and conventional
implementation of these circuits at the gate level. CMOS-
level implementations of their basic components, i.e.
NAND and NOR gates, are shown in Fig. 3.

(a) RS circuit
If R=1 then Q=0
If S=1 then Q=1
If (S=0 and R=0) then hold the previous state

(b) D-latch circuit
If E=1 then Q=D
If E=0 then hold previous state

Figure 2: Specification and conventional implementation
of (a) the RS circuit and (b) D-latch circuit.

(a) (b)

Figure 3: A conventional CMOS implementation of (a)
NAND gate and (b) NOR gate.

The RS and D-latch circuits will be designed using a
standard genetic algorithm operating directly with
configurations of FPTA-2 as chromosomes. Only a few
cells of the FPTA will be utilized for the experiments. The
genetic algorithm running in a DSP uses the roulette-wheel
selection, crossover and mutation. Candidate solutions are
evaluated directly in FPTA-2. In this process a sequence of
input signals consisting of 12 combinations of logic values
(a training set) is applied at the circuit inputs. The Genetic
algorithm must minimize the differences between the
produced and required output values. In particular K=240
values are sampled, digitized and utilized during the
evaluation of a candidate circuit. The input values can be
seen in figures of Section 5. In contrast to combinational
circuits, the evolved sequential circuits must be able to
produce different output values for the identical input
values, depending on the state of the circuit. It represents
the main difficulty. The evolved circuits are also verified
using various test input sequences. In general, the fitness
function is as follows:

∑
=

−=
K

i

iTiPfitness
1

|)()(|

where P(i) is the i-th circuit output value and T(i) is the i-th
target output value.

5. Experimental results
The following subsections describe the experimental setup
and the results we obtained. All the circuits were evolved
from scratch.

E

5.1 RS circuit

Fig. 4a shows the experimental setup used to evolve the RS
circuit from scratch. Only the configuration bits of cells 0
and 1 (i.e. 2x77 bits) are stored in a chromosome. In order
to establish a candidate circuit consisting of four cells the
configuration bits of cells 0 and 1 are copied into cells 2
and 3. The solid lines in Fig. 4 denote external physical
connections (wires) used to connect the cells. These
connections were utilized to promote a specific design
pattern which is typical for elementary sequential circuits
(see Fig. 2). In addition to these connections, the evolution
could interconnect the cells using the internal switches of
the FPTA. Parameters of GA are as follows: the population
size = 100, the crossover probability = 70%, and the
mutation probability = 10%. Depending on experiment 300-
1000 generations were produced.
Figure 5 shows the behavior of two of the best RS circuits
we evolved. When both input values are at logic 0 and the
previous output value is at logic 1, the circuit is still able to
hold the logic 1. This value is not as strong as if S=1;
however, it is still possible to consider the output value as
correct. As Fig. 5 shows it is easy to improve the output
value using an additional standard inverter gate. The
evolved circuits were tested with various input sequences
generated for the same time domain. We found very
difficult to evolve a correct RS circuit (approximately one
successful run out of 30 runs).

(a) (b)
Figure 4: Experimental setup for the evolution of (a) the
RS circuit using 4 cells and (b) D-latch using 5 cells of the
FPTA-2 (from scratch).

5.2 D latch

We used a similar experimental setup as for the previous
problem. The differences are summarized in this paragraph:
Figure 4b shows five cells and their physical
interconnection by means of external wires. Evolution could
also interconnect the cells using the internal switches. The

chromosome contains configuration bits of the cells 2, 4
and 5. The configuration bits for the cell 7 (6, respectively)
are copied from the cell 4 (5, respectively).
Although we performed more than 100 experiments, we
obtained only one close-to-perfect D latch. Figure 6 shows
its behavior for the training input sequence. The output
values are not perfect; however they can be improved by
means of two conventional inverters connected to the output
(see the upper signal in Fig 6). Figure 7a illustrates that the
circuit also works for a test input sequence. However, we
were able to find a specific case for which the circuit does
not work (see Fig. 7b). Hence the circuit can not be
considered as a perfect D-latch.

Figure 5: Behavior of two different RS circuits evolved
form scratch. nQ is obtained from a conventional inverter
connected to Q.

R

S

Q

S

R

Q

nQ

Figure 6: Behavior of an imperfect D-latch evolved form
scratch. Q1 is obtained from two conventional inverters
serially connected to Q.

Q

D

E

(a) (b)

Figure 7: Analysis of an imperfect D-latch evolved form
scratch: (a) test - OK, (b) test – failed (the output should be
at logic 0).

Fig. 8 shows two typical imperfect behaviors corresponding
to two different “D-latch” circuits we evolved very often. In
the case (a), logic 1 is weak, which means that the circuit
has problems to hold logic 1 when the both inputs are set at
logic 0. There are no problems to hold logic 0. On the other
hand, in the case (b), logic 0 is weak and there are no
problems to hold logic 1. The evolution very often
converges to one of these results. It seems very difficult for
our GA and FPTA (perhaps impossible using the
considered cells) to obtain something “between” which
corresponds to a perfect D-latch.

Q

D

E

(a) (b)
Figure 8: Typical behaviors which the evolution of a D-
latch often converges to: (a) weak logic 1, (b) weak logic 0.

6. Discussion

The presented work has addressed the fundamental question
whether the evolutionary approach is able to discover the
concept of the discrete state at the transistor level. Although
the resulting circuits do not work perfectly, the answer is
positive, i.e. the transistors available for the evolutionary
design can be composed together by means of an automated
evolutionary process in order to establish a simple
sequential circuit. No surprise that it was easier to evolve
the RS circuit than D-latch. The resulting circuits are not
area-optimal, they do not probably operate correctly for
various time domains and they can not easily be connected
to some other circuits. However, those features were not
required. We supplied sufficient resources and the evolution
was able to discover the crucial concept – the internal state
– directly in the reconfigurable transistor array.
In case of combinational circuits there are usually many
options how to put the available components together to
obtain the required behavior. It seems that only several
options exist for the sequential circuits. Their connection is
very tricky and difficult to discover. This is why we were
not able to evolve these circuits routinely. Although we
consider the method used in Section 5 as the evolution from
scratch, we had in fact to supply some little domain
knowledge in the form of “promoted design pattern” (i.e.
the connection of external wires etc.). No sequential circuits
were evolved without this domain knowledge.
In usual CMOS logic gates, upper PMOS circuits and lower
NMOS circuit have dual relationship (see Fig. 3). This
relationship prevents shorting of power supply to ground
and resulted in lower power consumption and saturated
output voltage. On the other hand, evolved circuits seem to
have turned-on PMOS and NMOS that short power supply
and ground in somewhere because output voltage
sometimes does not fully saturate to VDD or ground level.
Introducing such dual restriction to the transistor level
circuits would effectively narrow the search space and

Q

D

E

Q1

might results in successful synthesis. This is one of possible
directions for future research.

7. Conclusions

Simple sequential circuits were evolved at the transistor
level directly in FPTA. That means that the concept of
discrete state was discovered automatically by means of an
evolutionary design process. Unfortunately, we were not
able to connect the evolved circuits together in order to
create more complicated sequential circuits. Further
research is needed to find reliable sequential modules at the
transistor level.

Acknowledgments

The research described in this paper was performed at the
Jet Propulsion Laboratory, California Institute of
Technology and was sponsored by the National Aeronautics
and Space Administration (NASA).
Lukas Sekanina was supported by the Fulbright scholarship
and from the research project of the Grant Agency of the
Czech Republic under No. 102/03/P004 Evolvable
hardware based application design methods.

References

[1] R. Zebulum, M. Pacheco and M. Vellasco.
“Evolutionary Electronics – Automatic Design of Electronic
Circuits and Systems by Genetic Algorithms”. CRC Press,
Boca Raton 2002
[2] A. Stoica, R. S. Zebulum, M. I. Ferguson, D.
Keymeulen and V. Duong. "Evolving Circuits in Seconds:
Experiments with a Stand-Alone Board Level Evolvable
System". In Proc of the 2002 NASA/DoD Conference on
Evolvable Hardware, Alexandria Virginia, USA, IEEE
Computer Society, p. 67-74, 2002
[3] J. Langeheine, K. Meier, and J. Schemmel. “Intrinsic
Evolution of Quasi DC Solutions for Transistor Level
Analog Electronic Circuits Using a CMOS FPTA Chip”. In

Proc. of the 2002 NASA/DoD Conference on Evolvable
Hardware, IEEE Computer Society, p. 75-84, 2002
[4] P. Layzell. “A New research Tool for Intrinsic
Hardware Evolution”. In Proc. of Evolvable Systems: From
Biology to Hardware Conference, ICES 1998, LNCS 1478,
Springer-Verlag, p. 47-56, 1998
[5] B. Ali, A. Almaini, and T. Kalganova. “Evolutionary
algorithms and their use in the design of sequential logic
circuits”. Genetic Programming and Evolvable Machines,
Vol. 5, No. 1, p. 11-29, 2004
[6] J. Wakerly. “Digital Design: Principles and Practices”.
Prentice-Hall, London 2000
[7] Ch. Manovit, Ch. Aporntewan and P. Chongstitvatana.
“Synthesis of Synchronous Sequential Logic Circuits from
Parital Input/Output Sequences”. In Proc. of Evolvable
Systems: From Biology to Hardware Conference, ICES
1998, LNCS 1478, Springer-Verlag, p. 98-105, 1998
[8] A. Thompson. “Silicon Evolution”. In Proc. of the
Genetic Programming Conference, MIT Press, p. 444-452,
1996
[9] J. M. Tour. “Molecular Electronics”. World Scientific,
2003
[10] A. Thompson. „Evolutionary Design of Single
Electron Systems”. In Proc. of the 2nd NASA/DoD
Workshop on Evolvable Hardware,
Palo Alto, CA, IEEE Computer Society, 109-116, 2000
[11] M. Garvie and A. Thompson. “Evolution of
Combinational and Sequential On-line Self-Diagnosing
Hardware”. In Proc. of the 2003 NASA/DoD Conference
on Evolvable Hardware, IEEE Computer Society, p. 167-
173, 2003
[12] J. Lohn, G. Larchev and R. DeMara. “A Genetic
Representation for Evolutionary Fault Recovery in Virtex
FPGAs”. In Proc of the Evolvable Systems: From Biology
ti Hardware Conference, ICES 2003, LNCS 2606, p. 47-56,
2003
[13] R. Thomson and T. Arslan. “Evolvable Hardware for
the Generation of Sequential Filter Circuits”. In Proc. of the
2002 NASA/DoD Conference on Evolvable Hardware,
IEEE Computer Society, p. 17-25, 2002

